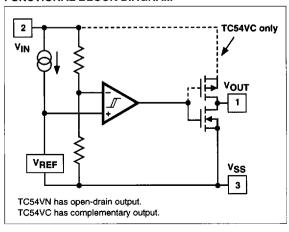

VOLTAGE DETECTOR

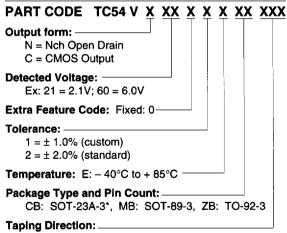
FEATURES


APPLICATIONS

- Battery Voltage Monitoring
- Microprocessor Reset
- System Brownout Protection
- Switching Circuit in Battery Backup
- Level Discriminator

PIN CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM


GENERAL DESCRIPTION

The TC54 Series are CMOS voltage detectors, suited especially for battery-powered applications because of their extremely low $1\mu A$ operating current and small surface-mount packaging. Each part is laser trimmed to the desired threshold voltage which can be specified from 2.1V to 6.0V, in 0.1V steps.

The device includes a comparator, low-current highprecision reference, laser-trimmed divider, hysteresis circuit and output driver. The TC54 is available with either an opendrain or complementary output stage.

In operation, the TC54's output (V_{OUT}) remains in the logic HIGH state as long as V_{IN} is greater than the specified threshold voltage ($V_{\overline{D}ET}$). When V_{IN} falls below $V_{\overline{D}ET}$, the output is driven to a logic LOW. V_{OUT} remains LOW until V_{IN} rises above $V_{\overline{D}ET}$ by an amount V_{HYST} , whereupon it resets to a logic HIGH.

ORDERING INFORMATION

Standard Taping Reverse Taping No suffix: TO-92 Bulk

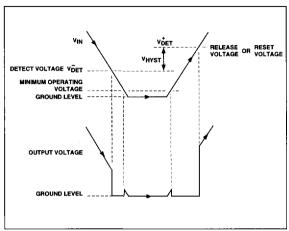
*SOT-23A-3 is equivalent to EIAJ (SC-59).

TC54

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage (VIN)	12V
Output Voltage: CMOS	
Open Drain	(V _{SS} – 0.3) to 12V
Output Current	50mA
Power Dissipation: (T _A ≤ 70°C)	
SOT-23A-3	240mW
SOT-89-3	400mW
TO-92	440mW
Operating Temperature	– 40°C to + 85°C
Storage Temperature	– 65°C to + 150°C
Soldering Temperature	300°C, 10 seconds

^{*} Static-sensitive device. Unused devices must be stored in conductive material. Protect devices from static discharge and static fields. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to Absolute Maximum Rating Conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS: T_A = 25°C, unless otherwise specified.

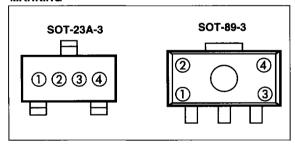
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{IN}	Operating Voltage	V _{DET} = 2.1 to 6.0V		1.5		10.0	V
I _{SS}	Quiescent Current	V _{IN} = 2.1V 3.0V 4.0V 5.0V			1.0 1.3 1.6 2.0	3.0 3.4 3.8 4.2	μА
V _{DET}	Threshold Voltage			(V _{DET}) x 0.98		(V _{DET}) x 1.02	V
V _{HYST}	Hysteresis Range			(V _{DET}) x 0.02	(V _{DET}) x 0.05	(V _{DET}) x 0.08	٧
lout	Output Current	Nch V _{DS} = 0.5	V _{IN} = 2.1V 3.0V 4.0V 5.0V		7.7 10.1 11.5 13.0		mA
		Pch V _{DS} = 2.1V	$V_{IN} = 8.0V$		- 10.0		
T _C (V _{DET})	Tempco of (VDET)	- 40°C ≤ T _A ≤ 85°C			± 100	i	ppm/°C

PIN DESCRIPTION

Pin No.	Symbol	Description
1	VIN	Analog input. This pin is both the power supply input and the voltage to be monitored.
2	V _{OUT}	Digital output. This output goes low when V_{IN} drops below V_{DET} and returns high when V_{IN} rises above $V_{DET} + V_{HYST}$. (See timing chart).
3	V _{SS}	Ground terminal.

TIMING CHART

DESCRIPTION OF OPERATION


Refer to the Timing Chart below. In normal steady-state operation, when $V_{\text{IN}} > V_{\overline{\text{DET}}}$, the output will be at a logic high. In the case of the TC54V, this is an open-drain condition. If and when the input falls below $V_{\overline{\text{DET}}}$, the output will pull down (Logic 0) to V_{SS} . Generally, V_{OUT} can pull down to within 0.5V of V_{SS} at rated output current and input voltage. (See the Electrical Characteristics section).

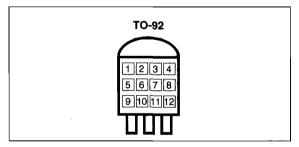
The output, V_{OUT} , will stay valid until the input voltage falls below the Minimum Operating Voltage, $V_{IN}(MIN)$, of 1.5V. Below this minimum operating voltage, the output is undefined. During power-up or anytime V_{IN} has fallen below V_{IN} (MIN), V_{OUT} will remain undefined until V_{IN} rises above $V_{IN}(MIN)$, at which time the output will become valid. V_{OUT} will be in its active low state while $V_{IN}(MIN) < V_{IN} < V_{DET}^{\dagger}$. ($V_{DET}^{\dagger} = V_{DET}^{\dagger} + V_{HYST}^{\dagger}$). If and when the input rises above V_{DET}^{\dagger} , the output will assume its inactive state. (High for TC54VC, open-drain for TC54VN).

APPLICATIONS

Refer to TelCom Semiconductor Application Note #2, Using the TC54 Voltage Detector.

MARKING

(1) = output (Nch or CMOS) plus first voltage digit


Nch CMOS 2 3 4 5 6 M N P R S

C D E F H
ex: CMOS 3.x = (b)()()

② = first voltage decimal (0-9)

ex: CMOS 3.4 = @4000

(3) & (4) = assembly lot number

(1), (2) & (3) = 54_ (fixed)

(4) = output (C = CMOS, N = Nch)

(5) = first voltage digit (2-6)

6 = first voltage decimal (0-9)

(7) = extra feature code : fixed : 0

8 = detecting accuracy

 $1 = \pm 1.0\%$ (custom), $2 = \pm 2.0\%$ (standard)

(9), (10), (11) & (12) = assembly lot number