

Micropower, Dual and

Quad, Single Supply, Precision Op Amps

FEATURES

- Available in 8-Pin SO Package
- 50μA Max Supply Current per Amplifier
- 70µV Max Offset Voltage
- 180µA Max Offset Voltage in 8-Pin SO
- 250pA Max Offset Current
- 0.6μV_{P-P}, 0.1Hz to 10Hz Voltage Noise
- 3pA_{P-P}, 0.1Hz to 10Hz Current Noise
- 0.4µV/°C Offset Voltage Drift
- 200kHz Gain Bandwidth Product
- 0.07V/µs Slew Rate
- Single Supply Operation
 Input Voltage Range Includes Ground
 Output Swings to Ground while Sinking Current
 No Pull-Down Resistors Needed
- Output Sources and Sinks 5mA Load Current

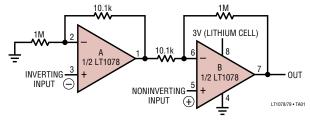
APPLICATIONS

- Battery or Solar-Powered Systems
 Portable Instrumentation
 Remote Sensor Amplifier
 Satellite Circuitry
- Micropower Sample-and-Hold
- Thermocouple Amplifier
- Micropower Filters

DESCRIPTION

The LT $^{\otimes}$ 1078 is a micropower dual op amp in 8-pin packages including the small outline surface mount package. The LT1079 is a micropower quad op amp offered in the standard 14-pin packages. Both devices are optimized for single supply operation at 5V. \pm 15V specifications are also provided.

Micropower performance of competing devices is achieved at the expense of seriously degrading precision, noise, speed and output drive specifications. The design effort of the LT1078/LT1079 was concentrated on reducing supply current without sacrificing other parameters. The offset voltage achieved is the lowest on any dual or quad nonchopper stabilized op amp—micropower or otherwise. Offset current, voltage and current noise, slew rate and gain bandwidth product are all two to ten times better than on previous micropower op amps.


The 1/f corner of the voltage noise spectrum is at 0.7Hz, at least three times lower than on any monolithic op amp. This results in low frequency (0.1Hz to 10Hz) noise performance which can only be found on devices with an order of magnitude higher supply current.

Both the LT1078 and LT1079 can be operated from a single supply (as low as one lithium cell or two Ni-Cad batteries). The input range goes below ground. The all-NPN output stage swings to within a few millivolts of ground while sinking current—no power consuming pull down resistors are needed.

LTC and LT are registered trademarks of Linear Technology Corporation.

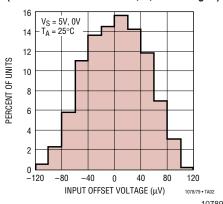
TYPICAL APPLICATION

Single Battery, Micropower, Gain = 100, Instrumentation Amplifier

TYPICAL PERFORMANCE

INPUT OFFSET VOLTAGE = 40 µV
INPUT OFFSET CURRENT = 0.2 nA
TOTAL POWER DISSIPATION = 240 µW
COMMON MODE REJECTION = 110 dB (AMPLIFIER LIMITED)
GAIN BANDWIDTH PRODUCT = 200 kHz

OUTPUT NOISE = $85\mu V_{P-P}$ 0.1Hz TO 10Hz

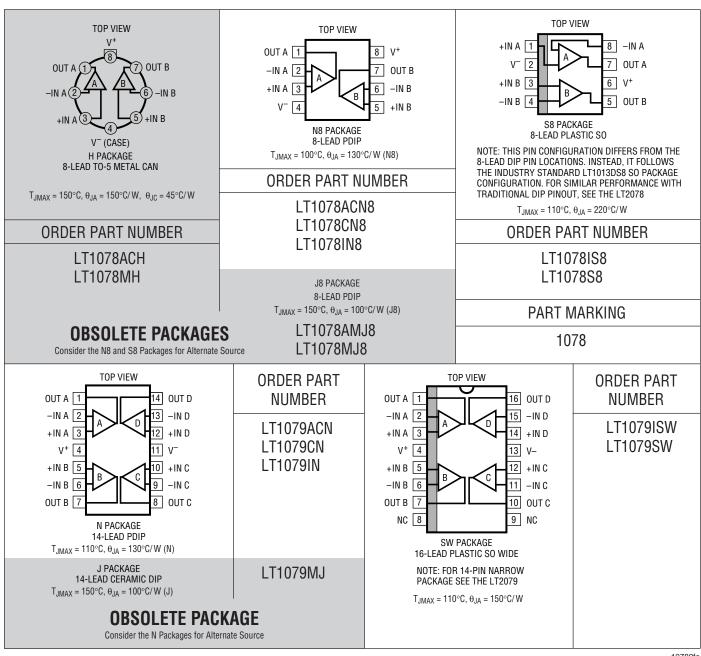

 $= 300 \mu V_{RMS} \ \ \text{OVER FULL BANDWIDTH} \\ \text{INPUT RANGE} \qquad = 0.03 V \ \ \text{TO} \ \ 1.8 V \\ \\$

OUTPUT RANGE = 0.03V TO 2.3V

 $(0.3 mV \leq V_{IN} + -V_{IN} - \leq 23 mV)$ OUTPUTS SINK CURRENT—NO PULL-DOWN RESISTORS

ARE NEEDED

Distribution of Input Offset Voltage (LT1078 and LT1079 in H, J, N Packages)



ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage±22V
Differential Input Voltage±30V
Input Voltage Equal to Positive Supply Voltage
5V Below Negative Supply Voltage
Output Short-Circuit Duration Indefinite
Storage Temperature Range
All Grades65°C to 150°C

Operating Temperature Range
LT1078AM/LT1078M/
LT1079AM/LT1079M (**OBSOLETE**) -55°C to 125°C
LT1078I/LT1079I -40°C to 85°C
LT1078AC/LT1078C/LT1078S8/
LT1079AC/LT1079C 0°C to 70°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS

 V_S = 5V, 0V, V_{CM} = 0.1V, V_0 = 1.4V, T_A = 25°C unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS (NOTE 2)		1078AC/LT 078AM/LT Typ		LT1 LT1(078C/LT1 078I/LT1 078M/LT1 078S8/LT1 TYP	079I 079M	UNITS
V _{0S}	Input Offset Voltage	LT1078 LT1078IS8/LT1078S8 LT1079 LT1079ISW/LT1079SW		30 35	70 100		40 60 40 60	120 180 150 300	μV μV μV
$\frac{\Delta V_{OS}}{\Delta Time}$	Long Term Input Offset Voltage Stability			0.4			0.5		μV/Mo
I _{OS}	Input Offset Current			0.05	0.25		0.05	0.35	nA
I _B	Input Bias Current			6	8		6	10	nA
en	Input Noise Voltage	0.1Hz to 10Hz (Note 3)		0.6	1.2		0.6		μV _{P-P}
	Input Noise Voltage Density	f ₀ = 10Hz (Note 3) f ₀ = 1000Hz (Note 3)		29 28	45 37		29 28		nV√ <u>Hz</u> nV√Hz
i _n	Input Noise Current	0.1Hz to 10Hz (Note 3)		2.3	4.0		2.3		pA _{P-P}
	Input Noise Current Density	f ₀ = 10Hz (Note 3) f ₀ = 1000Hz		0.06 0.02	0.10		0.06 0.02		pA√Hz pA√Hz
	Input Resistance Differential Mode Common Mode	(Note 4)	400	800 6		300	800 6		MΩ GΩ
	Input Voltage Range		3.5 0	3.8 -0.3		3.5 0	3.8 -0.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.5V	97	110		94	108		dB
PSRR	Power Supply Rejection Ratio	V _S = 2.3V to 12V	102	114		100	114		dB
A _{VOL}	Large-Signal Voltage Gain	V ₀ = 0.03V to 4V, No Load V ₀ = 0.03V to 3.5V, R _L = 50k	200 150	1000 600		150 120	1000 600		V/mV V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, 2k to GND Output Low, I _{SINK} = 100µA		3.5 0.55 95	6 1.0 130		3.5 0.55 95	6 1.0 130	mV mV mV
		Output High, No Load Output High, 2k to GND	4.2 3.5	4.4 3.9		4.2 3.5	4.4 3.9		V
SR	Slew Rate	$A_V = 1, V_S = \pm 2.5V$	0.04	0.07		0.04	0.07		V/µs
GBW	Gain Bandwidth Product	$f_0 \le 20 \text{kHz}$		200			200		kHz
Is	Supply Current per Amplifier			38	50		39	55	μА
	Channel Separation	$\Delta V_{IN} = 3V$, $R_L = 10k$		130			130		dB
	Minimum Supply Voltage	(Note 5)		2.2	2.3		2.2	2.3	V

SYMBOL	PARAMETER	CONDITIONS	LT1078AM/LT1079AM Min Typ Max			LT1078I/LT1079I LT1078M/LT1079M MIN TYP MAX			UNITS	
V _{OS}	Input Offset Voltage	LT1078 LT1078IS8/LT1079 LT1079ISW	•		70 80	250 280		95 100 100	370 400 560	μV μV μV
$\frac{\Delta V_{0S}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078IS8 LT1079ISW	•		0.4	1.8		0.5 0.6 0.7	2.5 3.5 4.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current	LT1078I/LT1079I	•		0.07	0.50		0.07 0.1	0.70 1.0	nA nA
I _B	Input Bias Current		•		7	10		7	12	nA
CMRR	Common Mode Rejection Ratio	V _{CM} = 0.05V to 3.2V	•	92	106		88	104		dB
PSRR	Power Supply Rejection Ratio	V _S = 3.1V to 12V	•	98	110		94	110		dB
A _{VOL}	Large-Signal Voltage Gain	V ₀ = 0.05V to 4V, No Load V ₀ = 0.05V to 3.5V, R _L = 50k	•	110 80	600 400		80 60	600 400		V/mV V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, I _{SINK} = 100µA	•		4.5 125	8 170		4.5 125	8 170	mV mV
		Output High, No Load Output High, 2k to GND	•	3.9 3.0	4.2 3.7		3.9 3.0	4.2 3.7		V
I _S	Supply Current per Amplifier		•		43	60		45	70	μА

The ullet denotes the specifications which apply over the temperature range 0°C \leq T_A \leq 70°C. V_S = 5V, 0V, V_{CM} = 0.1V, V₀ = 1.4V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1 MIN	1078AC/LT10 Typ	79AC MAX		078C/LT1 078S8/LT TYP		UNITS
V _{OS}	Input Offset Voltage	LT1078 LT1079 LT1078S8 LT1079SW	•		50 60	150 180		60 70 85 90	240 270 350 480	μV μV μV μV
$\frac{\Delta V_{0S}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078S8 LT1079SW	•		0.4	1.8		0.5 0.6 0.7	2.5 3.5 4.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.06	0.35		0.06	0.50	nA
I _B	Input Bias Current		•		6	9		6	11	nA
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.4V	•	94	108		90	106		dB
PSRR	Power Supply Rejection Ratio	V _S = 2.6V to 12V	•	100	112		97	112		dB
A _{VOL}	Large-Signal Voltage Gain	V ₀ = 0.05V to 4V, No Load V ₀ = 0.05V to 3.5V, R _L = 50k	•	150 110	750 500		110 80	750 500		V/mV V/mV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, I _{SINK} = 100μA	•		4.0 105	7 150		4.0 105	7 150	mV mV
		Output High, No Load Output High, 2k to GND	•	4.1 3.3	4.3 3.8		4.1 3.3	4.3 3.8		V
I _S	Supply Current per Amplifier		•		40	55		42	63	μА

ELECTRICAL CHARACTERISTICS

 V_S = $\pm 15 V,~T_A$ = $25^{\circ} C$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS					LT1078C/LT1079C LT1078I/LT1079I LT1078M/LT1079M LT1078S8/LT1079SW MIN TYP MAX		
V _{OS}	Input Offset Voltage	(Including LT1078IS8/LT1078S8) LT1079ISW/LT1079SW		50	250		70 80	350 500	μV μV
I _{OS}	Input Offset Current			0.05	0.25		0.05	0.35	nA
I _B	Input Bias Current			6	8		6	10	nA
	Input Voltage Range		13.5 -15.0	13.8 -15.3		13.5 -15.0	13.8 -15.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.5V, -15V	100	114		97	114		dB
PSRR	Power Supply Rejection Ratio	V _S = 5V, 0V to ±18V	102	114		100	114		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 50k$ $V_0 = \pm 10V, R_L = 2k$	1000 400	5000 1100		1000 300	5000 1100		V/mV V/mV
V _{OUT}	Maximum Output Voltage Swing	R _L = 50k R _L = 2k	±13.0 ±11.0	±14.0 ±13.2		±13.0 ±11.0	±14.0 ±13.2		V
SR	Slew Rate		0.06	0.10		0.06	0.10		V/µs
I _S	Supply Current per Amplifier			46	65		47	75	μА

The ullet denotes the specifications which apply over the temperature range $-40^{\circ}C \leq T_A \leq 85^{\circ}C$ for I grades, $-55^{\circ}C \leq T_A \leq 125^{\circ}C$ for AM/M grades. $V_S = \pm 15V$ unless otherwise noted.

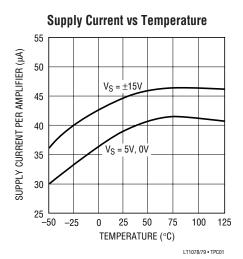
SYMBOL	PARAMETER	CONDITIONS	LT1078AM/LT1079AM Min Typ Max			LT1078I/LT1079I LT1078M/LT1079M MIN TYP MAX			UNITS	
V _{0S}	Input Offset Voltage	(Including LT1078IS8) LT1079ISW	•		90	430		120 130	600 825	μV μV
$\frac{\Delta V_{OS}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078IS8 LT1079ISW	•		0.5	1.8		0.6 0.7 0.8	2.5 3.8 5.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current	LT1078I/LT1079I	•		0.07	0.50		0.07 0.1	0.70 1.0	nA nA
I _B	Input Bias Current		•		7	10		7	12	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 5k$	•	200	700		150	700		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13V, -14.9V	•	94	110		90	110		dB
PSRR	Power Supply Rejection Ratio	$V_S = 5V$, 0V to $\pm 18V$	•	98	110		94	110		dB
	Maximum Output Voltage Swing	R _L = 5k	•	±11.0	±13.5		±11.0	±13.5		V
Is	Supply Current per Amplifier		•		52	80		54	95	μΑ

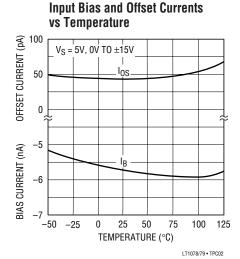
ELECTRICAL CHARACTERISTICS $0^{\circ}C \le T_A \le 70^{\circ}C$. $V_S = \pm 15V$ unless otherwise noted.

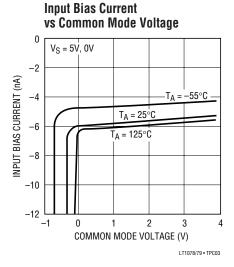
The • denotes the specifications which apply over the temperature range

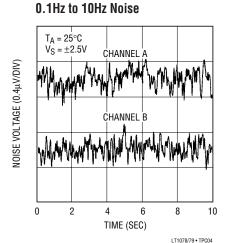
SYMBOL	PARAMETER	CONDITIONS		LT1 MIN	078AC/LT10 TYP	79AC MAX		078C/LT10 178S8/LT1 TYP		UNITS
V _{OS}	Input Offset Voltage	LT1078S8 LT1079SW	•		70	330		90 100 115	460 540 750	μV μV μV
$\frac{\Delta V_{0S}}{\Delta T}$	Input Offset Voltage Drift (Note 6)	LT1078S8 LT1079SW	•		0.5	1.8		0.6 0.7 0.8	2.5 3.8 5.0	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.06	0.35		0.06	0.50	nA
I _B	Input Bias Current		•		6	9		6	11	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 5k$	•	300	1200		250	1200		V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13V, -15V	•	97	112		94	112		dB
PSRR	Power Supply Rejection Ratio	$V_S = 5V$, 0V to $\pm 18V$	•	100	112		97	112		dB
	Maximum Output Voltage Swing	R _L = 5k	•	±11.0	±13.6		±11.0	±13.6		V
I _S	Supply Current per Amplifier		•		49	73		50	85	μА

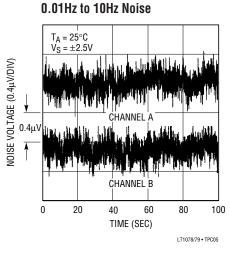
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

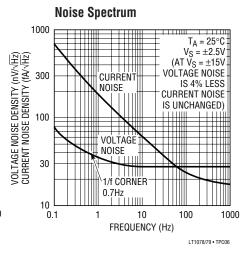

Note 2: Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers, i.e., out of 100 LT1079s (or 100 LT1078s) typically 240 op amps (or 120) will be better than the indicated specification.

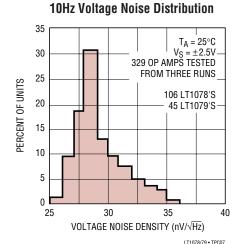

Note 3: This parameter is tested on a sample basis only. All noise parameters are tested with $V_S = \pm 2.5V$, $V_0 = 0V$.

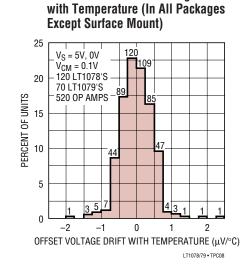

Note 4: This parameter is guaranteed by design and is not tested.

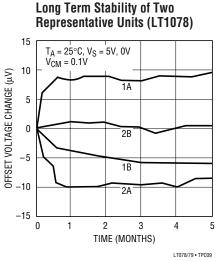

Note 5: Power supply rejection ratio is measured at the minimum supply voltage. The op amps actually work at 1.8V supply but with a typical offset skew of $-300\mu V$.

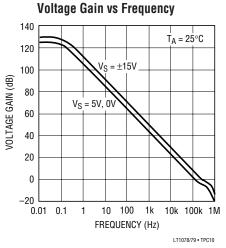

Note 6: This parameter is not 100% tested.

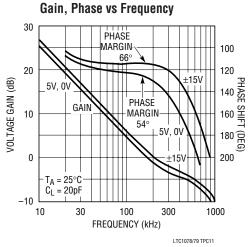


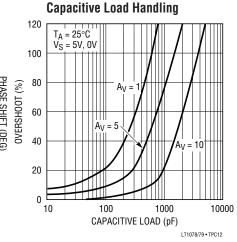




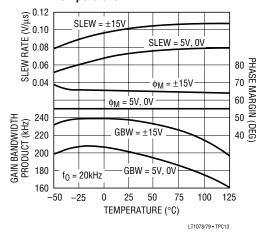


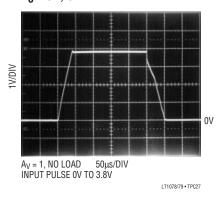


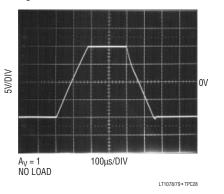


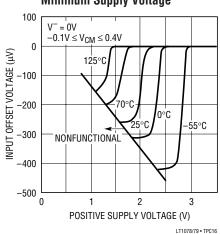


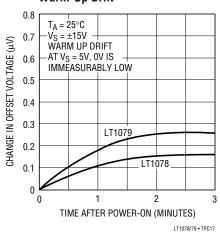
Distribution of Offset Voltage Drift

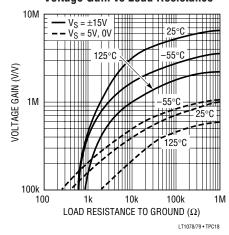




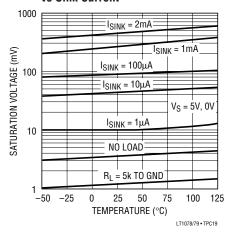

Slew Rate, Gain Bandwidth Product and Phase Margin vs Temperature


Large-Signal Transient Response $V_S = 5V$, 0V

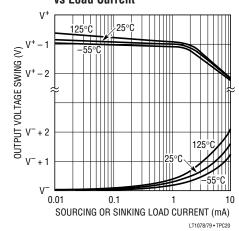

Large-Signal Transient Response $V_S = \pm 15 V$

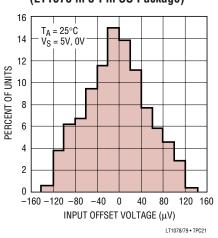

Minimum Supply Voltage

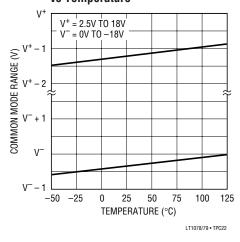
Warm-Up Drift

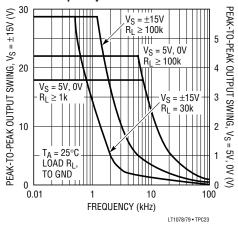


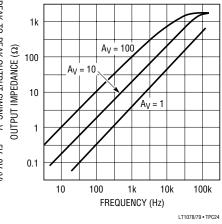
Voltage Gain vs Load Resistance

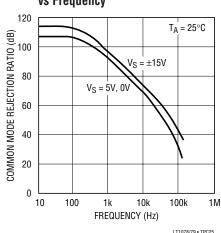


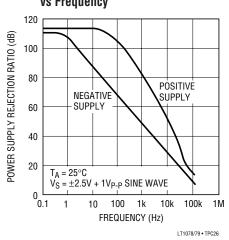

Output Saturation vs Temperature vs Sink Current

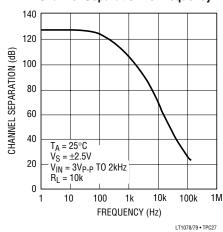

Output Voltage Swing vs Load Current


Distribution of Input Offset Voltage (LT1078 in 8-Pin SO Package)

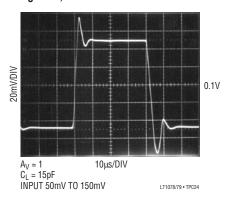

Common Mode Range vs Temperature


Undistorted Output Swing vs Frequency

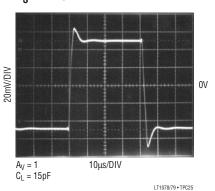

Closed Loop Output Impedance

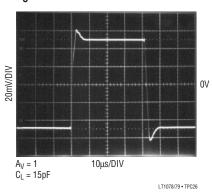

Common Mode Rejection Ratio vs Frequency

Power Supply Rejection Ratio vs Frequency



Channel Separation vs Frequency




Small-Signal Transient Response $V_S = 5V$, 0V

Small-Signal Transient Response $V_S = \pm 2.5V$

Small-Signal Transient Response $V_S = \pm 15V$

APPLICATIONS INFORMATION

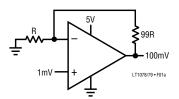
The LT1078/LT1079 devices are fully specified with V+ = 5V, V- = 0V, V_{CM} = 0.1V. This set of operating conditions appears to be the most representative for battery-powered micropower circuits. Offset voltage is internally trimmed to a minimum value at these supply voltages. When 9V or 3V batteries or ± 2.5 V dual supplies are used, bias and offset current changes will be minimal. Offset voltage changes will be just a few microvolts as given by the PSRR and CMRR specifications. For example, if PSRR = 114dB (= 2μ V/V), at 9V the offset voltage change will be 8μ V. Similarly, $V_S = \pm 2.5$ V, $V_{CM} = 0$ V is equivalent to a common mode voltage change of 2.4V or a V_{OS} change of 7μ V if CMRR = 110dB (3μ V/V).

A full set of specifications is also provided at $\pm 15 \text{V}$ supply voltages for comparison with other devices and for completeness.

Single Supply Operation

The LT1078/LT1079 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range goes below ground and the output swings within a few millivolts of ground while sinking current. All competing micropower op amps either cannot swing to within 600mV of ground (OP-20, OP-220, OP-420) or need a pull-down resistor connected to the output to swing to ground (OP-90, OP-290, OP-490, HA5141/42/44). This

APPLICATIONS INFORMATION

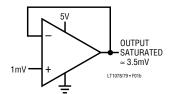
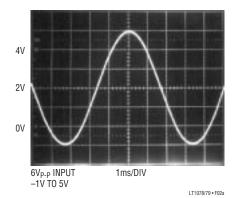

difference is critical because in many applications these competing devices cannot be operated as micropower op amps and swing to ground simultaneously.

As an example, consider the instrumentation amplifier shown on the front page. When the common mode signal is low and the output is high, amplifier A has to sink current. When the common mode signal is high and the output low, amplifier B has to sink current. The competing devices require a 12k pull-down resistor at the output of amplifier A and a 15k at the output of B to handle the specified signals. (The LT1078 does not need pull-down resistors.) When the common mode input is high and the output is high these pull-down resistors draw 300µA (150µA each), which is excessive for micropower applications.

The instrumentation amplifier is by no means the only application requiring current sinking capability. In seven of the nine single supply applications shown in this data sheet the op amps have to be able to sink current. In two of the applications the first amplifier has to sink only the 6nA input bias current of the second op amp. The competing devices, however, cannot even sink 6nA without a pull-down resistor

Since the output of the LT1078/LT1079 cannot go exactly to ground, but can only approach ground to within a few millivolts, care should be exercised to ensure that the output is not saturated. For example, a 1mV input signal will cause the amplifier to set up in its linear region in the gain 100 configuration shown in Figure 1a, but is not

enough to make the amplifier function properly in the voltage follower mode, Figure 1b.

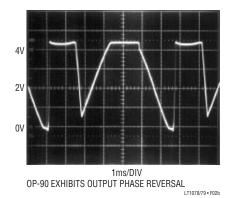

Figure 1a. Gain 100 Amplifier

Figure 1b. Voltage Follower

Single supply operation can also create difficulties at the input. The driving signal can fall below 0V — inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420 (1 and 2), OP-90/290/490 (2 only):

- When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V⁻ terminal) to the input. This can destroy the unit. On the LT1078/LT1079, resistors in series with the input protect the devices even when the input is 5V below ground.
- 2. When the input is more than 400mV below ground (at 25°C), the input stage saturates and phase reversal occurs at the output. This can cause lockup in servo systems. Due to a unique phase reversal protection circuitry, the LT1078/LT1079 output does not reverse, as illustrated in Figure 2, even when the inputs are at –1V.

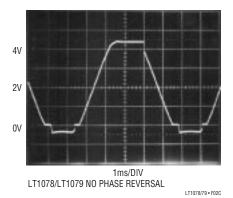


Figure 2. Voltage Follower with Input Exceeding the Negative Common Mode Range ($V_S = 5V$, 0V)

APPLICATIONS INFORMATION

Matching Specifications

In many applications the performance of a system depends on the matching between two op amps, rather than the individual characteristics of the two devices. The two and three op amp instrumentation amplifier configurations shown in this data sheet are examples. Matching characteristics are not 100% tested on the LT1078/LT1079.

Some specifications are guaranteed by definition. For example, $70\mu V$ maximum offset voltage implies that mismatch cannot be more than $140\mu V$. 97dB (= $14\mu V/V$) CMRR means that worst-case CMRR match is 91dB (= $28\mu V/V$). However, Table 1 can be used to estimate the expected matching performance at $V_S = 5V$, 0V between the two sides of the LT1078, and between amplifiers A and D, and between amplifiers B and C of the LT1079.

Table 1

		LT1078AC/LT1079A	C/LT1078AM/LT1079AM	LT1078C/LT1079	C/LT1078M/LT1079M	
PARAMETER		50% YIELD	98% YIELD	50% YIELD	98% YIELD	UNITS
V _{OS} Match, ΔV _{OS}	LT1078	30	110	50	190	μV
	LT1079	40	150	50	250	μV
Temperature Coefficien	t ΔV _{OS}	0.5	1.2	0.6	1.8	μV/°C
Average Noninverting I	В	6	8	6	10	nA
Match of Noninverting	I _B	0.12	0.4	0.15	0.5	nA
CMRR Match		120	100	117	97	dB
PSRR Match		117	105	117	102	dB

Comparator Applications

The single supply operation of the LT1078/LT1079 and its ability to swing close to ground while sinking current

lends itself to use as a precision comparator with TTL compatible output.

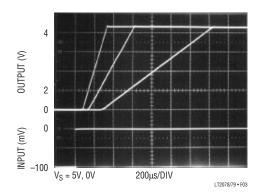


Figure 3. Comparator Rise Response Time to 10mV, 5mV, 2mV Overdrives

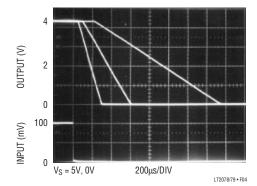
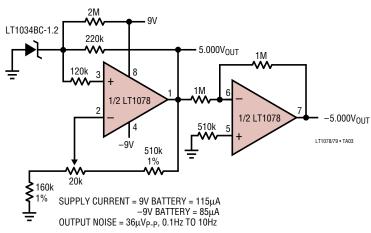
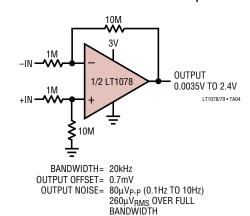
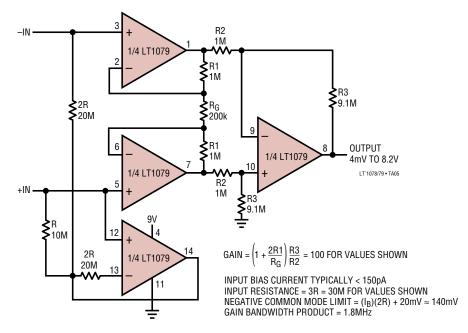



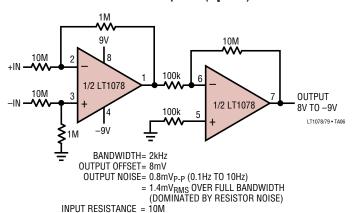
Figure 4. Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives


LINEAR

Micropower, 10ppm/°C, ±5V Reference

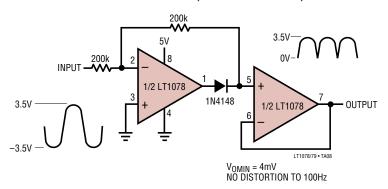

THE LT1078 CONTRIBUTES LESS THAN 3% OF THE TOTAL OUTPUT NOISE AND DRIFT WITH TIME AND TEMPERATURE. THE ACCURACY OF THE -5V OUTPUT DEPENDS ON THE MATCHING OF THE TWO 1M RESISTORS

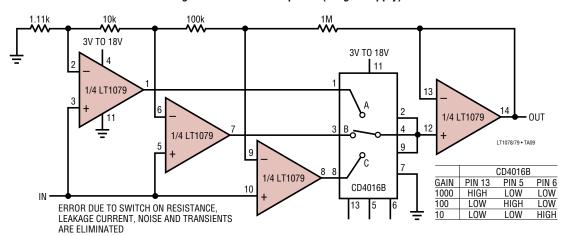
Gain of 10 Difference Amplifier



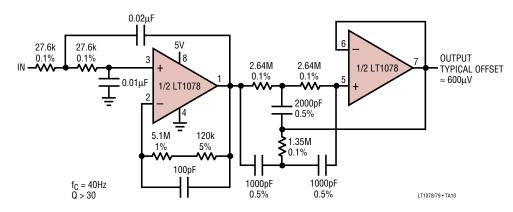
THE USEFULNESS OF DIFFERENCE AMPLIFIERS IS LIMITED BY THE FACT THAT THE INPUT RESISTANCE IS EQUAL TO THE SOURCE RESISTANCE. THE PICOAMPERE OFFSET CURRENT AND LOW CURRENT NOISE OF THE LT1078 ALLOWS THE USE OF 1M SOURCE RESISTORS WITHOUT DEGRADATION IN PERFORMANCE. IN ADDITION, WITH MEGOHM RESISTORS MICROPOWER OPERATION CAN BE MAINTAINED


Picoampere Input Current, Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation

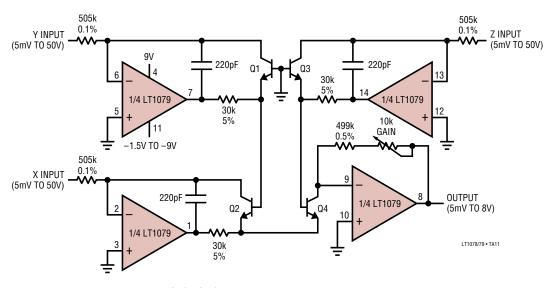

85V, -100V Common Mode Range Instrumentation Amplifier ($A_V = 10$)


Half-Wave Rectifier

Absolute Value Circuit (Full-Wave Rectifier)



Programmable Gain Amplifier (Single Supply)

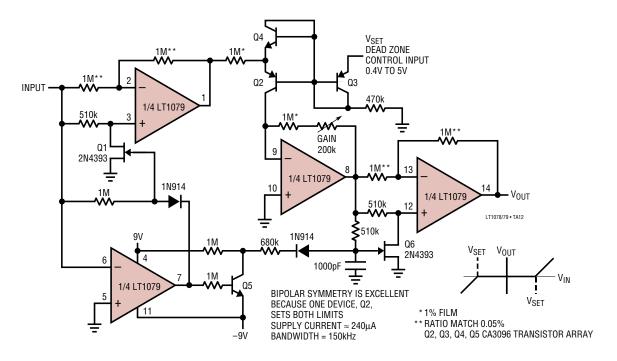


LINEAR

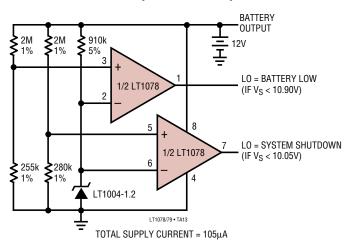
Single Supply, Micropower, Second Order Lowpass Filter with 60Hz Notch

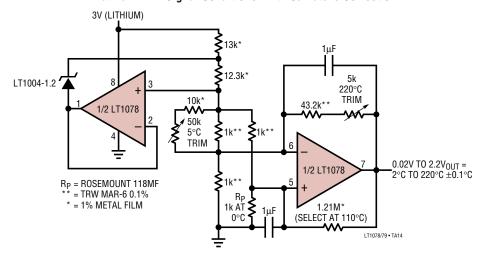
Micropower Multiplier/Divider

Q1,Q2, Q3, Q4 = MAT-04 TYPICAL LINEARITY = 0.01% OF FULL-SCALE OUTPUT OUTPUT = $\frac{(X)(Y)}{(Z)}$, POSITIVE INPUTS ONLY

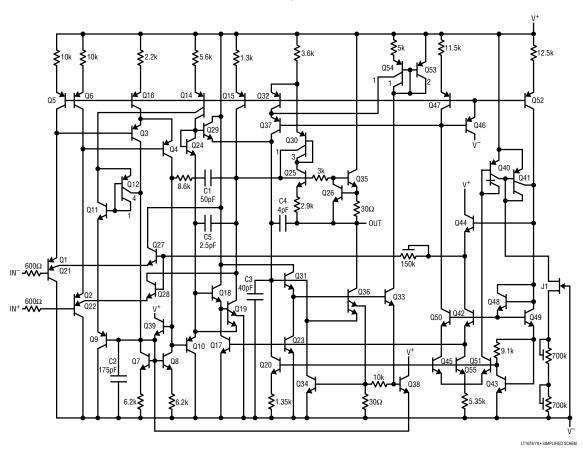

NEGATIVE SUPPLY CURRENT = $165\mu A + \frac{X + Y + Z + OUT}{500k}$

POSITIVE SUPPLY CURRENT = $165\mu A + \frac{OUT}{500k}$

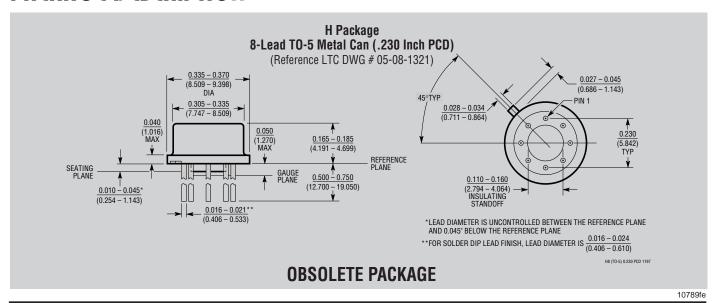

 $\begin{array}{ll} \mbox{BANDWIDTH (< 3V_{P-P} SIGNAL):} & \mbox{X AND Y INPUTS} = 10 \mbox{kHz} \\ \mbox{Z INPUT} & = 4 \mbox{kHz} \end{array}$


Micropower Dead Zone Generator

Lead-Acid Low-Battery Detector with System Shutdown

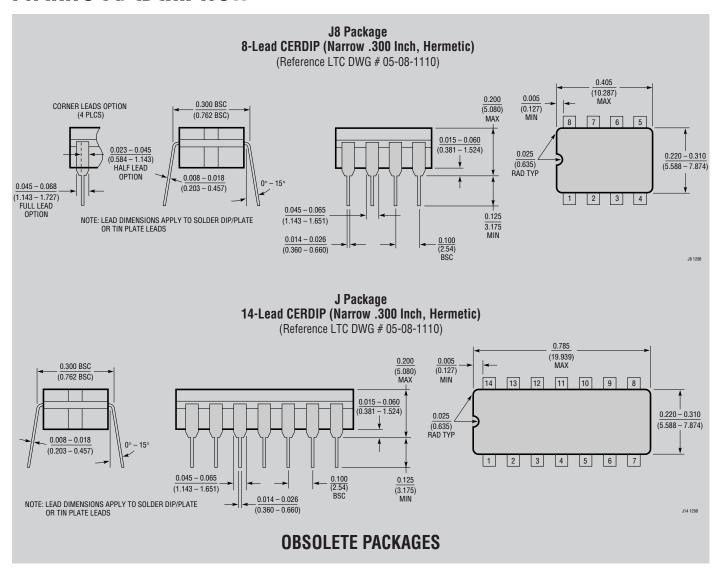


Platinum RTD Signal Conditioner with Curvature Correction

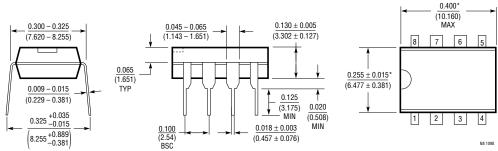


SIMPLIFIED SCHEMATIC

1/2 LT1078, 1/4 LT1079



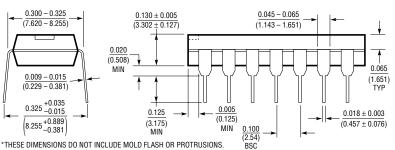
PACKAGE DESCRIPTION

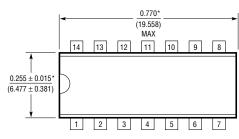


PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch)

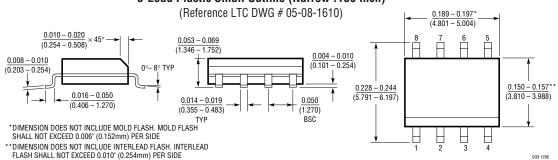
(Reference LTC DWG # 05-08-1510)

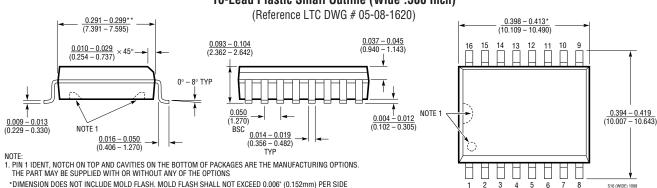

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)


Information furnished by Linear Technology Corporation is believed to be accurate and reliable.

PACKAGE DESCRIPTION

N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)




N14 1098

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

SW Package 16-Lead Plastic Small Outline (Wide .300 Inch)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

LT/CPI 1201 1.5K REV E • PRINTED IN USA

© LINEAR TECHNOLOGY CORPORATION 1994

Search PRODUCTS SOLUTIONS DESIGN SUPPORT PURCHASE COMPANY

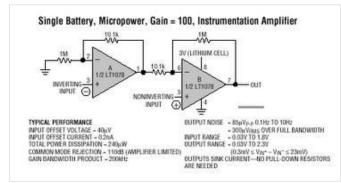
Operational Amplifiers (Op Amps)

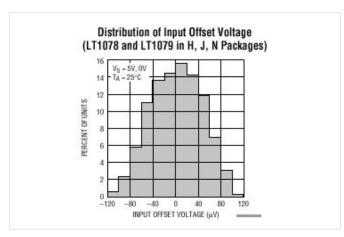
High Speed Amplifiers Precision Amplifiers Zero Drift Amplifiers Low Noise Amplifiers Low Power Amplifiers Low Bias Current Amplifiers High Output Current Amplifiers Current Feedback **Amplifiers Current Sense Amplifiers** Programmable Gain Amplifiers Differential Amplifiers Instrumentation Amplifiers Video Functions IF Amplifiers / ADC Drivers

Home > Products > Signal Conditioning > Operational Amplifiers (Op

+ MyLinear Amps) > Precision Amplifiers > LT1078

LT1078 - Micropower, Dual and Quad, Single Supply, Precision Op Amps


FEATURES DESCRIPTION PACKAGING ORDER INFO SIMULATE


FEATURES

Available in 8-Pin SO Package 50µA Max Supply Current per Amplifier 70µV Max Offset Voltage 180µA Max Offset Voltage in 8-Pin SO 250pA Max Offset Current $0.6\mu V_{\text{P-P}},\,0.1\text{Hz}$ to 10Hz Voltage Noise 3pA_{P-P}, 0.1Hz to 10Hz Current Noise 0.4µV/°C Offset Voltage Drift 200kHz Gain Bandwidth Product 0.07V/µs Slew Rate Single Supply Operation Input Voltage Range Includes Ground Output Swings to Ground while Sinking Current No Pull-Down

Output Sources and Sinks 5mA Load Current

TYPICAL APPLICATION

Order Now Buy **Request Samples**

Documentation

Datasheet

中文网站 日本サイト Quality Careers Contact Us MyLinear

LT1078/LT1079 - Micropower, Dual and Quad, Single Supply, **Precision Op Amps**

€

Application Note

AN43 Bridge Circuits

AN45 Measurement and Control Circuit Collection

AN48 Using the LTC Op Amp Macromodels:

AN61 Practical Circuitry for Measurement and Control Problems:

AN67 Linear Technology Magazine Circuit Collection, Volume III:

AN92 Bias Voltage and Current Sense Circuits for Avalanche **Photodiodes**

Design Note

DN23 Micropower, Single Supply Applications: (1) A Self-Biased, Buffered Reference (2) Megaohm Input Impedance **Difference Amplifier**

DN40 Designing with a New Family of Instrumentation **Amplifiers**

DN45 Signal Conditioning for Platinum Temperature **Transducers**

DN56 3V Operation of Linear Technology Op Amps

LT Magazine

September 2009 - Consider New Precision Amplifiers for Updated Industrial Equipment **Designs**

Reliability Data R046 Reliability Data

Software and Simulation LT1078 SPICE Model LT1078A SPICE Model

DESCRIPTION

BACK TO TOP

The LT®1078 is a micropower dual op amp in 8-pin packages including the small outline surface mount package. The LT1079 is a micropower quad op amp offered in the standard 14-pin packages. Both devices are optimized for single supply operation at 5V. ±15V specifications are also provided.

Micropower performance of competing devices is achieved at the expense of seriously degrading precision, noise, speed and output drive specifications. The design effort of the LT1078/LT1079 was concentrated on reducing supply current without sacrificing other parameters. The offset voltage achieved is the lowest on any dual or quad nonchopper stabilized op amp—micropower or otherwise. Offset current, voltage and current noise, slew rate and gain bandwidth product are all two to ten times better than on previous micropower op amps.

The 1/f corner of the voltage noise spectrum is at 0.7Hz, at least three times lower than on any monolithic op amp. This results in low frequency (0.1Hz to 10Hz) noise performance which can only be found on devices with an order of magnitude higher supply current.

Both the LT1078 and LT1079 can be operated from a single supply (as low as one lithium cell or two Ni-Cad batteries). The input range goes below ground. The all-NPN output stage swings to within a few millivolts of ground while sinking current—no power consuming pull down resistors are needed.

BACK TO TOP

PACKAGING DIP-8,SO-8

BACK TO TOP

ORDER INFO

Part numbers ending in PBF are <u>lead free</u>. Please contact LTC marketing for information on lead based finish parts.

Part numbers containing TR or TRM are shipped in <u>tape and reel or 500</u> unit mini tape and reel, respectively

Please refer to our <u>general ordering information</u> or the product datasheet for more details

Package Variations and Pricing

Part Number	Package	Pins	Temp	Price (1- 99)	Price (1k)*	RoHS Data
LT1078ACN8	<u>PDIP</u>	8	С	\$6.00	\$4.95	<u>View</u>
LT1078ACN8#PBF	<u>PDIP</u>	8	С	\$6.00	\$4.95	<u>View</u>
LT1078CN8	<u>PDIP</u>	8	С	\$3.33	\$2.70	<u>View</u>
LT1078CN8#PBF	<u>PDIP</u>	8	С	\$3.33	\$2.70	<u>View</u>
LT1078IN8	<u>PDIP</u>	8	I	\$4.33	\$3.60	<u>View</u>
LT1078IN8#PBF	<u>PDIP</u>	8	I	\$4.33	\$3.60	<u>View</u>
LT1078IS8	<u>SO</u>	8	I	\$5.60	\$4.65	<u>View</u>
LT1078IS8#PBF	<u>SO</u>	8	I	\$5.60	\$4.65	<u>View</u>
LT1078IS8#TR	<u>SO</u>	8	I		\$4.71	<u>View</u>
LT1078IS8#TRPBF	<u>SO</u>	8	I		\$4.71	<u>View</u>
LT1078ISW	<u>SO</u>	16	I	\$5.58	\$4.65	<u>View</u>
LT1078ISW#PBF	<u>SO</u>	16	I	\$5.58	\$4.65	<u>View</u>
LT1078ISW#TR	<u>SO</u>	16	I		\$4.71	<u>View</u>
LT1078ISW#TRPBF	<u>SO</u>	16	I		\$4.71	<u>View</u>
LT1078S8	<u>SO</u>	8	С	\$4.35	\$3.50	<u>View</u>
LT1078S8#PBF	<u>SO</u>	8	С	\$4.35	\$3.50	<u>View</u>
LT1078S8#TR	<u>SO</u>	8	С		\$3.56	<u>View</u>
LT1078S8#TRPBF	<u>SO</u>	8	С		\$3.56	<u>View</u>
LT1078SW	<u>SO</u>	16	С	\$4.33	\$3.50	<u>View</u>

LT1078SW#PBF	<u>SO</u>	16	С	\$4.33	\$3.50	<u>View</u>			
LT1078SW#TR	<u>SO</u>	16	С		\$3.56	<u>View</u>			
LT1078SW#TRPBF	<u>SO</u>	16	С		\$3.56	<u>View</u>			
Buy Now									
Request Samples									

The USA list pricing shown is for BUDGETARY USE ONLY, shown in United States dollars (FOB USA per unit for the stated volume), and is subject to change. International prices may differ due to local duties, taxes, fees and exchange rates. For volume-specific price or delivery quotes, please contact your local Linear Technology sales office or authorized distributor.

BACK TO TOP

APPLICATIONS

Battery or Solar-Powered Systems Portable Instrumentation Remote Sensor Amplifier Satellite Circuitry Micropower Sample-and-Hold Thermocouple Amplifier Micropower Filters

BACK TO TOP

SIMULATE

Linear Technology offers several options for simulating our high performance operational amplifiers.

<u>Download the SPICE model for the LT1078</u> (or right click and select "Save Target As" to save the file to disk)

Download the SPICE model for the LT1078A

Download SPICE models for the complete collection of LTC op amps

LTSpice / SwitcherCAD III is a powerful FREE circuit simulator and schematic capture program. Included in this download are LTSpice, Macro Models for 80% of Linear Technology's switching regulators, over 200 op amp models, as well as resistors, transistors and MOSFET models. Download it now!

BACK TO TOP

SITE HELP SITE MAP SITE INDEX SEND US FEEDBACK © 2007 Linear Technology | Terms of Use | Privacy Policy