高周波積層チップインダクタ MULTILAYER CHIP INDUCTOR FOR HIGH FREQUENCY **HKQ SERIES**

0603 : −55~125°C OPERATING TEMP.

特長 FEATURES

- ・内部導体として比抵抗値の低いAgを使用し、良好なQ特性と自己共振周 波数特性を実現
- ・積層シート工法による、高生産性、高品質、高インダクタンス値対応
- ・モノリシック構造のため、高い信頼性を有する

- · Multilayer inductor made of advanced ceramics with low-resistivity silver used as internal conductors provides excellent Q and SRF characteristics.
- · Designed to address surface mount inductor needs for applications above 100MHz.
- Multilayer block structure ensures outstanding reliability, high productivity and product quality.

用途 APPLICATIONS

- ・携帯電話、PHS、無線LAN ・その他の高周波回路、中間周波増幅回路
- ・高周波帯域でのEMI対策

- · Portable telephones, PHS and W-LAN
- · Miscellaneous high-frequency circuits
- · EMI countermeasure in high-frequency circuits.

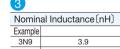
形名表記法 ORDERING CODE

高周波積層チップインダクタ HKQ High Qバージョン

形状寸法 (L×W) [mm] 0603 (0201) 0.6×0.3

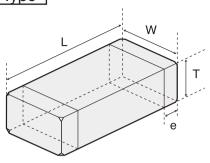
公称イ	ンダクタンス [nH]						
例							
3N9	3.9						
10N	10						
※N=nHとしての小数点							

8		
	インダク	タンス許容差
	G	±2%
	Н	±3%
	J	±5%
	В	±0.1nH
	С	±0.2nH
	S	±0.3nH



匀堤	
L-24	
-T	リールテーピング

10N


10 *N=0.0 (nH type)

4	
Induc	tance Tolerances
G	±2%
Н	±3%
J	±5%
В	±0.1nH
С	±0.2nH
S	±0.3nH

5	
Packa	ging
-T	Tape & Reel

外形寸法 EXTERNAL DIMENSIONS

HKQ Type

Type	L	W	Т	е
HKQ0603	0.6±0.03	0.3±0.03	0.3±0.03	0.09±0.04
(0201)	(0.024±0.001)	(0.012±0.001)	(0.012±0.001)	(0.0035±0.0016)

Unit: mm (inch)

概略バリエーション AVAILABLE INDUCTANCE RANGE

Range	Туре	HKQ060	03
	[nH]	使用温度範囲 -5	5~+125℃ Imax [mA]
	0.6	0N6	[110 tj
	0.0	0N7	
	0.7	0N8	400
	0.8	0N9	400
	1.0	1N0	
亍	1.2	1N2	
Ē	1.5	1N2	Y
inductance	1		300
auc	1.8	1N8□	
nct	2.2	2N2	•
<u> </u>	2.7	2N7 🗆	250
-	3.3	3N3	250
	3.9	3N9□	200
	4.7	4N7□	200
	5.6	5N6□	170
	6.8	6N8O	1
	8.2	8N2O	150
	10.0	10NO	130
	12.0	12NO	\forall
	15.0	15NO	130
	18.0	18NO	110
	22.0	22N〇	100

值 oles	Inductance	Imax[mA]	Rdcmax[Ω]
₩ du	1.5nH	300	0.22
₹××	10.0nH	150	0.93
·	100.0nH	_	_

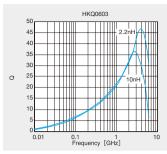
※形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH (□)、±5% (○)以下の許容差も対応可能ですので、お問い合わせ下さい。 \square , \bigcirc mark indicates the Inductance tolerance code. The product with tolerance less than ± 0.3 nH (\square), $\pm 5\%$ (\bigcirc) is also available. Please contact your local sales office.

特性図

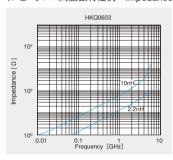
^{*}製品の仕様につきましてはお問い合せ下さい。

^{*}Please Contact Our Sales Department office for Products Details.

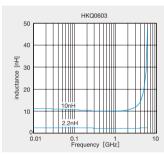
アイテム一覧 PART NUMBERS


HKQ0603

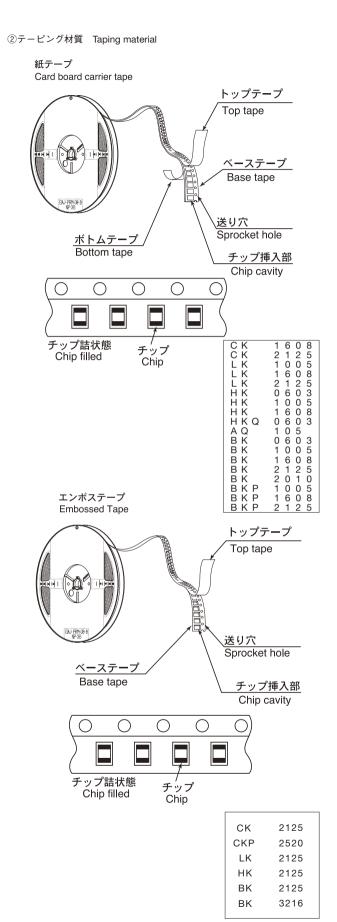
HKQ0603 ———————————————————————————————————																		
形名 Ordering code		インダクタンス Inductance 〔nH〕		Inductance Tolerance		Q Meas min. frequ			Q Measuring Frequency min. frequency [Hz]			自己共振周波数 Self-resonant frequency [MHz]		直流抵抗 DC.Resistance 〔Ω〕		定格電流 Rated current [mA] max.	厚さ Thickness [mm] (inch)	
				normal	special				800M		2.0G		min.	Тур.	max.	Тур.		(111011)
HKQ0603	0N6		0.6	±0.3nH	±0.2nH、±0.1nH	13	500	19	26	47	51	57	10000	>13000	0.10	0.04	400	
HKQ0603	0N7		0.7	±0.3nH	±0.2nH、±0.1nH	13	500	19	26	47	51	57	10000	>13000	0.10	0.04	400	
HKQ0603	0N8		0.8	±0.3nH	±0.2nH、±0.1nH	13	500	19	26	47	51	57	10000	>13000	0.10	0.04	400	
HKQ0603	0N9		0.9	±0.3nH	±0.2nH、±0.1nH	13	500	19	26	47	51	57	10000	>13000	0.10	0.04	400	
HKQ0603	1N0		1	±0.3nH	±0.2nH、±0.1nH	13	500	19	26	47	51	57	10000	>13000	0.10	0.05	400	
HKQ0603	1N1		1.1	±0.3nH	±0.2nH、±0.1nH	13	500	19	26	43	46	52	10000	>13000	0.14	0.08	300	
HKQ0603	1N2□	0.1nH	1.2	±0.3nH	±0.2nH、±0.1nH	13	500	18	25	39	42	48	10000	>13000	0.16	0.12	300	
HKQ0603	1N3	Step	1.3	±0.3nH	±0.2nH、±0.1nH	13	500	18	25	38	40	46	10000	>13000	0.19	0.15	300	
HKQ0603	1N4□	Otop	1.4	±0.3nH	±0.2nH、±0.1nH	13	500	18	25	37	39	44	10000	>13000	0.21	0.06	300	
HKQ0603	1N5		1.5	±0.3nH	±0.2nH、±0.1nH	13	500	17	23	36	38	43	10000	>13000	0.22	0.06	300	
HKQ0603	1N6□		1.6	±0.3nH	±0.2nH、±0.1nH	13	500	17	23	36	38	43	10000	>13000	0.22	0.07	300	
HKQ0603	1N7		1.7	±0.3nH	±0.2nH、±0.1nH	13	500	17	23	36	38	43	10000	>13000	0.23	0.09	300	
HKQ0603	1N8□		1.8	±0.3nH	±0.2nH、±0.1nH	13	500	17	23	36	38	43	9500	>13000	0.23	0.10	300	
HKQ0603	1N9□		1.9	±0.3nH	±0.2nH、±0.1nH	13	500	17	23	35	37	42	9500	13000	0.24	0.12	300	
HKQ0603	2N0		2	±0.3nH	±0.2nH、±0.1nH	13	500	17	23	35	37	42	9500	13000	0.24	0.14	300	
HKQ0603	2N2		2.2	±0.3nH	±0.2nH	13	500	17	22	35	37	42	9000	13000	0.26	0.20	300	
HKQ0603	2N4□		2.4	±0.3nH	±0.2nH	13	500	17	22	34	36	40	8800	12000	0.26	0.12	250	
HKQ0603	2N7		2.7	±0.3nH	±0.2nH	13	500	16	22	33	35	38	7700	11000	0.27	0.13	250	0.30 ± 0.03
HKQ0603	3N0		3	±0.3nH	±0.2nH	13	500	16	22	32	34	38	7300	10000	0.28	0.18	250	(0.012±0.001)
HKQ0603	3N3		3.3	±0.3nH	±0.2nH	13	500	16	22	32	34	38	7000	10000	0.29	0.22	250	
HKQ0603	3N6□		3.6	±0.3nH	±0.2nH	13	500	16	22	32	34	38	7000	10000	0.36	0.26	200	
HKQ0603	3N9		3.9	±0.3nH	±0.2nH	13	500	16	22	32	34	38	7000	10000	0.42	0.29	200	
HKQ0603	4N3	E24	4.3	±0.3nH	±0.2nH	13	500	16	22	32	34	37	6200	9000	0.46	0.30	200	
HKQ0603	4N7	Step	4.7	±0.3nH	±0.2nH	13	500	16	21	32	34	36	5500	8000	0.46	0.31	200	
HKQ0603	5N1]	5.1	±0.3nH	±0.2nH	13	500	16	21	32	34	36	5500	8000	0.46	0.32	200	
HKQ0603	5N6]	5.6	±0.3nH	±0.2nH	13	500	16	21	32	34	36	5500	8000	0.55	0.42	170	
HKQ0603	6N2	1	6.2	±0.3nH	±0.2nH	13	500	16	21	31	33	35	5500	8000	0.72	0.45	170	
HKQ0603	6N8O	1	6.8	±5%	±3%	13	500	16	21	31	33	35	5000	7500	0.74	0.48	150	
HKQ0603	7N5〇	1 1	7.5	±5%	±3%	13	500	16	21	30	32	33	5000	7500	0.74	0.30	150	
HKQ0603	8N2O	1	8.2	±5%	±3%	13	500	16	21	30	31	32	4500	6500	0.74	0.40	150	
HKQ0603	9N1O	1	9.1	±5%	±3%	13	500	16	21	29	30	31	4500	6500	0.93	0.48	150	
HKQ0603	10NO		10	±5%	±3%, ±2%	13	500	16	21	28	29	31	4000	6000	0.93	0.52	150	
HKQ0603	12NO	1	12	±5%	±3%, ±2%	12	500	15	19	25	26	25	3500	5300	0.93	0.52	150	
HKQ0603	15NO	E12	15	±5%	±3%, ±2%	12	500	15	18	22	21	20	2500	4600	1.04	0.65	130	
HKQ0603	18NO	Step	18	±5%	±3%, ±2%	11	500	14	17	20	20	17	2300	3800	1.17	0.73	110	
HKQ0603	22NO	1 1	22	±5%	±3%, ±2%	10	500	14	17	18	17	13	2000	3400	1.28	0.80	100	


[※]形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH (□)、±5% (○)以下の許容差も対応可能ですので、お問い合わせ下さい。□, ○mark indicates the Inductance tolerance code. The product with tolerance less than ±0.3nH (□), ±5% (○) is also available. Please contact your local sales office.

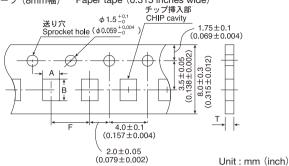
特性図 ELECTRICAL CHARACTERISTICS


Q-周波数特性例 Q-Characteristics (Measured by HP8719C)

インピーダンス周波数特性例 Impedance-vs-Frequency characteristics (Measured by HP8719C)

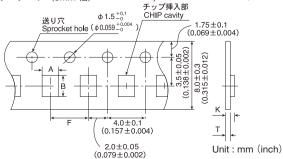


インダクタンス周波数特性例 Inductane-vs-Frequency characteristics (Measured by HP8719C)

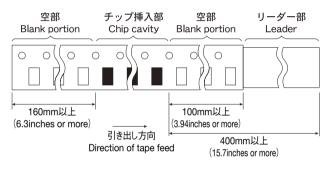


①最小受注単位数 Minimum Quantity ■テーピング梱包 Tape & Reel Packaging

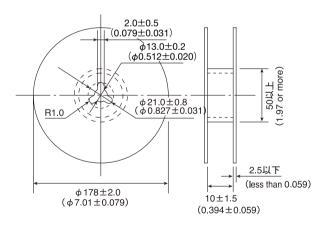
形式	製品厚み Thickness		效量 [pcs] rd Quantity	
Туре	[mm] (inch)	紙テープ Paper Tape	エンボステープ Embossed Tape	
CK1608(0603)	0.8 (0.031)	4000	_	
CK2125(0805)	0.85 (0.033)	4000	_	
	1.25 (0.049)	_	2000	
CKP2520(1008)	0.85 (0.033)	_	3000	
LK1005(0402)	0.5 (0.020)	10000	_	
LK1608 (0603)	0.8 (0.031)	4000	_	
LK2125 (0805)	0.85 (0.033)	4000	_	
LN2123 (0003)	1.25 (0.049)	_	2000	
HK0603(0201)	0.3 (0.012)	15000	_	
HK1005(0402)	0.5 (0.020)	10000	_	
HK1608 (0603)	0.8 (0.031)	4000	_	
LIV0105 (0005)	0.85 (0.033)	_	4000	
HK2125 (0805)	1.0 (0.039)	_	3000	
HKQ0603(0201)	0.3 (0.012)	15000	-	
AQ105(0402)	0.5 (0.020)	10000	-	
BK0603(0201)	0.3 (0.012)	15000	-	
BK1005(0402)	0.5 (0.020)	10000	_	
BK1608(0603)	0.8 (0.031)	4000	_	
	0.85 (0.033)	4000	_	
BK2125(0805)	1.25 (0.049)	-	2000	
BK2010(0804)	0.45 (0.018)	4000	_	
BK3216 (1206)	0.8 (0.031)	-	4000	
BKP1005(0402)	0.5 (0.020)	10000	_	
BKP1608(0603)	0.8 (0.031)	4000	_	
BKP2125 (0805)	0.85 (0.033)	4000	_	



・紙テープ (8mm幅) Paper tape (0.315 inches wide)

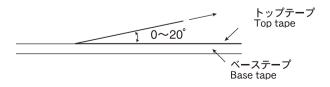

形式	製品厚み	チップ	挿入部	挿入ピッチ	テープ厚み
Type	Thickness	Chip	cavity	Insertion Pitch	Tape Thickness
.,,,,,	(mm)	А	В	F	Т
01/4000 (0000)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
CK1608 (0603)	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
01(0405 (0005)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
CK2125 (0805)	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
11(1005 (0100)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
LK1005 (0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
11(4000 (0000)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
LK1608 (0603)	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
11(0405 (0005)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
LK2125 (0805)	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
(2222 (2224)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HK0603 (0201)	(0.012)	(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
(1005 (0.100)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
HK1005 (0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
111(4,000 (0000)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
HK1608 (0603)	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
LIKO0000 (0001)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ0603 (0201)	(0.012)	(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
AO405 (0400)	0.5	0.75±0.1	1.15±0.1	2.0±0.05	0.8max
AQ105 (0402)	(0.020)	(0.030±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
DIVOCOO (0004)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BK0603 (0201)	(0.012)	(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
BK1005 (0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
BK1005 (0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
DK1000 (0000)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
BK1608 (0603)	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
DK040E (000E)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
BK2125 (0805)	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
DK0040 (0004)	0.45	1.2±0.1	2.17±0.1	4.0±0.1	0.80max
BK2010 (0804)	(0.018)	(0.047±0.004)	(0.085±0.004)	(0.157±0.004)	(0.031max)
DKD400E (0400)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
BKP1005 (0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
DVD1600 (0000)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
BKP1608 (0603)	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
DKD010E (000E)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
BKP2125 (0805)	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)

・エンボステープ(8mm 幅)Embossed Tape(0.312 inches wide)



形式	製品厚み	チップ	挿入部	挿入ピッチ	テープ原	₽みmax.
Type	Thickness	Chip	cavity	Insertion Pitch	Tape Th	ickness
туре	(mm)	Α	В	F	K	Т
CK2125 (0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
ONZ 123 (0003)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
CKP2520 (1008)	0.85	2.15±0.1	2.7±0.1	4.0±0.1	1.5	0.3
GRF2520 (1006)	(0.033)	(0.085±0.004)	(0.107±0.004)	(0.157±0.004)	(0.059)	(0.012)
LK2125 (0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
LN2123 (0003)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
	0.85				1.5	
HK2125 (0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3
111(2123 (0003)	1.0	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)
	(0.039)				(0.079)	
BK2125 (0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
BR2123 (0603)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
BK3216 (1206)	0.8	1.9±0.1	3.5±0.1	4.0±0.1	1.4	0.3
DN3210 (1200)	(0.031)	(0.075±0.004)	(0.138±0.004)	(0.157±0.004)	(0.055)	(0.012)

④リーダー部・空部 LEADER AND BLANK PORTION



⑤リール寸法 Reel Size

⑥トップテープ強度 Top tape strength

トップテープの剥離力は、下図矢印方向にて $0.1\sim0.7N$ となります。 The top tape requires a peel-off force of $0.1\sim0.7N$ in the direction of the arrow as illustrated below.

										Opecille	ed Value											
Item	BK0603	BK1005	BK1608	BK2125		RAY		BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603	AQ105	Test Methods and Remarks
Operating			-550	 +125℃		BK3216		55 a. ±0	v5°C			40-	105°C			55-	1.105°C	-400	.⊥05°C	-660.	-55~	
Operating Temperature			-55∼	+125 C			_	55~+8	15 C			-40~	+85°C			-55~	+125℃	-40^	-+85°C	-55~ +125℃		
Range																						
Storage Tem-			-55~	+125℃	:		-	55~+8	5°C			-40~	+85°C			-55~	+125℃	-40~	-+85°C	-55~	-55~	
perature Range																				+125℃	+125℃	
Rated Current	100~	150~	150~	200~	100mA	100~	1.0A	1.0~	2.0~	50~	60~	1.1~	10~	1~	5~	40~	110~	150~	300mA	100~	200~	
	500mA		1500mA		DC	200mA	DC	3.0A	4.0A	60mA	500mA	1.4A	25mA	50mA		250mA	300mA	300mA	DC	400mA	510mA	
mpedance	DC	DC	DC	DC	-	DC	4000	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC	DC		DC	DC	BK0603 Series:
•	10~ 600Ω	10~ 1000Ω	22~ 2500Ω	15~ 2500Ω	5~ 600Ω	68~ 1000Ω	120Ω ±25%	33~ 390Ω	33~ 220Ω													Measuring frequency: 100±1MHz
	±25%	±25%	±25%	±25%	±25%	±25%	22070	±25%	±25%													Measuring equipment: HP4291A
																						Measuring jig: 16193A
																						BK1005 Series:
																						BKP1005 Series:
																						Measuring frequency: 100±1MHz
																						Measuring equipment: HP4291A
																						Measuring jig: 16192A, 16193A
										-	-		-		-	_	-	-	-	-	-	
																						BK1608, 2125 Series:
																						BKP1608, 2125 Series: Measuring frequency: 100±1MHz
																						Measuring equipment: HP4291A, HP41
																						Measuring jig: 16092A or 16192A (HW)
																						BK2010, 3216 Series:
																						Measuring frequency: 100±1MHz
																						Measuring equipment: HP4291A, HP41
																						Measuring jig: 16192A
ductance										4.7~	0.1~	1.0~	0.12~	0.047~	0.047~	1.0~6.2nH	1.0~6.2nH	1.0~5.6nH	1.0~5.6nH	0.6~6.2nH	1.0~6.2nH	CK Series:
										10.0µH	10.0µH	4.7μH	2.2µH	33.0µH	33.0µH	:±0.3nH	:±0.3nH	:±0.3nH	:±0.3nH	:±0.3nH	:±0.3nH	Measuring frequency: 2 to 4MHz (CK16
										:±20%	:±20%	:±20%	:±10%	:±20%	:±20%	6.8~100nF				6.8~22nH	6.8~15nH	Measuring frequency: 2 to 25MHz (CK)
																:±5%	:±5%	:±5%	:±5%	:±5%	:±5%	Measuring frequency: 1MHz (CKP2520
														0.10~ 12.0μH	0.10∼ 12.0µH							LK Series:
														:±10%	:±10%							Measuring frequency: 10 to 25MHz (LK Measuring frequency: 1 to 50MHz (LK1
														1070	1070							Measuring frequency: 0.4 to 50MHz (LI
																						Measuring equipment, jig:
																						HP4194+16085B+16092A (or its equi
																						HP4195+41951+16092A (or its equiva
																						HP4294+16192A
																						HP4291A+16193A (LK1005)
																						HP4285A+42841A+42842C+
																						42851-61100 (CKP2520)
																						Measuring current: 1mA rms (0.047 to 4.7μH)
																						0.1mA rms (0.047 to 4.7μH) 0.1mA rms (5.6 to 33μH)
																						HK·HKQ·AQ Series:
																						Measuring frequency:
																						100MHz (HK0603, HK1005,AQ105)
																						Measuring frequency:
																						50/100MHz (HK1608, HK2125)
																						Measuring frequency:
																						500MHz (HKQ0603)
																						Measuring equipment, jig:
																						HP4291A+16197A (HK0603·AQ105) HP4291A+16193A (HK1005)
	1									1	1	1	1	1		I	1	1	1		- 1	
																						E4991A+16197A (HKQ0603)

^{*} Definition of rated current: In the CK and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

In the BK Series P type and CK Series P type, the rated current is the value of current at which the temperature of the element is increased within 40°C. In the LK,HK,HKQ,and AQ Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.

									Spe	ecified	Va	alue										
Item					1	RAY																Test Methods and Remarks
	BK0603	BK1005	BK1608	BK2125		BK3216		BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603	AQ105	
6.Q										20	15~20		10~20	10~35	15~50	4~5	8min.	8~12	10~18	10~13	8min.	CK Series:
										min.	min.		min.	min.	min.	min.		min.	min.	min.		Measuring frequency: 2 to 4 MHz (CK1608)
																						Measuring frequency: 2 to 25 MHz (CK2125)
																						LK Series:
																						Measuring frequency: 10 to 25 MHz (LK1005) Measuring frequency: 1 to 50 MHz (LK1608)
																						Measuring frequency: 0.4 to 50MHz (LK2125)
																						Measuring equipment, jig:
																						HP4194A + 16085B + 16092A (or its equivalent)
																						HP4195A+41951 +16092A (or its equivalent)
																						HP4294A +16192A
																						HP4291A +16193A (LK1005) Measuring current:
					_																	1mA rms (0.047 to 4.7μH)
																						0.1mA rms (5.6 to 33μH)
																						HK, HKQ, AQ Series: Measuring frequency:
																						100MHz (HK0603, HK1005,AQ105)
																						Measuring frequency: 50 / 100MHz (HK1608, 2125)
																						Measuring frequency: 500MHz (HKQ0603)
																						Measuring frequency:
																						HP4291A +16197A (HK0603,AQ105) HP4291A +16193A (HK1005)
																						E4991A +16197A(HKQ0603)
7.DC Resistance	0.075~	0.05~	0.05~	0.05~	0.10~	0.15~	0.140Ω	0.005~	. 0000	0.450	0.160	0.08~	0.7~	0.3~	0.20~	0.14~	0.08~	0.05~	0.10~	0.10~	0.07~	HP4195A + 16092A + in-house made jig (HK1608, 2125)
7.DO Nesistance	1.50Ω	0.80Ω				0.80Ω			0.050Ω			0.15Ω		2.95Ω		4.0Ω	4.8Ω	2.6Ω	1.5Ω	1.28Ω		
	max.	max.	max.	max.	max.	max.		max.	max.	(±30%)	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	max.	Measuring equipment:
																						VOAC-7412 (made by Iwasaki Tsushinki)
8.Self Resonance										17~	24~		40~	9~	13~	900~	400~	300~	200~	2000~	2300~	VOAC-7512 (made by Iwasaki Tsushinki) LK Series:
Frequency(SRF)										25MHz	235MHz		1	260MHz	1	10000MHz		10000MHz			10000MHz	Measuring equipment: HP4195A
										min.	min.		min.	min.	min.	min.	min.	min.	min.	min.	min.	Measuring jig: 41951 +16092A
					—							_										(orits equivalent)
																						HK, HKQ, AQ Series:
																						Measuring equipment: HP8719C • HP8753D (HK2125)
9.Temperature											1	1	1	<u> </u>	1	Induct	ance ch	ange:	1	I	1	HK, HKQ, AQ Series:
Characteristic																Within	±10%					Temperature range: -30 to +85 °C
																						Reference temperature: +20°C
10. Resistance to	No me	echanic	al dama	age.						1												Warp: 2mm
Flexure of																						Testing board: glass epoxy-resin substrate
Substrate																						Thickness: 0.8mm
																						20
																						Board R-230 Warp
																						\(\triangle \frac{1}{10000000000000000000000000000000000
																						[Unit: mm]

										Specifie	ed Value											
Item	BK0603	BK1005	BK1608	BK2125		RAY BK3216	BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603	AQ105	Test Methods and Remarks
11.Solderability	At least 75% of terminal electrode is covered by new solder.						At lea	st 75%	of ter	minal e	lectrod	e is cov	ered by	new s	older.				Solder temperature: 230±5°C Duration: 4±1 sec.			
12.Resistance to Soldering			No sigi		abnorm ±30%	nality				No mediamag Remain electro Inducta R10~4 Within: 6R8~1 Within: CKP25	ning ter de: 709 ance ch 4R7: ±10% 100: ±15%	minal % min.	No mechanical damage. Remaining terminal electrode: 70% min. Inductance change: Within ±15%	No medidamage Remain terminal electrod 70% mi Inductal change 47N~4 Within±5R6~3 Within±	ing I Ide: nn. nnce R7: :10%	damag Remai	ining te ode: 70 ance c	rminal % min.				Solder temperature: 260±5°C Duration: 10±0.5 sec. Preheating temperature: 150 to 180°C Preheating time: 3 min. Flux: Immersion into methanol solution with colophony for 3 to 5 sec. Recovery: 2 to 3 hrs of recovery under the standard conditionafter the test. (See Note 1)
13.Thermal Shock	Appearance: No significant abnormality Impedance change: Within ±30%					No mecha damag Inducta change Within ±20% Qchan Within ±30%	ge. ance e: ge:	No mechanical damage. Inductance change: Within ±30%	damag Induct Within Qchar	ance ch ±10%		Induct	ance ch	al dama nange: \ hin±20	Within=	±10%		Conditions for 1 cycle step 1: Minimum operating temperature +0/-3°C 30±3 min. step 2: Room temperature 2 to 3min. step 3: Minimum operating temperature +0/-3°C 30±3 min. step 4: Room temperature 2 to 3min. Number of cycles: 5 Recovery: 2 to 3 hrs of recovery under the standard conditionafter the test. (See Note 1)				

(Note 1) When there are questions concerning mesurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

														Spec	cified	Value														
ltem	BK0603	BK1005	БВ	K1608	BK21			RRAY BK321		BKP1	005 BK	P1608	BKP212				CKP2520	LK1005	5 LF	(1608	LK212	5 H	HK060	03 HK1005	HK160	ВНК	2125	HKQ060	3 AQ105	Test Methods and Remarks
14. Damp Heat fSteady stateg		dance c												dam	ictan nge: nin 0% nang	nce	No mechanica damage. Inductance change: Within ±30%	No med damage Inductar Within±	nce ch 10% je:		No mechani damage. Inductan change: Within ±10% Q chang Within ±30%	ca ce	Indu With	nechanica ctance ch in±10% nange: Wit	ange:					BK Series: Temperature: 40±2°C Humidity: 90 to 95%RH Duration: 500±6°4 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note1) LK, CK, CKP, HK, HKQ, AQ Series: Temperature: 40±2°C (LK, CK Series) 60±2°C (HK, HKQ, AQ Series) Humidity: 90 to 95%RH Duration: 500±12 hours Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note1)
15.Loading under Damp Heat		echanic	cal	dam	age, I	Induc	ctano	ce chai	nge	e				No mec darrill Induchate the state of the st	nage. nctan nge: nin 0% nang	ica nce	No no mechanica damage. Inductance change: change: within ±30%	No mechanic damage. Inductanc change: Within ±10% Q change Within ±30%	dar ee Ind cha 0.0 12. Wit ±1 15. 33. Wit ±1	chanica mage. luctance ange: 47 to OµH: thin	No mechani damage. Inductan change: Within ±10% Q changg Within ±30%	ca	Indu With	mechanicz ctance ch in±10% Manange: Wif	ange:					Irrom test chamber. (See Note1) BK Series: Temperature: 40±2°C (LK Series) Humidity: 90 to 95%RH Duration: 500±2°4 hrs Applied current. Rated current Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note1) LK, CK, CKP, HK, HKQ, AQ Series: Temperature: 40±2°C (LK, CK Series) 60±2°C (HK, HKQ, AQ Series) Humidity: 90 to 95%RH Duration: 500±12 hrs Applied current: Rated current Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note1)
16.Loading at High Temperature		arance:		_				nality						dam	nin)% nang nin	nce	No mechanica damage. Inductance change: with the change change: 20% of the change chan	damage.	dar ee Ind cha 0.0 12: Wit ±1 15: 33: Wit ±1	chanica mage. luctance	No mechani damage. Inductan change: Within ±10% Q chang Within ±30%	ca	Indu With	nechanicztance characteria in±10%	ange:					BK Series: Temperature: 125±3°C Applied current: Rated current Duration: 500±2°4 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note1) LK, CK, CKP, HK, HKQ, AQ Series, BK Series P type Temperature: 85±2°C (LK, CK, CKP Series): 85±2°C (LK, CK, CKP Series): 85±2°C (HK 1608, 2125): 85±2°C (HK 1608, 2125): 125±2°C (HK 1608, 2105): 125±2°C (HK 1603, HK1005, HKQ0603, AQ105): operating temperature range —55 to +85°C): 0perating temperature range —55 to +125°C) Applied current: Rated current Duration: 500±12 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note1)

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to $35^\circ\!\text{C}$ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}\mathrm{C}$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1)

measurement shall be made after 48 \pm 2 hrs of recovery under the standard condition.

Stages	Precautions	Technical considerations
1. Circuit Design	 ◆Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. ◆Operating Current (Verification of Rated current) 1. The operating current for inductors must always be lower than their rated values. 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. 	
2. PCB Design	 ◆Pattern configurations (Design of Land-patterns) 1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns 	1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs Land pattern Chip inductor Chip inductor Chip inductor Chip inductor Chip inductor W Recommended land dimensions for wave-soldering (unit: mm) Type 1608 2125 3216 08 W 0.8 1.25 1.6 A 0.8~1.0 1.0~1.4 1.8~2.5 B 0.5~0.8 0.9~1.2 1.2~1.6
	smaller than terminal electrode of chips.	Recommended land dimensions for reflow-soldering (unit: mm)
		1 06 10 10 16 20 25
		C 0.6 1.0 1.0 1.5 2.0 3.2 2.3
		A 0.20~0.30 0.45~0.55 0.50~0.55 0.6~0.8 0.8~1.2 1.8~2.5 1.0~1.4
		B 0.20~0.30 0.40~0.50 0.30~0.40 0.6~0.8 0.8~1.2 0.6~1.5 0.6~1.0
		C 0.25~0.40 0.45~0.55 0.60~0.70 0.6~0.8 0.9~1.6 1.2~2.0 1.8~2.2
		Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns.
		dimension for Reflow-soldering (unit: mm)
		3216 2010
		$\frac{1}{\sqrt{2}}$ 1
		0 W 1.0 1.0
		a 0.7~0.9 0.5~0.6 b 0.8~1.0 0.5~0.6
		b 0.8~1.0 0.5~0.6

0.4~0.5 0.2~0.3

0.5

0.8

С

Stages	Precautions		Technical consid	lerations
2.PCB Design		(2) Example	es of good and bad solder a	application
			Not recommended	Recommended
		Mixed mount- ing of SMD and leaded compo- nents	Lead wire of component	Solder-resist
		C o m p o n e n t placement close to the chassis	Chassis Solder(for grounding)	Solder-resist
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron	Solder-resist Solder-resist
		Horizontal com- ponent place- ment		Soldier-resist
	◆Pattern configurations (Inductor layout on panelized [breakaway] PC boards)	tors should	be located to minimize any	nd bad inductor layout; SMD induc- y possible mechanical stresses from
	1. After inductors have been mounted on the boards,	Item	or deflection.	December
	chips can be subjected to mechanical stresses in sub- sequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully	Deflection of the board	Not recommended	Recommended Position the component at a right angle to the direction of the mechanical stresses that are anticipated.
	performed to minimize stress.	that the am	ount of mechanical stress	away PC board, it should be noted es given will vary depending on in-
		Perforat	stion C C Slit Magnitude of stress	D 0000 B B A>B = C>D>E
		chanical stre The following stressful: pu	ess on the inductors can vang methods are listed in cush-back, slit, V-grooving,	ir perforations, the amount of meary according to the method used. order from least stressful to most and perforation. Thus, any ideal or the PCB splitting procedure.

Precautions		Technical consider	rations
◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. 2. The maintenance and inspection of the mounter should be conducted periodically.	on the induct be considered (1) The lower lim the PC board (2) The pick-up p (3) To reduce th pick-up nozzl board. The fo	ors, causing damage. To avoid before lowering the pick-up noit of the pick-up nozzle should after correcting for deflection pressure should be adjusted be amount of deflection of the e, supporting pins or back-up blowing diagrams show some	d this, the following points should ozzle: be adjusted to the surface level of of the board. etween 1 and 3 N static loads. e board caused by impact of the pins should be used under the PC
		Improper method	Proper method
	Single-sided mounting	chipping or cracking	supporting pins or back-up pins
	Double-sided mounting	chipping	supporting pins- or back-up pins
	cause chippi pact on the ii the alignmen	ing or cracking of the induct nductors. To avoid this, the r it pin in the stopped positio	tors because of mechanical im- monitoring of the width between n, and maintenance, inspection
◆Selection of Adhesives 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	ence betwee inductors may Moreover, to versely affect be noted in the control of	en the shrinkage percentage ay result in stresses on the so little or too much adhesive to component placement, so the application of adhesives. Althesive characteristics as should be strong enough to a solder process. The should have sufficient strent as should have good coating a se should be used during its process. The should have good coating a se should have good coating a se should have good coating as a should have not be contaminated.	of the adhesive and that of the inductors and lead to cracking. e applied to the board may adhe following precautions should be hold parts on the board during agth at high temperatures. Ind thickness consistency, rescribed shelf life.
	◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. 2. The maintenance and inspection of the mounter should be conducted periodically. Selection of Adhesives 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage	◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. 2. The maintenance and inspection of the mounter should be conducted periodically. 2. The maintenance and inspection of the mounter should be conducted periodically. 3. The pick-up nozzle board. The for nozzle placer Single-sided mounting Double-sided mounting Double-sided mounting 2. As the align cause chipping pact on the interval the alignment and replacent the alignment and replacent to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use. 1. If the lower ling on the induct to be considered (1) The lower ling on the induct in the PC board. (2) The pick-up in the PC board. (3) To reduce it in the PC board. (3) The pick-up in the PC board. (3) The pick-up in the PC board. (3) The pick-up in the PC board. (3) The given prozzile placer. 1. Some adhesive ence between inductors manufacturers may be a proper and placed. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive in the alignment and replaced mounting. 1. Some adhesive	 ♣Adjustment of mounting machine 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. 2. The maintenance and inspection of the mounter should be conducted periodically. 2. The maintenance and inspection of the mounter should be conducted periodically. 3. The maintenance and inspection of the mounter should be conducted periodically. 4. The lower limit of the pick-up nozzle is low on the inductors, causing damage. To avoid be considered before lowering the pick-up nozzle should the PC board after correcting for deflection of the pick-up nozzle; supporting pins or back-up board. The following diagrams show some nozzle placement:

Stages	Precaution	Technical considerations
3.Considerations for automatic placement		When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.
		[Recommended conditions]
		Figure 0805 case sizes as examples
		a 0.3mm min
		b 100 ~120 μm
		c Area with no adhesive
		Amount of adhesives After inductors are bonded
4.Soldering	◆Selection of Flux 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.
	◆Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100 °C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.

Stages	Precautions	Technical considerations
A.Soldering	Precautions ◆And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature Temp
		Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor.
5.Cleaning	◆Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.)	The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance).

Stages	Precautions	Technical considerations
5.Cleaning	Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics.	2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. (1) Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 w/l Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6. Post cleaning processes	 ◆Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterio- 	
	ration of the inductor's performance. 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction.	
	Stress caused by a resin's temperature generated expansion and contraction may damage inductors.	
	The use of such resins, molding materials etc. is not recommended.	
7. Handling	◆Breakaway PC boards (splitting along perforations)	
	When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.	
	Board separation should not be done manually, but by using the appropriate devices.	
	 ◆General handling precautions 1. Always wear static control bands to protect against ESD. 2. Keep the inductors away from all magnets and magnetic objects. 3. Use non-magnetic tweezers when handling inductors. 4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. 6. Keep inductors away from items that generate magnetic fields such as speakers or coils. 	
	 ◆Mechanical considerations 1. Be careful not to subject the inductors to excessive mechanical shocks. (1) If inductors are dropped on the floor or a hard surface they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

Stages	Precautions	Technical considerations
8. Storage conditions	◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40 °C Humidity Below 70% RH The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery. *The packaging material should be kept where no chlorine or sulfur exists in the air.	If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors