DGT409BCA
 Reverse Blocking Gate Turn-off Thyristor

APPLICATIONS

The DGT409BCA is a symmetrical GTO designed for applications, which specifically require a reverse blocking capability, such as current source inverter (CSI). Reverse recovery ratings and characteristics are included.

FEATURES

- Reverse blocking Capability
- Double Side Cooling
- High Reliability In Service
- High Voltage Capability
- Fault Protection Without Fuses
- Turn-off Capability Allows Reduction in

Equipment Size and Weight. Low Noise
Emission Reduces Acoustic Cladding Necessary For Environmental Requirements

ORDERING INFORMATION

Order as: DGT409BCA6565

KEY PARAMETERS

$\mathrm{I}_{\text {TCM }}$	1500 A
$\mathrm{~V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	6500 V
$\mathrm{dV} V_{\mathrm{D}} / \mathrm{dt}$	$1000 \mathrm{~V} / \mu \mathrm{s}$
$\mathrm{d} \mathrm{I}_{\mathrm{T}} \mathrm{dt}$	$300 \mathrm{~A} / \mu \mathrm{s}$

Outline type code: CA
(See Package Details for further information)

Fig. 1 Package outline

VOLTAGE RATINGS

Type Number	Repetitive Peak Off-state Voltage V VRM (V)	Repetitive Peak Reverse Voltage V $_{\text {RRM }}(\mathrm{V})$	Conditions
DGT409BCA	6500	6500	$\mathrm{~T}_{\mathrm{Vj}}=115^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{DM}}=, \mathrm{I}_{\text {RRM }}=100 \mathrm{~mA}$

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
$I_{\text {TCM }}$	Repetitive peak controllable on-state current	$V_{D}=4300 \mathrm{~V}, \mathrm{~T}_{j}=115^{\circ} \mathrm{C}$, $\mathrm{d} \mathrm{I}_{\mathrm{G} \mathrm{Q}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{S}, \mathrm{C}_{\mathrm{S}}=2 \mu \mathrm{~F}$	1500	A

SURGE RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
$I_{\text {TSM }}$	Surge (non repetitive) on-state current	$10 \mathrm{~ms} \mathrm{half} \mathrm{sine}. \mathrm{~T}_{\mathrm{j}}=115^{\circ} \mathrm{C}$	3.0	kA
$1^{2} t$	$1^{2} t$ for fusing	$10 \mathrm{~ms} \mathrm{half} \mathrm{sine}. \mathrm{~T}_{\mathrm{j}}=115^{\circ} \mathrm{C}$	45	$k A^{2} \mathrm{~s}$
diT/dt	Critical rate of rise of on-state current	$\begin{gathered} \mathrm{V}_{\mathrm{D}}=3000 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=800 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=115^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{FG}}>20 \mathrm{~A}, \\ \text { Rise time }\left(\mathrm{t}_{\mathrm{r}}\right)>1.5 \mu \mathrm{~S} \end{gathered}$	300	A/ $\mu \mathrm{s}$
$\mathrm{dV} \mathrm{D}_{\mathrm{D}} \mathrm{dt}$	Rate of rise of off-state voltage	$V_{D}=3000 \mathrm{~V} ; \mathrm{R}_{G K} \leq 1.5 \Omega, \mathrm{~T}_{\mathrm{j}}=115^{\circ} \mathrm{C}$	175	V/ $/ \mathrm{s}$
		$\mathrm{V}_{\mathrm{D}}=3000 \mathrm{~V} ; \mathrm{V}_{\mathrm{RG}} \leq-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=115^{\circ} \mathrm{C}$	1000	V/ $/ \mathrm{S}$
Ls	Peak stray inductance in snubber circuit	$\begin{gathered} \mathrm{I}_{\mathrm{T}}=1500 \mathrm{~A}, \mathrm{~V}_{\mathrm{DM}}=6000 \mathrm{~V}, \mathrm{Tj}=115^{\circ} \mathrm{C}, \mathrm{dl}_{\mathrm{GQ}}=20 \mathrm{~A} / \mathrm{us}, \\ \mathrm{C}_{\mathrm{S}}=2.0 \mathrm{uF} \end{gathered}$	200	nH

GATE RATINGS

Symbol	Parameter	Test Conditions	Min.	Max.	Units
$\mathrm{V}_{\mathrm{RGM}}$	Peak reverse gate voltage	This value may exceeded during turn-off	-	25	V
$\mathrm{IFGM}^{\text {f }}$	Peak forward gate current		20	70	A
$\mathrm{P}_{\mathrm{FG}(\mathrm{AV})}$	Average forward gate power		-	10	W
$\mathrm{P}_{\mathrm{RGGM}}$	Peak reverse gate power		-	15	kW
digQ $/ \mathrm{dt}$	Rate of rise of reverse gate current		15	60	A/ $/ \mathrm{s}$
ton(min)	Minimum permissible on time		50	-	$\mu \mathrm{s}$
toff(min)	Minimum permissible off time		150	-	us
Irgm	Continuous reverse gate-cathode current	$\mathrm{V}_{\mathrm{RGM}}=16 \mathrm{~V}$, No gate cathode resistor	-	50	mA

THERMAL AND MECHANICAL RATINGS

Symbol	Parameter	Test Conditions		Min.	Max.	Units
$\mathrm{R}_{\text {tht(-hs) }}$	Thermal resistance - junction to heatsink surface	Double side cooled	DC	-	0.046	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Single side cooled	Anode DC	-	0.073	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			Cathode DC	-	0.124	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {th (chs) }}$	Contact thermal resistance	Clamping force 32.0 kN With mounting compound	Per contact	-	0.009	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{vj}	Virtual junction temperature	On-state (conducting)		-	115	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }} / \mathrm{T}_{\text {stg }}$	Operating junction/storage temperature range			-40	115	${ }^{\circ} \mathrm{C}$
F_{m}	Clamping force			11.0	15.0	kN

CHARACTERISTICS

$\mathrm{Tj}=115^{\circ} \mathrm{C}$ unless stated otherwise

Symbol	Parameter	Test Conditions	Min.	Max.	Units
$\mathrm{V}_{\text {TM) }}$	On-state voltage	At 200A peak, $\mathrm{I}_{\mathrm{G}(0 \mathrm{~N})}=4 \mathrm{~A}$ d.c.	-	4	V
IDM	Peak off-state current	$\mathrm{V}_{\mathrm{DRM}}=6500 \mathrm{~V}, \mathrm{~V}_{\mathrm{RG}}=0 \mathrm{~V}$	-	100	mA
$I_{\text {RRM }}$	Peak reverse current	$\mathrm{V}_{\text {RRM }}=6500 \mathrm{~V}$	-	100	mA
V_{GT}	Gate trigger voltage	$\mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	-	1	V
$I_{\text {GT }}$	Gate trigger current	$\mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A}, \mathrm{Tj}=25^{\circ} \mathrm{C}$	-	2	A
$\mathrm{I}_{\text {RGM }}$	Reverse gate cathode current	$\mathrm{V}_{\mathrm{RGM}}=16 \mathrm{~V}$, No gate/cathode resistor	-	50	mA
Eon	Turn-on Energy	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=3000 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{T}}=400 \mathrm{~A}, \mathrm{~d} \mathrm{~d}_{T} / \mathrm{dt}=150 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{I}_{\mathrm{FG}}=20 \mathrm{~A}, \text { rise time }\left(\mathrm{t}_{\mathrm{r}}\right)<1.5 \mu \mathrm{~s} \end{aligned}$	-	2500	mJ
t_{d}	Delay time		-	3	$\mu \mathrm{s}$
tr_{r}	Rise time		-	7	$\mu \mathrm{s}$
EofF	Turn-off energy	$\mathrm{I}_{\mathrm{T}}=800 \mathrm{~A}, \mathrm{~V}_{\mathrm{DM}}=3000 \mathrm{~V}$ Snubber Cap Cs $=2 \mu \mathrm{C}$ $\mathrm{di} \mathrm{GQ}_{\mathrm{G}} / \mathrm{dt}=20 \mathrm{~A} / \mathrm{us}$	-	2500	mJ
t_{gs}	Storage time		See Fig. 17 and Fig. 18		$\mu \mathrm{s}$
t_{gf}	Fall time				$\mu \mathrm{s}$
t_{gq}	Gate controlled turn-off time				$\mu \mathrm{s}$
Q_{GQ}	Turn-off gate charge		-	3600	$\mu \mathrm{C}$
QGQt	Total turn-off gate charge		-	7200	$\mu \mathrm{C}$
$\mathrm{IGQM}^{\text {g }}$	Peak reverse gate current		-	350	A

Recommended gate conditions to switch off $\mathrm{I}_{\text {TCM }}=800 \mathrm{~A}$:
$I_{F G}=30 \mathrm{~A}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}=4 \mathrm{~A}$ d.c.
$\mathrm{t}_{\mathrm{w} 1(\mathrm{~min})}=20 \mu \mathrm{~s}$
$\mathrm{I}_{\mathrm{GQM}}^{\mathrm{w} 1(\text { min })}=270 \mathrm{~A}$ typical
$\mathrm{di}_{\mathrm{GQ}} / \mathrm{dt}=30 \mathrm{~A} / \mu \mathrm{s}$
$Q_{G Q}=2200 \mu \mathrm{C}$
$\mathrm{V}_{\mathrm{RG}(\text { min })}=2 \mathrm{~V}$
$V_{R G(\text { max })}=15 \mathrm{~V}$
These are recommended Dynex Semiconductor conditions. Other conditions are permitted according to users gate drive specifications.

Fig. 2 General switching waveforms

CURVES

Fig. 3 Reverse recovery waveforms

Fig. 4 Maximum gate trigger voltage/current vs junction temperature

Fig. 5 Maximum on-state characteristics

Fig. 6 Maximum dependence of $\mathrm{I}_{\text {TCM }}$ on C_{S}

Fig. 8 Maximum reverse recovery charge vs rate of fall of anode current

Fig. 7 Maximum reverse recovery energy vs rate of fall of anode current

Fig. 9 Maximum reverse recovery current vs rate of fall of anode current

Fig. 10 Maximum reverse recovery power vs rate of fall of anode current

Fig. 12 Turn-on energy vs peak forward gate current

Fig.11Turn-on energy vs on-state current

Fig. 13 Delay time and rise time vs on-state current

Fig. 14 Switching times vs peak forward gate current

Fig. 16 Turn-off energy vs rate of rise of reverse gate current

Fig. 15 Maximum turn-off energy vs on-state current

Fig. 17 Gate storage time and fall time vs on-state current

Fig. 18 Gate storage time and fall time vs rate of rise of reverse gate current

Fig. 19 Maximum (limit) transient thermal impedance double side cooled

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

Nominal weight: 350 g
Clamping force: $12 \mathrm{kN} 10 \%$
Lead length: 505 mm
Package outine type code: CA

Fig. 20 Package outline

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.

Stresses above those listed in this data sheet may cause permanent damage to the device. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture of the package. Appropriate safety precautions should always be followed.
http://www.dynexsemi.com
e-mail: power_solutions@dynexsemi.com

HEADQUARTERS OPERATIONS
DYNEX SEMICONDUCTOR LTD
Doddington Road, Lincoln
Lincolnshire, LN6 3LF. United Kingdom.
Tel: +44(0)1522500500
Fax: +44(0)1522500550

CUSTOMER SERVICE
Tel: $+44(0) 1522502753 / 502901$. Fax: $+44(0) 1522500020$
© Dynex Semiconductor 2003 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRODUCED IN UNITED KINGDOM.

[^0]
[^0]: This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

 All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

