

LP2980/LP2981

50mA/100mA Ultra Low **Dropout Voltage Regulator**

Prososed Specification

- **FEATURES**
- Ultra Low Dropout Voltage
- Output Voltage Accuracy 0.5% (A Grade)
- Guaranteed 50mA Output Current
- Smallest Possible Size (SOT-23 Package)
- Requires Only 1µF External Capacitance
- 1µA Quiescent Current When Shutdown
- Low Ground Pin Current at All Load Currents
- High Peak Current Capability (150 mA Typical) EL
- Wide Supply Voltage Range (16V Max)
- Fast Dynamic Response to Line and Load

- Low Zout Over Wid Frequency Range
- current Protection Overtemperature
- Junction Temperature Range
- cement for Industry LP2980 Socket Simila

ular Phone

- Palmtop / Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder
- Personal Stereo
- Camera

PRODUCT DESCRIPTION

The ALPHA Semiconductor 131898 LP2981 is a low power 50mA/100mA, fixed-output voltage regulator. This device is an excellent choice for use in lattery lowered applications such as cordless telephones, radio control systems, and portable computers. The LP2980/LP2981 features very low quiescent current and very low dropout voltage (Typ. 7mV at light load and 120mV at cludes a tight initial tolerance of 0.5% typ., extremely good load and line regulation of 0.05% typ. and 50mA/100mA load very low output carperature coefficient, making the LP2980/LP2981 useful as a low-power voltage reference. Other key additional features of this device include higher output current (100mA).

The main feature is the logic-compatible shutdown input which enables the regulator to be switched on and off. The regulator output voltage may be pin-strapped for a 5V, 3.3V and 3.0V or programmed from 1.24V to 29V with an external pair of resistors.

ORDERING INFORMATION

Part Number	Package Type	Oper. Temp.Range
LP2980AM-XX	SOT-23	IND.
LP2980M-XX	SOT-23	IND.

XX= 3.0V, 3.3V, OR 5.0V

Pin Connections

Block Diagram

ABSOLUTE MAXIMUM RATINGS (Note 1)

Storage Temperature Range	65° to +150°C
Operating Junction Temperature Range	25°C to +125°C
Lead Temperature (Soldering, 5 sec.)	260°C
ESD Rating (Note 2)	2kV
Power Dissipation (Note 3)	Internally Limited
Input Supply Voltage (Survival)	0.3V to +16V

Input Supply Voltage (Operating)	2.1V to +16V
Shutdown Input Voltage (Survival)	0.3V to +16V
Output Voltage (Survival, Note 4)	0.3V to +9V
I _{OUT} (Survival)	Short Circuit Protected
Input-Output Voltage (Survival, Note 5).	0.3V to +16V

ELECTRICAL CHARACTERISTICS Limits in standard typeface are for T₁ = 25°C, and limits in boldface type apply over the full operating temperature range. Unless otherwise specified: $V_{IN} = V_{ONMM} + 1V$, $I_{I} = 1$ mA, $C_{OUT} = 1$ μ F, $V_{ONMF} = 2V$.

Parameter	Conditions		LP2980/81A-XX (Note 6)		LP2980/81-XX (Note 6)		Units
		Тур					
			Min	Max	Min	Max	
Output Voltage	$V_{IN} = V_{O(NOM)} + 1V$ $1 \text{ mA} < I_L < 50 \text{ mA}$	5.0	4.975	5.025	4.950	5.050	
(5.0V Versions)	$1 \text{ mA} < \hat{l}_{L} < 50 \text{ mA}$	l l	4.962	5.038	4.925	5.075	v
			4.875	5.125	4.825	5.175	
Output Voltage	$V_{IN} = V_{O(NOM)} + IV$	3.3	3.283	3.317	3.267	3.333	
(3.3V Versions)	$1 \text{ mA} < I_t < 50 \text{ mA}$	1 2.5	3,275	3.325	3,250	3.350	v
	1		3,217	3.383	3.184	3,416	
Output Voltage	$V_{IN} = V_{ONOM} + 1V$	3.0	2.985	3.015	2.970	3.030	
(3.0V Versions)	1 mA < I, < 50 mA		2.977	3.023	2.955	3.045	v
	1		2.925	3.075	2.895	3.105	
Output Voltage Line Regulation	V _{O(NOM)} + 1V	0.007	†	0.014		0.014	
	≤ V _{IN} ≤ 16V		1.	0.032		0.032	%/V
Dropout Voltage	I _L = 0	1		3		3	i i
(Note 7)	1	}		5	ŀ	5	1
(102)	I _L = 1 mA	7		10		10	
		1	1	15	i	15	1
	$I_L = 10 \text{ mA}$	40		60		60	mV
			i	90		90	
	I _L = 50 mA	120		150		150	
	, i			225		225	ł
	$I_L = 100 \text{ mA}$	200		250		250	
				300		300	
Ground Pin Current	$I_L = 0$	65		95		95	
				125		125	
	$I_L = 1 \text{ mA}$	80		110		110	
				170		170	Ì
	$I_L = 10 \text{ mA}$	140		220		220	μА
				160		160	
	t _L = 50 mA	375		600	ļ	600	l
				1200		1200	1
	$I_L = 100 \text{ mA}$	1300		1500	Į.	1500	Į.
				2000		2000	
	V _{ONOFF} < 0.18V	0		1		1	
ON/OFF Input Voltage	High = O/P ON	1.4	2.0	l	2.0	1	v
(Note 8)	Low = O/P OFF	0.55		0.18		0.18	<u> </u>
ON/OFF Input Current	V _{ONOFF} = 0	0	l	-1		-1	μА
<u> </u>	V _{ONOFF} = 5V	5	100	15		15	μ
Peak Output Current	V _{OUT} ≥ V _{O(NOM)} - 5%	150	100	1	100		mA
Output Noise Voltage (RMS)	BW = 300 Hz - 50 kHz,	160	 	 	 		
	C _{ουτ} = 10 μF	'	}	İ			μV
Ripple Rejection	f = 1 kHz	63	† 	 	 	 	
	С _{оит} = 10 µF	"	1	l		i	dB
Short Circuit Current	R _i = 0 (Steady State)	150	 	 		 	†
	(Note 9)	1	ì	1		1	mA.

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

Note 6: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate ALPHA'S Averaging Outgoing Level (AOQL).

Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1 V differential

Note 8: The ON/OFF inputs must be properly driven to prevent misoperation

Note 2: The ESD rating of pins 3 and 4 is 1 kV.

Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, T_{10,000}, the junction-to-ambient resistance, 9_{3A}, and the ambient temperature, T_A. The maximum allowable power dissipation at any ambient temperature is calculated using: dissipation at any ambient temperature is calculated using:

P (MAX) = T_{phoxy} - T_s

B_{ss}

The value of θ_{ss} for the SOT-23 package is 300°CW. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.

Note 4: If used in a dual-supply system where the regulator load is returned to a negative supply, the LP2980 output must be diode-clamped to ground.

Note 5: The output PNP structure contains a diode between the V_{ps} and V_{cs} terminals that is normally reverse-biased. Reversing the polarity from V_{ps} to V_{cs}: will turn on this diode.

BLOCK DIAGRAM

