Am73/8303B

Octal Three-State Inverting Bidirectional Transceiver

DISTINCTIVE CHARACTERISTICS

- · 8-bit bidirectional data flow reduces system package count
- Three-state inputs/outputs for interfacing with bus-oriented systems
- PNP inputs reduce input loading
- V_{CC}-1.15V V_{OH} interfaces with TTL, MOS, and CMOS
- 48mA, 300pF bus drive capability
- Transmit/Receive and Chip Disable simplify control logic
- 20 pin ceramic and molded DIP package
- Low power 8mA per bidirectional bit
- Advanced Schottky processing
- Bus port stays in hi-impedance state during power up/down
- 100% product assurance screening to MIL-STD-883 requirements

GENERAL DESCRIPTION

The Am73/8303Bs are 8-bit three-state Schottky inverting transceivers. They provide bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 16mA drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive determines the direction of logic signals through the bidirectional transceiver. The Chip Disable input disables both A and B ports by placing them in a three-state condition.

The output high voltage (V_{OH}) is specified at V_{CC} -1.15V minimum to allow interfacing with MOS, CMOS, TTL, ROM, RAM, or microprocessors.

LOGIC DIAGRAM

LIC-499

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

LIC-500

LOGIC SYMBOL

V_{CC} = Pin 20 GND = Pin 10

LIC-501

ABSOLUTE MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	-65°C to +150°C
Supply Voltage	7.0V
Input Voltage	5.5V
Output Voltage	5.5V
Lead Temperature (Soldering, 10 seconds)	300°C

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Noted:

Am7303B $T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$ Am8303B

 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$

 $V_{CC}MIN = 4.5V$ $V_{CC}MIN = 4.75V$ $V_{CC}MAX = 5.25V$

 $V_{CC}MAX = 5.5V$

DC ELECTRICAL CHARACTERISTICS over operating temperature range

	B	T 0			Typ.		11-14-	
arameters	rameters Description Test Conditions A PORT (A ₀ -A ₇)			Min.	(Note 1)	Max.	Units	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		, ,,				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
VIH	Logical "1" Input Voltage	$CD \approx 0.8V$, $T/\overline{R} \approx 2$		2.0			Volts	
VIL	Logical "0" Input Voltage	0.511	Am8303B			8.0	Volts	
,,,			Am7303B	ļ		0.7		
V _{OH}	Logical "1" Output Voltage		I _{OH} = -0.4mA	V _{CC} -1.15		•	Volts	
	- J		I _{OH} = -3.0mA	2.7	3.95		 	
V _{OL}	Logical "0" Output Voltage	1 00 0.01,	I _{OL} = 8mA		0.3	0.4	Volts	
		T/R = 0.8V Am8303B, I _{OL} = 16mA		-	0.35	0.50		
los	Output Short Circuit Current	$CD = 0.8V$, $T/\overline{R} = 0$ $V_{CC} = MAX.$, Note 2		-10	-38	-75	mA	
l _{IH}	Logical "1" Input Current	$CD = 0.8V, T/\overline{R} = 2$	<u> </u>		0.1	80	μΑ	
կ	Input Current at Maximum Input Voltage	$CD = 2.0V, V_{CC} = 1$	MAX., $V_I = V_{CC}$ MAX.			1	mA	
I _{IL}	Logical "0" Input Current	$CD = 0.8V, T/\overline{R} = 2$	$.0V, V_i = 0.4V$		-70	-200	μΑ	
v _c	Input Clamp Voltage	$CD = 2.0V, I_{IN} = -$	12mA		-0.7	-1.5	Volts	
- T	Output/Input Three-State Current	CD = 2.0V	$V_O = 0.4V$		T	-200	μА	
lod	Output/Input Three-State Current	CD = 2.0V	$V_0 = 4.0V$			80		
	-	B PORT (B)-B ₇)					
V _{IH}	Logical "1" Input Voltage	$CD = 0.8V$. $T/\overline{R} = 0$.8V	2.0			Volts	
	Lariant "O" Input Valtors	CD = 0.8)(T/\overline{D} = 0	Am8303B			0.8	Valta	
V _{IL}	Logical "0" Input Voltage	$CD = 0.8V, T/\overline{R} = 0.8$	Am7303B			0.7	Volts	
V _{ОН}	Logical "1" Output Voltage	$CD = 0.8V, T/\overline{R} = 2.0V$	I _{OH} = -0.4mA	V _{CC} -1.15	V _{CC} -0.8		Volts	
			.0V I _{OH} = -5mA	2.7	3.9			
			I _{OH} = -10mA	2.4	3.6			
VOL	Logical "0" Output Voltage	$CD = 0.8V, T/\overline{R} = 2.0V$	0V I _{OL} = 20mA		0.3	0.4	Volts	
· OL		I _{OL} = 48mA			0.4	0.5		
los	Output Short Circuit Current	$CD = 0.8V$, $T/\overline{R} = 2.0V$, $V_O = 0V$, $V_{CC} = MAX$., Note 2		-25	-50	-150	mA	
l _{ін}	Logical "1" Input Current	$CD = 0.8V, T/\overline{R} = 0$	$.8V, V_1 = 2.7V$		0.1	80	μΑ	
կ	Input Current at Maximum Input Voltage	CD = 2.0V, V _{CC} =	$MAX., V_I = V_{CC} MAX.$			1	mA	
I _{IL}	Logical "0" Input Current	$CD = 0.8V, T/\overline{R} = 0$	$.8V, V_1 = 0.4V$		-70	-200	μА	
v _c	Input Clamp Voltage	CD = 2.0V, IIN = -	12mA		-0.7	-1.5	Volts	
lop	Output/Input Three-State Current	$V_{O} = 0.4V$				-200		
		CD = 2.0V	V _O = 4.0V		- 1	200	μΑ	
		CONTROL INPUT	rs CD, T/R					
V _{IH}	Logical "1" Input Voltage			2.0			Volts	
VIL	Logical "0" Input Voltage					0.8	Volts	
liH.	Logical "1" Input Current	V ₁ = 2.7V			0.5	20	μА	
l _i	Input Current at Maximum Input Voltage	V _{CC} = MAX., V _I = V _{CC} MAX.		1		1.0	mA	
f _{IL}	Logical "0" Input Current		T/R		-0.1	25	mA	
		V _I = 0.4V	CD		-0.25	5		
ν _c	Input Clamp Voltage	I _{IN} = -12mA			-0.8	-1.5	Volts	
		POWER SUPPLY	CURRENT					
	CD = 2.0V, V _{CC} = MAX, V _{INI} = 0.4V			1	60	130	<u> </u>	
lcc	Power Supply Current $CD = V_{INA} = 0.4V, T/\overline{R} = 2V, V_{CC} = MAX.$		1	80	160	mA.		

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0V$, $T_A = 25^{\circ}C$)

Parameters	Description	Test Conditions	Min.	Typ. (Note 1)	Max.	Units
	A POR	T DATA/MODE SPECIFICATIONS				
^t PDHLA	Propagation Delay to a Logical "0" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF		8	-	ns
[†] PDLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4V, T/\overline{R} = 0.4V (Figure 1) R ₁ = 1k, R ₂ = 5k, C ₁ = 30pF		7		ns
^t PLZA	Propagation Delay from a Logical "0" to Three-State from CD to A Port	B_0 to $B_7 = 0.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1k$, $C_4 = 15pF$		11		ns
t _{PHZA}	Propagation Delay from a Logical "1" to Three-State from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 15pF$		8	-	ns
t _{PZLA}	Propagation Delay from Three-State to a Logical "0" from CD to A Port	B ₀ to B ₇ = 0.4V, T/R = 0.4V (Figure 3) S ₃ = 1, R ₅ = 1k, C ₄ = 30pF		27		ns
t _{PZHA}	Propagation Delay from Three-State to a Logical "1" from CD to A Port	B_0 to $B_7 = 2.4V$, $T/\overline{R} = 0.4V$ (Figure 3) $S_3 = 0$, $R_5 = 5k$, $C_4 = 30pF$		19		ns
	-	T DATA/MODE SPECIFICATIONS	L			1
t _{PDHLB}	Propagation Delay to a Logical "0" from A Port to B Port	CD = 0.4V, T/\overline{R} = 2.4V (Figure 1) R_1 = 100 Ω , R_2 = 1k, C_1 = 300pF		12		ns
		$R_1 = 667\Omega, R_2 = 5k, C_1 = 45pF$		7		
t _{PDLHB}	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4V, $T/R = 2.4V$ (Figure 1) $R_1 = 100\Omega$, $R_2 = 1k$, $C_1 = 300pF$		10		ns
		$R_1 = 667\Omega$, $R_2 = 5k$, $C_1 = 45pF$		7		
^t PLZB	Propagation Delay from a Logical "0" to Three-State from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 1$ k, $C_4 = 15$ pF		13		ns
t _{PHZB}	Propagation Delay from a Logical "1" to Three-State from CD to B Port	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1$ k, $C_4 = 15$ pF		8		ns
t _{PZLB}	Propagation Delay from Three-State to a Logical "0" from CD to B Port	A_0 to $A_7 = 0.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 1$, $R_5 = 100\Omega$, $C_4 = 300pF$		32	<u> </u>	ns
'	a Logical O from CD to B Port	$S_3 = 1$, $R_5 = 667\Omega$, $C_4 = 45pF$		16		
t _{PZHB}	Propagation Delay from Three-State to	A_0 to $A_7 = 2.4V$, $T/\overline{R} = 2.4V$ (Figure 3) $S_3 = 0$, $R_5 = 1k$, $C_4 = 300pF$		26		ns
1	a Logical "1" from CD to B Port	$S_3 = 0$, $R_5 = 667\Omega$, $C_4 = 45pF$		14		1
	TRANSMIT	RECEIVE MODE SPECIFICATIONS	·			·
t _{PHZR}	Propagation Delay from a Logical "1" to Three-State from T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 1$, $R_4 = 100\Omega$, $C_3 = 300pF$ $S_2 = 0$, $R_3 = 1k$, $C_2 = 15pF$		7		ns
t _{PLZR}	Propagation Delay from a Logical "0" to Three-State from T/R to A Port	CD = 0.4V (Figure 2) $S_1 = 0$, $R_4 = 1$ k, $C_3 = 300$ pF		10		ns
t _{PHZT}	Propagation Delay from a Logical "1" to Three-State from T/R to B Port	S ₂ = 1, R ₃ = 1k, C ₂ = 15pF CD = 0.4V (Figure 2) S ₁ = 0, R ₄ = 1k, C ₃ = 15pF S ₂ = 1, R ₃ = 5k, C ₂ = 30pF		16		ns
t _{PLZT}	Propagation Delay from a Logical "0" to Three-State from T/R to B Port	CD = 0.4V (Figure 2) S ₁ = 1, R ₄ = 1k, C ₃ = 15pF S ₂ = 0, R ₃ = 1k, C ₂ = 30pF		17		ns
t _{PRL}	Propagation Delay from Transmit Mode to a Logical "0", T/R to A Port	tprl = tphzt + tpDHLA		23		ns
t _{PRH}	Propagation Delay from Transmit Mode to a Logical "1", T/R to A Port	tpRH = tpLZT + tpDLHA		28		ns
t _{PTL}	Propagation Delay from Receive Mode to a Logical "0", T/R to B Port	t _{PTL} = t _{PHZR} + t _{PDHLB}		23		ns
t _{РТН}	Propagation Delay from Receive Mode to a Logical "1", T/R to B Port	tptH = tplZR + tpDLHB		24		ns

Notes: 1. All typical values given are for V_{CC} = 5.0V and T_A = 25°C.

2. Only one output at a time should be shorted.

FUNCTIONAL TABLE

Inputs	Conditions			
Chip Disable	0	0	1	
Transmit/Receive	0	1	×	
A Port	Out	ln	HI-Z	
B Port	ln	Out	HI-Z	

SWITCHING TIME WAVEFORMS AND AC TEST CIRCUITS

Note: C1 includes test fixture capacitance.

LIC-502

Figure 1. Propagation Delay from A Port to B Port or from B Port to A Port.

LIC-503

 $t_{\rm f}$ = $t_{\rm f}$ < 10ns

10% to 90%

Note: C2 and C3 include test fixture capacitance.

LIC-504

Figure 2. Propagation Delay from T/R to A Port or B Port.

LIC-505

10% to 90%

Note: C₄ includes test fixture capacitance.

Port input is in a fixed logical condition.

LIC-506

Figure 3. Propagation Delay from CD to A Port or B Port.

LIC-507

Metallization and Pad Layout

DIE SIZE 0.066" x 0.086"

ORDERING INFORMATION

Package Type	Temperature Range	Order Number		
Hermetic DIP	-55°C to +125°C	DP7303BJ		
Hermetic DIP	0°C to +70°C	DP8303BJ		
Molded DIP	0°C to +70°C	DP8303BN		
Dice	0°C to +70°C	AM8303BX		