3-phase bridge inverter SKiiP 26AC12T4V1 ### **Features** - · Trench 4 IGBT's - · Robust and soft freewheeling diodes in CAL technology - Highly reliable spring contacts for electrical connections - UL recognised file no. E63532 ### **Typical Applications*** - Inverter up to 29 kVA - Typical motor power 18,5 kW #### Remarks - V_{CEsat}, V_F= chip level value Case temp. limited to T_C = 125°C max. (for baseplateless modules $T_C = T_S$ - product rel. results valid for $T_i \le 150$ (recomm. $T_{op} = -40$... +150°C) | Absolute Maximum Ratings $T_c = 25$ °C, unless otherwise specifie | | | | | | |--|--|-------------------------|--|---------|-------| | Symbol | Conditions | | | Values | Units | | IGBT | | | | | | | V_{CES} | T _j = 25 °C | | | 1200 | V | | I _C | T _j = 175 °C | T _c = 25 °C | | 90 | Α | | | | $T_c = 70 ^{\circ}C$ | | 73 | Α | | I _{CRM} | I _{CRM} = 3xI _{Cnom} | | | 210 | Α | | V_{GES} | | | | ±20 | V | | t _{psc} | V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V | T _j = 150 °C | | 10 | μs | | Inverse D | iode | | | | | | I _F | T _j = 175 °C | T_c = 25 °C | | 82 | Α | | | | $T_c = 70 ^{\circ}C$ | | 66 | Α | | I _{FRM} | I _{CRM} = 3xI _{Cnom} | | | 225 | Α | | I _{FSM} | t _p = 10 ms; sin. | T _j = 150 °C | | 429 | Α | | Module | | | | | | | $I_{t(RMS)}$ | | | | 100 | Α | | T_{vj} | | | | -40+175 | °C | | T _{stg} | | | | -40+125 | °C | | V _{isol} | AC, 1 min. | | | 2500 | V | | Characteristics $T_c =$ | | 25 °C, unless otherwise specified | | | | | |-------------------------|--|---|------|------|------|------------------| | Symbol | Conditions | | min. | typ. | max. | Units | | IGBT | | | | | | _ | | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$ | | 5 | 5,8 | 6,5 | V | | I _{CES} | $V_{GE} = 0 V, V_{CE} = V_{CES}$ | T _j = 25 °C | | | 0,3 | mA | | V _{CE0} | | T _j = 25 °C | | 0,8 | 0,9 | V | | | | T _j = 150 °C | | 0,7 | 0,8 | V | | r _{CE} | V _{GE} = 15 V | T _j = 25°C | | 15 | 16,5 | mΩ | | | | T _j = 150°C | | 22 | 23,5 | $\text{m}\Omega$ | | V _{CE(sat)} | I _{Cnom} = 70 A, V _{GE} = 15 V | T _j = 25°C _{chiplev.} | | 1,85 | 2,05 | V | | | | $T_j = 150^{\circ}C_{chiplev.}$ | | 2,25 | 2,45 | V | | C _{ies} | | | | 3,9 | | nF | | C _{oes} | $V_{CE} = 25, V_{GE} = 0 V$ | f = 1 MHz | | 0,31 | | nF | | C _{res} | | | | 0,23 | | nF | | Q_G | V _{GE} = -8V +15V | | | 400 | | nC | | R _{Gint} | T _j = 25 °C | | | 0 | | Ω | | t _{d(on)} | | | | 26 | | ns | | t _r | $R_{Gon} = 9.1 \Omega$ | $V_{CC} = 600V$ | | 36 | | ns | | E _{on} | di/dt = 1820 A/μs | I _C = 75A | | 9,5 | | mJ | | $t_{d(off)}$ | $R_{Goff} = 9.1 \Omega$ | T _j = 150 °C | | 320 | | ns | | t _f | di/dt = 900 A/μs | $V_{GE} = \pm 15V$ | | 175 | | ns | | E _{off} | | | | 7,1 | | mJ | | $R_{th(j-s)}$ | per IGBT | | | 0,55 | | K/W | 3-phase bridge inverter SKiiP 26AC12T4V1 ### **Features** - Trench 4 IGBT's - Robust and soft freewheeling diodes in CAL technology - Highly reliable spring contacts for electrical connections - UL recognised file no. E63532 ### Typical Applications* - Inverter up to 29 kVA - Typical motor power 18,5 kW #### Remarks - V_{CEsat} , V_{F} = chip level value Case temp. limited to T_{C} = 125°C max. (for baseplateless modules $T_C = T_S$ - product rel. results valid for $T_i \le 150$ (recomm. $T_{op} = -40 \dots$ +150°C) | Characteristics | | | | | | | | |--------------------|---------------------------------|---|------|------|------|-----------|--| | Symbol | Conditions | | min. | typ. | max. | Units | | | Inverse Diode | | | | | | | | | $V_F = V_{EC}$ | I_{Fnom} = 75 A; V_{GE} = V | $T_j = 25 ^{\circ}C_{\text{chiplev.}}$ | | 2,2 | 2,5 | V | | | | | $T_j = 150 ^{\circ}C_{chiplev.}$ | | 2,1 | 2,45 | V | | | V_{F0} | | T _j = 25 °C | | 1,3 | 1,5 | V | | | | | T _j = 150 °C | | 0,9 | 1,1 | V | | | r _F | | T _j = 25 °C | | 12 | 13 | mΩ | | | | | T _j = 150 °C | | 16 | 18 | $m\Omega$ | | | I _{RRM} | I _F = 75 A | T _i = 150 °C | | 80 | | Α | | | Q_{rr} | di/dt = 2120 A/µs | • | | 13,3 | | μC | | | E _{rr} | V _{GE} = ±15V | | | 5,6 | | mJ | | | $R_{th(j-s)}$ | per diode | | | 0,75 | | K/W | | | M _s | to heat sink | | | | | Nm | | | M _t | to terminals | | 2 | | 2,5 | Nm | | | w | | | | 65 | | g | | | Temperature sensor | | | | | | | | | R _{ts} | 3%, Tr = 25°C | | | 1000 | | Ω | | | R _{ts} | 3%, Tr = 100°C | | | 1670 | | Ω | | This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. * The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal. 5 29-10-2008 LAN © by SEMIKRON