

## U426 HIGH INPUT IMPEDANCE MONOLITHIC DUAL N-CHANNEL JFET



## Linear Systems replaces discontinued Siliconix U426

## The U426 is a high input impedance Monolithic Dual N-Channel JFET

The U426 monolithic dual n-channel JFET is designed to provide very high input impedance for differential amplification and impedance matching. Among its many unique features, this series offers operating gate current specified at -500 fA. The U426 is a direct replacement for discontinued Siliconix U426.

The hermetically sealed TO-71 & TO-78 packages are well suited for military applications. The 8 Pin P-DIP and 8 Pin SOIC provide ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

## **U426 Applications:**

- Ultra Low Input Current Differential Amps
- High-Speed Comparators
- Impedance Converters

| FEATURES                                                 |                                 |                 |       |       |                 |                                            |  |  |
|----------------------------------------------------------|---------------------------------|-----------------|-------|-------|-----------------|--------------------------------------------|--|--|
| HIGH INPUT                                               | I <sub>G</sub> = 0.25pA MAX     |                 |       |       |                 |                                            |  |  |
| HIGH GAIN                                                | gfs = 120μmho MIN               |                 |       |       |                 |                                            |  |  |
| LOW POWE                                                 | $V_{GS(OFF)} = 2V MAX$          |                 |       |       |                 |                                            |  |  |
| ABSOLUTE N                                               | MAXIMU                          | JM RATINGS      |       |       |                 |                                            |  |  |
| @ 25°C (unless otherwise noted)                          |                                 |                 |       |       |                 |                                            |  |  |
| Maximum Temperatures                                     |                                 |                 |       |       |                 |                                            |  |  |
| Storage Temperature                                      |                                 |                 |       |       | -65°C to +150°C |                                            |  |  |
| Operating Junction Temperature                           |                                 |                 |       |       | +150°C          |                                            |  |  |
| Maximum Voltage and Current for Each Transistor – Note 1 |                                 |                 |       |       |                 |                                            |  |  |
| -V <sub>GSS</sub>                                        | Gate Voltage to Drain or Source |                 |       |       |                 | 40V                                        |  |  |
| -V <sub>DSO</sub>                                        | Drain to Source Voltage         |                 |       |       |                 | 40V                                        |  |  |
| -I <sub>G(f)</sub>                                       | Gate Forward Current            |                 |       |       |                 | 10mA                                       |  |  |
| Maximum Power Dissipation                                |                                 |                 |       |       |                 |                                            |  |  |
| Device Dissipation @ Free Air – Total 400mW @ +125°C     |                                 |                 |       |       |                 |                                            |  |  |
| MATCHING CHARACTERISTICS @ 25°C UNLESS OTHERWISE NOTED   |                                 |                 |       |       |                 |                                            |  |  |
| SYMBOL                                                   |                                 | CHARACTERISTICS | VALUE | UNI   | ITS             | CONDITIONS                                 |  |  |
| $ \Delta V_{GS1-2}/\Delta T $ max.                       |                                 | DRIFT VS.       | 40    | μV/°C |                 | $V_{DG}$ =10V, $I_D$ =30 $\mu$ A           |  |  |
|                                                          |                                 | TEMPERATURE     |       |       |                 | T <sub>A</sub> =-55°C to +125°C            |  |  |
| V <sub>GS1-2</sub>   max.                                |                                 | OFFSET VOLTAGE  | 25    | mV    |                 | V <sub>DG</sub> =10V, I <sub>D</sub> =30μA |  |  |

| FIFCTRICAL CHARACTERISTICS | 25°C (unless otherwise noted) |
|----------------------------|-------------------------------|
|                            |                               |

| SYMBOL                 | CHARACTERISTICS CHARACTERISTICS                  | MIN.        | TYP. | MAX. | UNITS  | CONDITIONS                                                   |  |
|------------------------|--------------------------------------------------|-------------|------|------|--------|--------------------------------------------------------------|--|
| BV <sub>GSS</sub>      | Breakdown Voltage                                | 40          | 60   |      | V      | $V_{DS} = 0$ $I_G = 1nA$                                     |  |
| BV <sub>GGO</sub>      | Gate-To-Gate Breakdown                           | 40          |      |      | V      | $I_{G} = 1\mu A$ $I_{D} = 0$ $I_{S} = 0$                     |  |
| Y <sub>fSS</sub>       | TRANSCONDUCTANCE Full Conduction                 | 300         |      | 1500 | μmho   | V <sub>DS</sub> = 10V V <sub>GS</sub> = 0V f = 1kHz          |  |
| Y <sub>fS</sub>        | Typica <mark>l O</mark> per <mark>at</mark> ion  | <b>12</b> 0 | 200  | 350  | μmho   | $V_{DG} = 10V$ $I_D = 30\mu A$ $f = 1kHz$                    |  |
| I <sub>DSS</sub>       | DRAIN CURRENT<br>Full-Conduction                 | 60          |      | 1000 | μΑ     | V <sub>bs</sub> = 10V V <sub>Gs</sub> = 0V                   |  |
|                        | GATE VOLTAGE                                     |             |      |      |        |                                                              |  |
| $V_{GS(off)}$          | Pinchoff voltage                                 |             |      | 2.0  | V      | $V_{DS} = 10V$ $I_D = 1nA$                                   |  |
| $V_{GS}$               | Operating Range                                  |             |      | 1.8  | V      | $V_{DG} = 10V$ $I_D = 30\mu A$                               |  |
|                        | GATE CURRENT                                     |             |      |      |        |                                                              |  |
| I <sub>G</sub> max.    | Operating                                        |             |      | .25  | pA     | $V_{DG} = 10V$ $I_D = 30\mu A$                               |  |
| -I <sub>G</sub> max.   | High Temperature                                 |             |      | 250  | pA     | T <sub>A</sub> = +125°C                                      |  |
| I <sub>GSS</sub> max.  | At Full Conduction                               |             |      | 1.0  | pA     | $V_{DS} = 0V$ $V_{GS} = 20V$                                 |  |
| -I <sub>GSS</sub> max. | High Temperature                                 |             |      | 1.0  | nA     | T <sub>A</sub> = +125°C                                      |  |
|                        | OUTPUT CONDUCTANCE                               |             |      |      |        |                                                              |  |
| Y <sub>OSS</sub>       | Full Conduction                                  |             |      | 10   | μmho   | $V_{DS} = 10V$ $V_{GS} = 0V$                                 |  |
| Y <sub>os</sub>        | Operating                                        |             | 0.1  | 3.0  | μmho   | $V_{DG} = 10V$ $I_{D} = 30\mu A$                             |  |
|                        | COMMON MODE REJECTION                            |             |      |      |        |                                                              |  |
| CMR                    | -20 log   ΔV <sub>GS1-2</sub> / ΔV <sub>DS</sub> |             | 90   |      | dB     | $\Delta V_{DS} = 10 \text{ to } 20V \qquad I_{D} = 30 \mu A$ |  |
|                        | -20 log   ΔV <sub>GS1-2</sub> / ΔV <sub>DS</sub> |             | 90   |      | dB     | $\Delta V_{DS} = 5 \text{ to } 10V$ $I_D = 30 \mu A$         |  |
|                        | <u>NOISE</u>                                     |             |      |      |        | $V_{DG} = 10V$ $I_{D} = 30\mu A$ $R_{G} = 10M\Omega$         |  |
| NF                     | Figure                                           |             |      | 1    | dB     | f = 10Hz                                                     |  |
| e <sub>n</sub>         | Voltage                                          |             | 20   | 70   | nV/√Hz | $V_{DG} = 10V$ $I_{D} = 30\mu A$ $f = 10Hz$                  |  |
|                        |                                                  |             | 10   |      |        | $V_{DG} = 10V I_{D} = 30\mu A f = 1KHz$                      |  |
|                        | <u>CAPACITANCE</u>                               |             |      |      |        | ,                                                            |  |
| C <sub>ISS</sub>       | Input                                            |             |      | 3.0  | pF     | $V_{DS}$ = 10V $V_{GS}$ = 0 f = 1MHz                         |  |
| C <sub>RSS</sub>       | Reverse Transfer                                 |             |      | 1.5  | pF     |                                                              |  |

Note 1 – These ratings are limiting values above which the serviceability of any semiconductor may be impaired

Available Packages:

U426 in TO-71 & TO-78 U426 in PDIP & SOIC U426 available as bare die

Please contact Micross for full package and die dimensions

Email: <a href="mailto:chipcomponents@micross.com">chipcomponents@micross.com</a>





P-DIP / SOIC (Top View)

