DSV14196 +3.3V Supply EIA/TIA-232 5 Driver x 3 Receiver ### **General Description** The DSV14196/DSV14196T is a five driver, three receiver device which conforms to the EIA/TIA-232-E and the ITU-T V.28 standards. The flow-through pinout facilitates simple non-crossover board layout. The DSV14196/DSV14196T provides a peripheral side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment. #### **Features** - Conforms to EIA/TIA-232-E and ITU-T V.28 - 5 drivers and 3 receivers - Flow-through pinout - Failsafe receiver outputs high when inputs open - 20-pin wide SOIC package - LapLink® compatible 230.4 kbps data rate - +3.3V Logic Interface - Commercial temperature range option DSV14196 (0°C to 70°C) - Industrial temperature range option DSV14196T (-40°C to +85°C) ## **Connection Diagram** Order Number DSV14196WM,DSV14196TWM See NS Package Number M20B ## **Functional Diagram** LapLink® is a registered trademark of Travelling Software © 1999 National Semiconductor Corporation DS100 DS100853 ### **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (V_{CC}) +7V Supply Voltage (V+) +15V Supply Voltage (V-) -15V $0\,\mbox{V}$ to $\mbox{V}_{\mbox{\scriptsize CC}}$ Driver Input Voltage Driver Output Voltage (Power Off) ±15V ±25V Receiver Input Voltage Receiver Output Voltage (R_{OUT}) $0\,\mbox{V}$ to $\mbox{V}_{\mbox{\scriptsize CC}}$ Maximum Power Package Dissipation @ +25°C M Package 1524 m**W** Derate M Package 12.2 mW/°C above 25°C Storage Temperature Range -65°C to +150°C Lead Temperature Range (Soldering, 4 sec.) +260°C ESD Ratings (HBM. 1.5 kΩ, 100 pF) ≥1.5 kV ## Recommended Operating Conditions | | Min | Nom | Max | Units | |-----------------------------------|-------|-------|-------|-------| | Supply Voltage (V _{CC}) | +3.0 | +3.3 | +3.6 | ٧ | | Supply Voltage (V+) | +9.0 | +12.0 | +13.2 | ٧ | | Supply Voltage (V-) | -13.2 | -12.0 | -9.0 | ٧ | | Operating Free Air | | | | | | Temperature (T _A) | | | | | | DSV14196 | 0 | +25 | +70 | °C | | DSV14196T | -40 | +25 | +85 | °C | ## Electrical Characteristics(Note 2) (Note 3) DSV14196 Over recommended operating supply and temperature ranges unless otherwise specified | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |-----------------|--------------------------------|--|---|-----|-------|------|-------| | DEVIC | E CHARACTERISTICS | | | • | | | | | Icc | V _{CC} Supply Current | No Load, All Input | ts at +3.3V | | 8 | 16 | mA | | I ⁺ | V ⁺ Supply Current | No Load, All | V+ = +9V, V- = -9V | | 16 | 26 | mA | | | | Driver Inputs at | V ⁺ = +13.2V, V ⁻ = -13.2V | | 23 | 36 | mA | | I- | V ⁻ Supply Current | 0.8V or +2V. All
Receiver Inputs | $V^{+} = +9V, V^{-} = -9V$ | | -18 | -26 | mA | | | | at 0.7V or 2.4V. | V ⁺ = +13.2V, V ⁻ = -13.2V | | -25 | -36 | mA | | DRIVE | R CHARACTERISTICS | | • | | | | | | V _{IH} | High Level Input Voltage | | | 2.0 | | | V | | V _{IL} | Low Level Input Voltage | | | | | 0.8 | V | | I _{IH} | High Level Input Current | $V_{IN} = 3.3V$ | / _{IN} = 3.3V | | | 10 | μΑ | | IIL | Low Level Input Current | $V_{IN} = 0V$ | | | -1.1 | -1.5 | mA | | V _{OH} | High Level Output Voltage | $R_L = 3 k\Omega, V_{IN} = 0.8V, V^+ = +9V, V^- = -9V$ | | 6 | 7 | | ٧ | | | | $R_L = 3 k\Omega, V_{IN} =$ | $0.8V, V^{+} = +12V, V^{-} = -12V$ | 8 | 9 | | V | | | | $R_L = 7 k\Omega, V_{IN} =$ | 0.8V, V ⁺ = +13.2V, V ⁻ = -13.2V | 10 | 11.5 | | V | | V _{OL} | Low Level Output Voltage | $R_L = 3 k\Omega, V_{IN} =$ | $2V, V^{+} = +9V, V^{-} = -9V$ | | -7 | -6 | ٧ | | | | $R_L = 3 k\Omega, V_{IN} =$ | $2V, V^{+} = +12V, V^{-} = -12V$ | | -10 | -8 | V | | | | $R_L = 7 k\Omega, V_{IN} =$ | $2V, V^{+} = +13.2V, V^{-} = -13.2V$ | | -11.5 | -10 | V | | los+ | Output High Short | $V_{OUT} = 0V$, $V_{IN} = 0.8V$ | | -6 | -12 | -18 | mA | | | Circuit Current (Note 4) | | | | | | | | los- | Output Low Short | $V_{OUT} = 0V$, $V_{IN} = 2.0V$ | | 6 | 12 | 18 | mA | | | Circuit Current (Note 4) | | | | | | | | Ro | Output Resistance | $-2V \le V_{OUT} \le +2V$ | $V, V^{+} = V^{-} = V_{CC} = 0V$ | 300 | | | Ω | | | | $-2V \le V_{OUT} \le +2V$ | V, V ⁺ = V ⁻ = V _{CC} = Open Circuit | 300 | | | Ω | # Electrical Characteristics(Note 2) (Note 3) DSV14196 (Continued) Over recommended operating supply and temperature ranges unless otherwise specified | Symbol | Parameter | Conditions | | Тур | Max | Units | |------------------|--|---|-------|------|------|-------| | RECEIV | VER CHARACTERISTICS | | • | | | | | V _{TH} | Input High Threshold | $V_{OUT} \le 0.4V$, $I_O = 3.2 \text{ mA}$ | 1.5 | 1.85 | 2.4 | V | | | (Recognized as a High
Signal) | | | | | | | V _{TL} | Input Low Threshold
(Recognized as a Low
Signal) | $V_{OUT} \ge 1.7V$, $I_O = -0.5$ mA | 0.7 | 0.9 | 1.3 | V | | R _{IN} | Input Resistance | $V_{IN} = \pm 3V$ to $\pm 15V$ | 3.0 | 3.8 | 7.0 | kΩ | | I _{IN} | Input Current | V _{IN} = +15V | 2.1 | 4.0 | 5.0 | mA | | | | $V_{IN} = +3V$ | 0.43 | 0.7 | 1.0 | mA | | | | $V_{IN} = -15V$ | -2.1 | -4.0 | -5.0 | mA | | | | $V_{IN} = -3V$ | -0.43 | -0.7 | -1.0 | mA | | V _{OH} | High Level Output Voltage | $I_{OH} = -0.5 \text{ mA}, V_{IN} = -3V$ | 1.7 | 2.4 | | V | | | (Note 7) | $I_{OH} = -10 \mu A, V_{IN} = -3V$ | 2.7 | 3.2 | | V | | | | I _{OH} = -0.5 mA, V _{IN} = Open Circuit | 1.7 | 2.4 | | V | | | | I _{OH} = -10 μA, V _{IN} = Open Circuit | 2.7 | 3.2 | | V | | V _{OL} | Low Level Output Voltage | $I_{OL} = 3.2 \text{ mA}, V_{IN} = +3V$ | | 0.2 | 0.4 | V | | I _{OSR} | Short Circuit Current | $V_{OUT} = 0V$, $V_{IN} = 0V$ (Note 4) | -0.6 | -1.8 | -3.0 | mA | # Electrical Characteristics(Note 2) (Note 3) DSV14196T Over recommended operating supply and temperature ranges unless otherwise specified | Symbol | Parameter | | Conditions | Min | Тур | Max | Units | |-------------------|--------------------------------|---|---|-----|-------|------|-------| | DEVICE | E CHARACTERISTICS | • | | | • | • | • | | Icc | V _{CC} Supply Current | No Load, All Input | s at +3.3V | | 8 | 16 | mA | | + | V ⁺ Supply Current | No Load, All | $V^{+} = +9V, V^{-} = -9V$ | | 16 | 26 | mA | | | | Driver Inputs at | V ⁺ = +13.2V, V ⁻ = -13.2V | | 23 | 36 | mA | | - | V ⁻ Supply Current | 0.8V or +2V. All
Receiver Inputs | V+ = +9V, V- = -9V | | -18 | -26 | mA | | | | at 0.7V or 2.4V. | V ⁺ = +13.2V, V ⁻ = -13.2V | | -25 | -36 | mA | | DRIVE | R CHARACTERISTICS | • | - | | • | | | | V _{IH} | High Level Input Voltage | | | 2.0 | | | ٧ | | V _{IL} | Low Level Input Voltage | | | | | 8.0 | ٧ | | I _{IH} | High Level Input Current | V _{IN} = 3.3V | V _{IN} = 3.3V | | | 10 | μΑ | | I _{IL} | Low Level Input Current | $V_{IN} = 0V$ | | | -1.1 | -1.9 | mA | | V _{OH} | High Level Output Voltage | $R_L = 3 k\Omega$, $V_{IN} = 0.8V$, $V^+ = +9V$, $V^- = -9V$ | | 5.5 | 7 | | ٧ | | | | $R_L = 3 k\Omega, V_{IN} = 0$ | 0.8V, V ⁺ = +12V, V ⁻ = -12V | 7.5 | 9 | | ٧ | | | | $R_L = 7 k\Omega, V_{IN} = 0$ | 0.8V, V ⁺ = +13.2V, V ⁻ = -13.2V | 9 | 11.5 | | ٧ | | V _{OL} | Low Level Output Voltage | $R_L = 3 k\Omega, V_{IN} = 3$ | 2V, V ⁺ = +9V, V ⁻ = -9V | | -7 | -5.5 | ٧ | | | | $R_L = 3 k\Omega, V_{IN} = 3$ | 2V, V ⁺ = +12V, V ⁻ = -12V | | -10 | -7.5 | ٧ | | | | $R_L = 7 \text{ k}\Omega, V_{IN} = 3$ | 2V, V ⁺ = +13.2V, V ⁻ = -13.2V | | -11.5 | -9 | ٧ | | l _{os} + | Output High Short | V _{OUT} = 0V, V _{IN} = | $V_{OUT} = 0V, V_{IN} = 0.8V$ | | -12 | -22 | mA | | | Circuit Current (Note 4) | | | | | | | | I _{os} - | Output Low Short | $V_{OUT} = 0V, V_{IN} = 2.0V$ | | 4 | 12 | 22 | mA | | | Circuit Current (Note 4) | | | | | | | | Ro | Output Resistance | $-2V \le V_{OUT} \le +2V$ | $V, V^{+} = V^{-} = V_{CC} = 0V$ | 300 | | | Ω | | | | $-2V \le V_{OUT} \le +2V$ | V, V ⁺ = V ⁻ = V _{CC} = Open Circuit | 300 | | | Ω | # Electrical Characteristics(Note 2) (Note 3) DSV14196T (Continued) Over recommended operating supply and temperature ranges unless otherwise specified | Symbol | Parameter | Conditions | | Тур | Max | Units | |------------------|--|--|-------|------|------|-------| | RECEIV | VER CHARACTERISTICS | | | | | | | V _{TH} | Input High Threshold | $V_{OUT} \le 0.5V$, $I_O = 3.2 \text{ mA}$ | 1.4 | 1.85 | 2.8 | V | | | (Recognized as a High
Signal) | | | | | | | V _{TL} | Input Low Threshold
(Recognized as a Low
Signal) | $V_{OUT} \ge 1.7V, I_{O} = -0.5 \text{ mA}$ | 0.5 | 0.9 | 1.4 | V | | R _{IN} | Input Resistance | $V_{IN} = \pm 3V \text{ to } \pm 15V, TA = 0^{\circ}C \text{ to } 70^{\circ}C$ | 3.0 | 3.8 | 7.0 | kΩ | | I _{IN} | Input Current | $V_{IN} = +15V$, TA = 0°C to +70°C | 2.1 | 4.0 | 5.0 | mA | | | | $V_{IN} = +3V$, TA = 0°C to +70°C | 0.43 | 0.7 | 1.0 | mA | | | | $V_{IN} = -15V$, TA = 0°C to +70°C | -2.1 | -4.0 | -5.0 | mA | | | | $V_{IN} = -3V$, TA = 0°C to +70°C | -0.43 | -0.7 | -1.0 | mA | | V _{OH} | High Level Output Voltage | $I_{OH} = -0.5 \text{ mA}, V_{IN} = -3V, V_{CC} = 3.3V$ | 1.8 | 2.4 | | V | | | (Note 7) | $I_{OH} = -10 \mu A, V_{IN} = -3V, V_{CC} = 3.3V$ | 3.0 | 3.2 | | V | | | | $I_{OH} = -0.5 \text{ mA}, V_{IN} = \text{Open Circuit}, V_{CC} = 3.3V$ | 1.8 | 2.4 | | V | | | | I _{OH} = -10 μA, V _{IN} = Open Circuit, V _{CC} = 3.3V | 3.0 | 3.2 | | V | | V _{OL} | Low Level Output Voltage | I _{OL} = 3.2 mA, V _{IN} = +3V | | 0.2 | 0.5 | V | | I _{OSR} | Short Circuit Current | V _{OUT} = 0V, V _{IN} = 0V (Note 4) | -0.4 | -1.8 | -3.2 | mA | # Switching Characteristics (Note 3) (Note 5) (Note 6) DSV14196 & DSV14196T $T_A = +25^{\circ}C$ | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |---------------------------------|-------------------------------|--|-----|-----|-----|-------| | DRIVER C | CHARACTERISTICS | | | | | | | t _{PHL} | Propagation Delay High to Low | $R_L = 3 \text{ k}\Omega, C_L = 50 \text{ pF}$ | | 60 | 350 | ns | | t _{PLH} | Propagation Delay Low to High | (Figures 1, 2) | | 240 | 350 | ns | | t _r , t _f | Rise/Fall Time (Note 8) | | | 40 | | ns | | RECEIVE | R CHARACTERISTICS | | | | | | | t _{PHL} | Propagation Delay High to Low | $R_L = 1.5 \text{ k}\Omega, C_L = 15 \text{ pF}$ | | 150 | 350 | ns | | t _{PLH} | Propagation Delay Low to High | (includes fixture plus probe), (Figures 3, 4) | | 240 | 350 | ns | | t _r | Rise Time | | | 40 | 175 | ns | | t _f | Fall Time | | | 40 | 100 | ns | Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation. Note 2: Current into device pins is defined as positive. Current out of the device pins is defined as negative. All voltages are referenced to ground unless otherwise specified. For current, minimum and maximum values are specified as an absolute value and the sign is used to indicate direction. For voltage logic levels, the more positive value is designated as maximum. For example, if -6V is a maximum, the typical value -6.8V is more negative. Note 3: All typicals are given for: V_{CC} = +3.3V, V^+ = +12V, V^- = -12V, T_A = +25°C. Note 4: Only one driver output shorted at a time. Note 5: Generator characteristics for driver input: f = 64 kHz (128 kbps), $t_r = t_f < 10 \text{ ns}$, $V_{IH} = 3V$, $V_{IL} = 0V$, duty cycle = 50%. Note 6: Generator characteristics for receiver input: f = 64 kHz (128 kbps), $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, duty cycle = 50%. Note 7: If receiver inputs are unconnected, receiver output is a logic high. Note 8: Refer to typical curves. Driver output slew rate is measured from the +3V to the -3V level on the output waveform. Inputs not under test are connected to V_{CC} or GND. Slew rate is determined by load capacitance. To comply with a 30 V/µs maximum slew rate, a minimum load capacitance of 390 pF for DSV14196 or 620 pF for DSV14196T is recommended. ## **Parameter Measurement Information** FIGURE 1. Driver Propagation Delay and Transition Time Test Circuit (Note 5) FIGURE 2. Driver Propagation Delay and Transition Time Waveforms Slew Rate (SR) = $6V/(t_r \text{ or } t_f)$ FIGURE 3. Receiver Propagation Delay and Transition Time Test Circuit (Note 6) FIGURE 4. Receiver Propagation Delay and Transition Time Waveform ## **Pin Descriptions** | Pin # | Pin | Description | |--------------------|------------------|---| | | Name | | | 2, 3, 4, 7, 9 | D _{IN} | Driver Input Pins | | 12, 14, 17, 18, 19 | D _{out} | Driver Output Pins, RS-232 Levels | | 13, 15, 16 | R _{IN} | Receiver Input Pins, RS-232 Levels | | 5, 6, 8 | R _{out} | Receiver Output Pins | | 10 | GND | Ground | | 20 | V ⁺ | Positive Power Supply Pin (+9.0 ≤ V ⁺ ≤ +13.2) | | 11 | V - | Negative Power Supply Pin (-9.0 ≤ V ⁻ ≤ -13.2) | | 1 | V _{cc} | Positive Power Supply Pin (+3.3V ±10%) | #### **Applications Information** In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS and RI. The DSV14196/DSV14196T is a 5 x 3 Driver/Receiver and offers a single chip solution for this DTE interface. As shown in *Figure 5*, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk. #### **FAILSAFE RECEIVER OUTPUTS** The DSV14196/DSV14196T features failsafe receiver outputs. In failsafe mode, if the receiver input becomes zero or an open-circuit, the receiver output is pulled to a high level. #### LapLink COMPATIBILITY The DSV14196/DSV14196T can easily provide 128 kbps data rate under maximum driver load conditions of C_L = 2500 pF and R_L = $3\,k\Omega_{\rm t}$ while power supplies are: $$V_{\rm CC}$$ = +3.0V, V^+ = 10.8V, V^- = -10.8V #### **MOUSE DRIVING** A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V^+ pin of the mouse. The third driver output is set to V_{OL} to sink the current from the V^- terminal. Refer to typical curves of V_{OUT}/I_{OUT} . Typical mouse specifications are: 10 mA at +6V 5 mA at -6V ### **Typical Performance Characteristics** Driver Output Siew Rate between +3V and -3V vs Load Capacitance Conditions: $V_{CC} = 3.3V$, $R_1 = 5$ k Ω , $T_A = 25$ C, $f_{IN} = 64$ Conditions: $V_{\rm CC}$ = 3.3V, R_L = 5 kΩ, T_A = 25°C, $f_{\rm IN}$ = 64 kHz Square Wave Driver Output Voltage vs Frequency and C_L Conditions: V_{CC} = 3.3V, R_L = 5 k Ω , T_A = 25°C #### **Driver Output Current vs Output Voltage** # Physical Dimensions inches (millimeters) unless otherwise noted $\frac{0.010 - 0.029}{(0.254 - 0.737)}$ 0.014 -- 0.020 (0.356 -- 0.508) 0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS 0.008 TYP M20B (REV F) 20-Lead (0.300" Wide) Molded Small Outline Package, JEDEC #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: Order Number DSV14196WM NS Package Number M20B - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 88 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.