AH365...AH380/AH443...AH802

GaAs GUNN

POWER GENERATION DIODES

FEATURES

Operating frequency range 8 to 100GHz Low noise characteristics from 8 to 100GHz Case style flexibility: W2, W3, W4, W5, F27d, F60 ...

Emitting power: 10 to 400 mW

APPLICATIONS

The GUNN diodes are ideally suited for use in low noise sources such as receiving local oscillators at medium power levels, pump oscillators for parametric amplifiers, locking

oscillators, low power radar applications and synchronisation and control of power stages driven by IMPATT Diodes.

DESCRIPTION

These GaAs GUNN diodes, designed to operate through bulk negative resistance effect, feature low FM and AM noise characteristics and accomplish an one-step

conversion from DC to microwave energy from a single low voltage supply, thereby eliminating complex circuitry.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	
Storage temperature	T _{stg}	-65	+175	Ô	
Operating temperature	T _{op}	-40	+85	°C	

3

ELECTRICAL CHARACTERISTICS (T = +25°C)

CHARACTERISTICS Tcase = +25°C						BIAS					
					CASE	Vop		lop		P。	
FREQUENCY RANGE				V		mA		mW			
GHz						TYP.	MAX.	TYP.	MAX.	MIN.	
X Band						-					
8-9	\Box	9-10	1	0-11	11-12)		
AH443	A	H444	A	H445	AH446	W2(1)	10	14	600	650	100
AH447	A	H448	_ A	H449	AH450	W2(1)	10	14	700	850	200
AH451	_ A	H452	A	H453	AH454	W2(1)	10	14	900	950	300
AH455	5 AH456 A		Α	H457	AH458	W2(1)	10	14	1 000	1 150	400
		Kı	u Band								
12-13.5	10	3.5-15	15	-16.5	16.5-18						
AH479	A	H480	A	H481	AH482	W2(2)	8	12	600	700	100
AH483	A	H484	Α	H485	AH486	W2(2)	8	12	800	900	150
AH487	A	H488	_ A	H489	AH490	W2(2)	8	12	800	900	200
AH491	A	H492	A	H493	AH494	W2(2)	8	12	900	1 000	250
AH495	A	H496	Α	H497		W2(2)	8	12	1 000	1 100	300
		K	Band								
18-20	2	20-22	2	2-24	25-26						
AH365	Ā	H366	A	H367	AH368	W2(3)	6	9	500	650	50
AH369	A	H370	A	H371	AH372	W2(3)	6	9	750	1 000	100
AH373	Α	NH374 A		H375	AH376	W2(3)	6	9	800	1 000	150
AH377	AH377 AH378 A		Α	H379	AH380	W2(3)	6	9	800	1 000	200
		Ka	a Band								
26-28	28-3	1 (31-34	34-37	37-40						
AH601	AH60	12 A	H603	AH604	AH605	W3(4)	5	7	700	800	50
AH606	AH60	7 A	H608	AH609	AH610	W3(4)	5	7	1 000	1 200	100
AH611	AH61	2 A	NH613	AH614	AH615	W3(4)	5	7	1 200	1 400	150
AH651	AH65	2 A	H653	AH654	AH655	W3(4)	5	7	1 200	1 400	200
Millimeter											
40-43	43-40	6 4	46-50	50-55	55-60		1	L			
AH616	AH61	7 A	H618	AH619	AH620	W3(5)	4	5	1 000	1 300	50
AH621	AH62	2 A	H623	AH624		W3(5)	4	5	1 000	1 300	100
						-					
60-65	35-70	70-75	75-8	30 80-8	35 85-90	_					
AH680 A	H681	AH68	2 AH6	83 AH6	84 AH685	W3(5)	4	6	1 000	1 300	30
		Mil	llimeter								
				AH800	94	W3(5)		5	750	1 000	10
				AH801	94	W3(5)	4	5	900	1 200	20
				AH802	94	W3(5)	4	5	1 000	1 300	30

⁽¹⁾ Other cases on request : F27d, F60, W1.

⁽²⁾ Other cases on request : W4, (F27d, F60, W1).

⁽³⁾ Other cases on request : W4, (W3, W5).

⁽⁴⁾ Other cases on request : W5, (W4, W2).

⁽⁵⁾ Other cases on request : W5.

3

TECHNICAL DATA

Power is measured into a critically coupled load at a single frequency in the indicated range.

Regulated power supply is essential. No excessive transient voltage must be applied by the power supply, especially during switching on or off. Furthermore the DC power supply must be capable of delivering the diode threshold current which may be 40% higher than the nominal operating current.

If the bias is reversed, the device will be destroyed.

◆ DIODE MOUNTING PROCEDURE

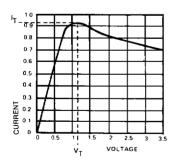
The mount used for the diode must provide an adequate thermal path away from the diode stud. During initial operation, it is always advisable to monitor the diode case temperature, (Tc), by means of a thermocouple placed in the screw driver slot or Hex socket at the base of the diode case. As the bias voltage is slowly increased from zero volts, the case temperature should be monitored to ensure adequate heat sinking. As a rule of thumb, the heat sinking is probably adequate if the threshold current measured in the actual oscillator is more than 95% of the threshold current indicated in the accompanying data sheet. (The threshold

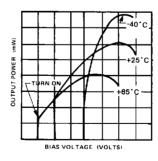
current is an inverse function of junction temperature). If the junction is too hot because of an inadequate heat sink, the threshold current will decrease to less than 95% of the quoted value. The current through the diode below the threshold is given by:

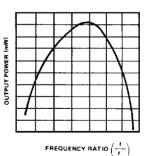
$$I = \frac{C}{\tau a}$$

I = current

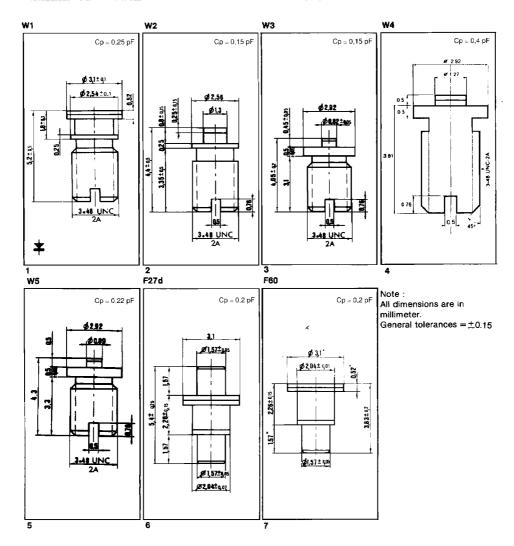
a = constant depending on material (typically 1.0 - 1.3)


T = absolute temperature


C = a proportionally constant


The current flow is very sensitive to junction temperature.

The diode should be securely tightened into a clean, sharply tapped 3 - 48 UNC 2A threaded hole in the mount. A torque of approximately 6 inch-ounces should be used in tightening the diode, in the W1 package, (432 g.cm). As an alternative mounting process the diode may be soldered into the mount, using a minimum of clearance for solder between the diode and the mounting hole. The diode and mount should be degreased and tinned with solder before the insertion of the diode. We recommend use of 60-40 eutectic lead-tin solder with a melting point of $\approx 180\,^{\circ}\text{C}$.


TYPICAL PERFORMANCE CURVES

PACKAGES

