1.0 INTRODUCTION ### 1.1 DOCUMENT SCOPE This document describes the function and operation of the WD76C10A, WD76C10ALP and WD76C10ALV System Controller devices. It includes the description of external logic necessary for efficient use of these devices. In most instances, the WD76C10A, WD76C10ALP and WD76C10ALV operate similarly and are referred to in this document as the System Controller. Where there are differences, the devices are identified specifically. ### 1.2 FEATURES Features Common to WD76C10A, WD76C10ALP and WD76C10ALV: - Operates at speeds of 16 MHz, 20 MHz and 25 MHz. - Interfaces with 80286 or 80386SX CPUs. - Supports memory in four banks with 64 Kbit, 256 Kbit, 1 Mbit or 4 Mbit DRAMs. - Page mode zero wait state access at 25 MHz with 70 ns DRAM. - Supports up to 16 Mbyte of real memory or 32 Mbyte of EMS memory. - Maintains controlled propagation delay for 80386SX reset. - Employs an internal self-tuning delay line for DRAM control. - Self-adjusting output drivers minimize output rise/fall time variations and reduces EMI and ground noise. - DRAM address multiplexer drives 350 pF with adjustable strength drivers. - Main and VGA BIOS may be mapped into one physical PROM. - Advanced 64 Kbyte and 128 Kbyte ROM shadowing allows main BIOS and video BIOS shadowing, along with 320 Kbyte and 256 Kbyte remap to extended or expanded memory. - Parity generation and checking. - Low power 0.9 micron CMOS technology. 132-pin JEDEC plastic QUAD flat package (PQFP) Additional Features Of WD76C10ALP Only: - System Activity Monitor (SAM). - Power control with suspend and resume. - Processor stop clock. - CAS before RAS slow refresh for portable applications. - · Automatic processor clock speed switching. Additional Features Of WD76C10ALV Only: Internal logic is powered by a 3.3 volt supply to extend battery life up to two times. ### 1.3 GENERAL DESCRIPTION The WD76C10A is designed for use in a high performance desktop AT computer, using an 80286 or 80386SX processor of up to 25 MHz. The WD76C10ALP has the features of the WD76C10A and is designed to operate in a high performance notebook/laptop AT compatible computer using an 80286 or 80386SX processor. With the exception of the 80286 modes, the WD76C10ALV has all the capabilities of the WD76C10ALP plus the ability to operate with a 3.3 volt power supply. #### 1.3.1 WD76C10A The WD76C10A contains a high performance memory controller with programmable modes of operation. It supports non-page, zero wait state read and write memory control. A maximum of four banks of 64 Kbit, 256 Kbit, 1 Mbit or 4 Mbit DRAM may be controlled, allowing up to 16 Mbytes of real or 32 Mbytes EMS (Expanded Memory Specification) memory. Any combination of DRAM sizes may be used. In addition, the WD76C10A controls page mode DRAM or static column DRAM with page mode operation. The on-board memory can be allocated either to extended or EMS memory in 128 Kbyte increments. Forty EMS registers support EMS 4.0 multitasking. An internal self-tuning delay line is used for DMA and Bus Master memory cycles. Delay line infor- **//** 3/19/92 INTRODUCTION WD76C10A/LP/LV mation is also used to adjust the strength of the output drivers. This stabilizes the output rise and fall times, reducing ground noise and electromagnetic interference (EMI). EMS access to external RAM or ROM may be used to support Kanii or other extended character sets. The WD76C10A interfaces with either an 80286 or 80386SX processor. The processor type is automatically sensed at power up. No extra logic is required to interface with the 80386SX. The variation in processor reset propagation delay is controlled to meet the strict reset timing of the 80386SX. ### 1.3.2 WD76C10ALP In addition to supporting all the features of the WD76C10A, the WD76C10ALP also supports portable notebook/laptop computers. To provide this support, the WD76C10ALP makes use of Power Management Control (PMC) for powering down peripherals or the processor, processor stop clock, slow clock, automatic processor clock speed switching modes and CAS before RAS slow refresh. Suspend and resume is supported when low power DRAM is refreshed while the processor and other power consuming devices are turned off. The power drain for the core logic and VGA controller is less than 5 mA in this mode. Power and clock speed may be controlled by the keyboard processor, transparently to the 80286 or 80386SX. The System Activity Monitor (SAM) provided by WD76C10ALP is a transparent feature that replaces the functions previously performed by software. It senses when the system has been idle for a previously programmed period of time and determines a clean break point in which to perform power down activities such as suspend. ### 1.3.3 WD76C10ALV The WD76C10ALV supports all of the 80386SX mode functions and features supplied by the WD76C10ALP. In addition, the WD76C10ALV has improved the PC notebook/laptop design by operating with a 3.3 volt ± 0.3V power supply, which nearly doubles the battery life. The WD76C10ALV does not support 80286 modes. The DC operating Characteristics and AC timing specifications that differ from the WD76C10A/LP are presented in the Appendix. FIGURE 1-1. SYSTEM BLOCK DIAGRAM // 3/19/92 WD76C10A/LP/LV ARCHITECTURE ### 2.0 ARCHITECTURE All versions of the System Controller are comprised of eight major blocks: - · Initialization and clocking - AT bus - 80286/80387SX processor control - 80287/80387SX numeric processor control - Data bus - Memory and EMS control - Power Management Control (WD76C10ALP/LV only) - Register File Sections 2.1 through 2.8 provide an overview of these blocks and are described in more detail in sections 4 through 9. ### 2.1 INITIALIZATION AND CLOCKING At power up, the System Controller receives the RSTIN signal, which it uses to reset the AT bus and assert CPURES and NPRST to reset the main and numeric processors. The processor and AT bus resets are held for 84 processor clocks beyond the removal of the RSTIN signal. It is at this time that the type of processor in use (80286, 80287 or 80386SX, 80387SX) is determined by examining the $\overline{S1}$ [W/R#] signal. CLK14 is a 14.318 MHz clock for the 8254 compatible timers and is switched by the WD76C20 to 32 KHz during a suspend and resume operation. BCLK2 is used to generate an 8 MHz or 10 MHz bus clock and may also be used as the source for the main processor clock, CPUCLK. ### 2.2 AT BUS The AT bus provides the logic necessary to control the system clock, memory read and write access, I/O read and write cycles, data bus direction, data and interrupt requests and speaker driver. ### 2.3 MAIN PROCESSOR CONTROL At the termination of reset, this block determines whether the local processor is an 80286 or 80386SX by examining the \$\overline{S1}[W/R#]\$ signal. This block also controls whether the CPUCLK is to be an input or output. While all versions of the System Controller have the ability to reduce the processor clock rate, only the WD76C10ALP and WD76C10ALV have the ability to stop the clock to the processor. The WD76C10ALP/LV also have the ability to power down the processor, at which time it tristates signals CPUCLK, READY, HOLD, INTRO and NMI ### 2.4 NUMERIC PROCESSOR CONTROL All three System Controllers support an 80287 or 80387SX processor. ### 2.5 DATA BUS The Data Bus is a 16 bit (two bytes) bidirectional bus that connects to the processor's, System Controller, DRAM, and to AT data bus transceivers. The parity of each DRAM byte is indicated by DPL and DPH. ### 2.6 MEMORY AND EMS CONTROL This block controls the access to 16 Mbytes of real memory or 32 Mbytes of expanded memory. All three versions of the System Controller supports non-page mode memory and independent two-way interleave page mode access to the DRAM banks. ### 2.7 POWER MANAGEMENT CONTROL The Power Management Control (PMC) is internal logic which interfaces with external multiplexers and latches. Only the WD76C10ALP/LV makes full use of the PMC. They have the ability to power down only the main processor or the main processor and peripherals, conserving power essential to portable notebook/laptop computers. When in a power down state, the WD76C10ALP/LV tristates the CPUCLK, READY, HOLD, INTRQ and NMI output signals to the main processor. ### 2.8 REGISTER FILE The register file provides software control of the interface signals. The function of each register is described in the same section as the logic block which it controls. Some registers, such as the Bus Timing and Power Down Control Register at Port 1872H, serve more than one area. In this instance the register description appears only in one section but is referred to in all appropriate sections. The registers, and the section in which they are described, are listed in Table 2-1. In most cases, the registers are addressed by all 16 address bits, A15 through A00. Within the text, when the address is expressed as a three digit number, i.e., 092H - ALT A20 GATE and HOT RESET, only address bits A09 through A00 are used, A15 through A10 are ignored. If the address is expressed as a four digit number, all 16 address bits are used. With the exception of the EMS Registers at port E072H and E872H and Port 70H Shadow Register at E472H, all registers located at Ports 1072H through FC72H are locked and inaccessible until unlocked by performing an eight bit I/O write of DA to the Lock/Unlock Register at Port F073H. Writing anything other than DA locks the registers. The lock/unlock status can be determined by reading the Lock/Unlock Status Register at Port FC72H twice. If the T bit (bit 15) toggles, the registers are unlocked. If the registers are locked, the read cycle is directed to the AT bus, and the data is undetermined. ### 2.8.1 Lock Status Register Port Address FC72H - Read only Bits 11-03 are particularly useful in laptop applications by allowing the suspend/resume software to restore correct status to on-board devices. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08
 |----|----|----|----|-----|-----|-----|-----| | Т | | | | | DMA | #2 | | | | • | | | СНЗ | CH2 | CH1 | CH0 | | l | 1 | | 1 | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|------------|-----------|-----|----|----|----|----| | СНЗ | DMA
CH2 | #1
CH1 | СНО | Р | | | | | Signal | De <u>fault</u> | |--------|-----------------| | Name | At RSTIN | Bit 15 - T, Toggle All signals Changes state after every read of this port. Bits 14-12 - Not used, state is ignored ### Bits 11-08 - DMA #2, Channel Enable This field represents the state of the Enable Bit (Mask) for channels 3 through 0 of DMA Controller #2. For a description of the Mask Registers, refer to section 5.4.11. - 0 = Channel enabled - 1 = Channel disabled ### Bits 07-04 - DMA #1, Channel Enable This field represents the state of the Enable Bit (Mask) for channels 3 through 0 of DMA Controller #1. For a description of the Mask Registers, refer to section 5.4.11. - 0 = Channel enabled - 1 = Channel disabled ### Bit 03 - P. Parallel Port Direction The P bit represents the state of the Direction Bit (bit 5) of the parallel port Write Control Register. For a description of this bit, refer to the WD76C30 Data Book, section 4.3 Bits 02-00 - Not used, state is ignored # 2.8.2 Lock/Unlock Register Port Address F073H - Write only | T | | |---|---| | | 1 | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | | | |------|----|----|----|----|----|----|----|--|--| | L/UL | Signal
Name | | | | | | | De <u>fault</u>
At RSTIN | |----------------|--|--|--|--|--|--|-----------------------------| | All signals | | | | | | | None | Bits 15-08 - Not used, state is ignored Bits 07-00 - L/UL, Lock/Unlock L/UL = DA - 11011010 unlocks the registers, allowing read and write access to the registers. Refer to Table 2-1 for the registers capable of being locked. L/UL ≠ DA - Anything other than 11011010 locks the registers. Any attempt to access a locked register I/O port address goes to the AT bus rather than the locked register. FIGURE 2-1. WD76C10A/LP/LV BLOCK DIAGRAM | PORT
ADDRESS
(HEX) | REGISTER NAME | LOCK/
UNLOCK | SECTION | |--------------------------|---|-----------------|----------------| | 000 - 00F ① | DMA Control #1 (Channel 0:3) | No | 5.4, 5.6, | | 020 - 021 ② | Interrupt Controller #1 | No | 5.5 | | 040 | Timer 0, Time Of Day | No | 5.7 | | 041 | Timer 1, Refresh | No | 5.7 | | 042 | Timer 1, Refresh | No | 5.7 | | 043 | Control Word | No | 5.7 | | 060 - 06E even | Keyboard Controller | No | 7.5, Table 7-1 | | 061 - 06F odd | Port B Parity Error And I/O Channel Check | No | 5.9 | | 070 - 07E even | Real-Time Ćlock Address Register | No | 5.8.1 | | 071 - 07F odd | Real-Time Clock Data Register | No | 5.8.2 | | 080 - 09F | (except 092H) DMA Page Registers | No | 5.6.4 | | 092 | ALT A20 Gate and Hot Reset | No | 5.8.3 | | 0A0 - 0A1 ② | Interrupt Control Slave #2 | No | 5.4, 5.6 | | 0C0 - 0DE ① | DMA Control #2 (Channel 4:7) | No | 5.4 | | 00F0 | CLEAR 287 BUSY | No | 5.3.2 | | 00F1 | RESET 287/387SX | No | 5.3.3 | | 1072 | CPU Clock Control | Yes | 4.2.4 | | 1872 | Bus Timing And Power Down Control | Yes | 5.3.1 | | 2072 | Refresh Control, Serial And Parallel Chip Selects | Yes | 7.1 | | 2872 | Chip Selects | Yes | 7.2 | | 3072 | Programmable Chip Select Address | Yes | 7.3 | | 3872 | Memory Control | Yes | 6.2.1 | | 4072 | Non-page Mode DRAM Memory Timing | Yes | 6.3.1 | | 4872 | Bank 1 And Bank 0 Start Address | Yes | 6.2.2 | | 5072 | Bank 3 And Bank 2 Start Address | Yes | 6.2.2 | | 5872 | Split Start Address | Yes | 6.2.3 | | 6072 | RAM Shadow And Write Protect | Yes | 6.2.4 | | 6872 | EMS Control And Lower EMS Boundary | Yes | 6.4.1 | | 7072 | PMC Output Control 7:0 | Yes | 8.3 | | 7872 | PMC Output Control 15:8 | Yes | 8.3 | | 8072 | PMC Timers | Yes | 8.4 | | 8872 | PMC Inputs 7:0 | Yes | 8.5 | | 9072 | NMI Status | Yes | 8.7 | | 9872 | Diagnostic | Yes | 9.1 | | A072 | Delay Line | Yes | 9.2 | | A 872 | Test Enable | Yes | 9.3 | | B072 | Activity Monitor Control | Yes | 8.11 | | B872 | DMA Control Shadow | Yes | 5.4.15 | | C072 | High Memory Write Protect Boundary | Yes | 6.2.5 | | C872 | PMC Interrupt Enables | Yes | 8.6 | | D072 | Serial/Parallel Shadow Register | Yes | 8.8 | | D472 | Interrupt Controller Shadow | Yes | 8.9 | | D872 | Activity Monitor Mask | Yes | 8.12 | | DC72 | Test Status | Yes | 9.4 | | E072 | EMS Page Register Pointer | No | 6.4.2 | | E472 | Port 70H Shadow | No | 8.10 | **TABLE 2-1. REGISTER INDEX** | PORT
ADDRESS
(HEX) | REGISTER NAME | LOCK/
UNLOCK | SECTION | |--------------------------|--------------------------|-----------------|----------------| | E872 | EMS Page Register | No | 6.4.3 | | F072 | | Yes | 7.5, Table 7-1 | | F472 | 48 MHz Oscillator Enable | Yes | 7.5, Table 7-1 | | F872 | | Yes | 7.4 | | FC72 | Lock Status | Yes | 2.8.1 | | F073 | | No | 2.8.2 | ① See Table 5-4. DMA Controller/Channel Function Map **TABLE 2-1. REGISTER INDEX (Continued)** ② See Table 5-6. Interrupt Controller Function Map # 3.0 SIGNAL DESCRIPTION The signals are listed according to their pin number in Table 3-1. The signals are grouped according to their application and described in Table 3-2. TABLE 3-1. SIGNAL/PIN ASSIGNMENTS NOTE: Some pins are multi-functional depending upon the mode of operation. The alternate signal for these pins is enclosed in []. **//**/ | PIN
NUMBER | MNEMONIC | SIGNAL NAME | 1/0 | DESCRIPTION | |---------------|----------|--------------|-----|--| | | LOCKING | | | | | 17 | RSTIN | System Reset | l | RSTIN drives a CMOS input level Schmitt Trigger and is used to reset the entire system at power up. For a detailed description, refer to Section 4, Initialization And Clocking. | | 50 | BCLK2 | Bus Clock | I | BCLK2 is used to generate an 8 MHz or 10 MHz expansion bus clock. For an 8 MHz bus, BCLK2 is a 16 MHz or 32 MHz input signal. For a 10 MHz bus clock, BCLK2 is a 20 or 40 MHz input signal. BCLK2 may also be used to drive the processor clock. | | | | | | For additional information, refer to section 4, Initialization And Clocking. | | 84 | CLK14 | Clock 14 | ļ | CLK14 is derived from a 14.318 MHz crystal and is used internally for the 8254 compatible timers. CLK14 is externally switched to 32 KHz during a suspend and resume. | | | 1 | AT E | BUS | | | 40 | ĪŌR | I/O Read | I/O | IOR is an output and is asserted by the System Controller during processor or DMA access to indicate that an I/O read operation is to take place on the AT bus. | | | | | | IOR is an input during Master Mode. | | 39 | ĪŌW | I/O Write | 1/0 | IOW is an output and is asserted by the System Controller during processor or DMA access to indicate that an I/O write operation is to take place on the AT bus. | | | | | | IOW is an input during Master Mode. | | 38 | MEMR | Memory Read | I/O | MEMR is an output and is asserted by the System Controller when a memory read access to the AT bus is to take place. | | | | | | MEMR is an input during Master Mode. | **TABLE 3-2. SIGNAL DESCRIPTION** | PIN
NUMBER | MNEMONIC | SIGNAL NAME | I/O | DESCRIPTION | |---------------|----------|--------------------------------|--------|--| | | | AT BUS | (cont. |) | | 37 | MEMW | Memory Write | I/O | MEMW is an output and is asserted by the System Controller when a memory write access to the AT bus is to take place. | | | | | | MEMW is an input during Master Mode. | | 36 | LOMEG | First Megabyte | 0 | LOMEG is asserted when the AT bus address is below 1 Mbyte. Used with MEMR and MEMW to generate SMEMR and SMEMW. | | 28 | AEN | Address Enable | 0 | AEN is asserted by the System Controller while performing DMA and Refresh cycles. | | 79 | BALE | AT Bus Address
Latch Enable | 0 | Address Latch Enable for the AT bus. BALE is synchronous with the Bus Clock (BCLK2). | | 77 | SYSCLK | System Clock | 0 | In asynchronous bus mode, SYSCLK is equal to BCLK2 divided by two when BCLK2 is less than 28 MHz, and divided by four when BCLK2 is greater than 28 MHz. | | | | | | In synchronous bus mode, SYSCLK is equal to CPUCLK divided by two or four, depending on the programming. | | 25 | LA20 | Early Address 20 | I/O | When not in Master Mode, LA20 is an output and is asserted by the System Controller to place address 20 on the AT Bus LA20 line. | | | | | | When in Master Mode, LA20 is an input and is asserted by the Bus Master to place address on A20. | | 24 | SA0 | System Address 0 | I/O | When not in Master Mode, SA0 is an output and is asserted by the System Controller to place address 00 on the AT Bus SA0 line. | | | | | | When in Master Mode, SA0 is an input and is asserted by the Bus Master to place address on A0. | | | • | | | | TABLE 3-2. SIGNAL DESCRIPTION (Continued) | PIN
NUMBER | MNEMONIC | SIGNAL NAME | I/O | DESCRIPTION | |---------------|----------|--------------------------|--------|--| | | | AT BUS | (cont. |) | | 32 | REFRESH | Refresh | 1/0 | As an output, REFRESH is asserted by the System Controller to refresh memory on the AT Bus. | | | | | | As an input, REFRESH is asserted by the Bus Master in conjunction with MEMR to refresh memory on the AT Bus and DRAM controlled by the System Controller. | | 26 | MASTER | Master | 1 | MASTER is asserted by the Bus Master to indicate that a Bus Master cycle is occurring. This causes LA20, SA0, MEMR, MEMW,
IOR, and IOW to become input signals. | | 83 | IOCK | I/O Check | ı | When asserted, IOCK indicates a bus or memory error is on the AT bus and generates an NMI to the processor. | | 21 | IOCS16 | 16 Bit I/O Cycle | ı | Initiates a 16 bit I/O AT bus cycle. | | 22 | MEMCS16 | 16 Bit Memory Cycle | ı | Initiates a 16 bit memory AT bus cycle. | | 20 | ZEROWS | Zero Wait States | ı | Initiates a zero wait AT bus cycle. | | 19 | IOCHRDY | I/O Channel Ready | ı | Initiates wait states during AT bus cycles. | | 116 | DACKEN | DACK Enable | 0 | When DACKEN is asserted, MXCTL2-0 are used to generated DACK7-5, 3-0 and BUS_RST. Refer to Table 5-1 and Figure 5-1. | | 114 | MXCTL2 | Multiplexer
Control 2 | 0 | MXCTL2 - MXCTL0, along with DRQIN, DACKEN, IRQSET1, IRQSET0 and PMCIN, control the external multiplexer for the selection of DRQs, DACKs, IRQs, ROM8, A20GT and RESCPU. Refer to Table 5-1 and Figure 5-1. | | 113 | MXCTL1 | Multiplexer
Control 1 | 0 | | | 112 | MXCTL0 | Multiplexer
Control 0 | 0 | | **TABLE 3-2. SIGNAL DESCRIPTION (Continued)** | PIN
NUMBER | MNEMONIC | SIGNAL NAME | I/O | DESCRIPTION | |---------------|----------|-------------------------------|-----|---| | | |) | | | | 18 | DRQIN | Multiplexed DRQ
Inputs | I | DRQIN, along with MXCTL2 - 0, selects one of the DRQs or CLOCK_DIR_IN. Refer to Table 5-1 and Figure 5-1. | | 110 | IRQSET1 | Interrupt
Request
Set 1 | I | IRQSET1, along with MXCTL2 - 0, selects one of the of the following: A20GT, IRQ1, IRQ3 - IRQ7, IRQ12. Refer to Table 5-1 and Figure 5-1. | | 111 | IRQSET0 | Interrupt
Request
Set 0 | l | IRQSET0, along with MXCTL2 - 0, selects one of the following: ROM8, RESCPU, IRQ8, IRQ9 - IRQ11, IRQ14 and IRQ15. Refer to Table 5-1 and Figure 5-1. | | 23 | SPKR | Speaker | 0 | SPKR drives the speaker transistor and is used for diagnostics. | | 27 | ALE | Address Latch Enable | 0 | ALE is used to clock the SA1 - SA19 address latches. | | 115 | CSEN | Chip Select Enable | 0 | When asserted, DPH, DPL, and RA10-RA8 are used to generate one of 28 different chip selects. Refer to Table 7-1. | | 74 | DT/R | Data Transmit/
Receive | 0 | DT/R controls the direction of the AT Data Bus D00 - D15. | | | | | | When DT/\overline{R} is high, data is directed to the AT Bus. | | | | | | When DT/\overline{R} is low, data is transferred from the AT bus. | | 76 | DEN0 | Data Bus Enable 0 | 0 | When asserted, DENO enables the low order byte data buffer. | | 75 | DEN1 | Data Bus Enable 1 | 0 | When asserted, DEN1 enables the high order byte data buffer. | | 29 | SDEN | Swap Data Enable | 0 | SDEN enables the data transfer between high and low bytes of the AT Bus. | TABLE 3-2. SIGNAL DESCRIPTION (Continued) | PIN
NUMBER | MNEMONIC | SIGNAL NAME | AME I/O DESCRIPTION | | | | | | | |---------------|-------------|--|---------------------|--|--|--|--|--|--| | | | AT BUS | S (cont.) | | | | | | | | 30 | SDT/R [486] | Swap Data Transmit/
Receive [80486] | 1/0 | SDT/R [486] is tristated by a 50K pullup resistor internal to the WD76C10A when RSTIN at pin 17 is low. | | | | | | | | | | | SDT/R Mode - Output When SDT/R is high, it directs data from the low byte of the AT Bus to the high byte. | | | | | | | | | | | When SDT/ \overline{R} is low, it directs data from the high byte of the AT bus to the low byte. | | | | | | | | | | | Forcing SDT/ \overline{R} high while \overline{RSTIN} is low selects the SDT/ \overline{R} mode. Holding SDT/ \overline{R} high as \overline{RSTIN} goes high maintains the SDT/ \overline{R} mode. | | | | | | | | | | | 80486 Mode - Input Selecting 80486 mode sets the SRC bit in Port 1072H to 1. This causes RDYIN at pin 51 to be the default processor clock source input. | | | | | | | | | | | Forcing SDT/ \overline{R} low while \overline{RSTIN} is low selects the 80486 mode. Holding SDT/ \overline{R} low as \overline{RSTIN} goes high, maintains the 80486 mode. | | | | | | | | | | | The SDT/R pin may may be forced low at reset with a 5K pulldown resistor or an open collector or tristate driver, driven by RSTIN. | | | | | | | | | MAIN PROCESS | SOR C | CONTROL | | | | | | | 52 | CPUCLK | Processor Clock | I/O | CPUCLK speed and whether it is to be an input or output, is selected by the CPU Clock Control Register at Port Address 1072H. It is normally selected as an output to drive the processor but may be selected as an input from an external processor clock driver. | | | | | | | 47 | READY | Processor Ready | 0 | READY is an output to the processor. | | | | | | **TABLE 3-2. SIGNAL DESCRIPTION (Continued)** | PIN
NUMBER | MNEMONIC | SIGNAL NAME | I/O | DESCRIPTION | |---------------|------------------|---|-----|--| | | <u> </u> | MAIN PROCESSOF | CON | ITROL (cont.) | | 51 | RDYIN/CKA/
PE | Processor Ready In/
Alternate Clock/
Parity Error | 1 | Whether pin 51 is to be used as RDYIN, CKA or PE is determined by the Memory Control Register at Port Address 3872H. | | | | | | RDYIN is used in a discrete cache system and indicates a hit or miss. | | | | | | CKA may be used as an alternate source for CPUCLK processor clock. | | | | | | When used as PE, it indicates a parity error from an external memory controller. | | 78 | CPURES | Main Processor
Reset | 0 | CPURES is a synchronous processor reset signal. | | 49 | HOLD | Hold Request | 0 | Processor hold cycle request. | | 55 | INTRQ | Interrupt Request | 0 | Processor interrupt cycle request. | | 54 | NMI | Non-Maskable
Interrupt | 0 | Processor non-maskable interrupt cycle request. | | 45 | S0 [ADS#] | Processor Status 0 | | In the 80286 mode this pin is $\overline{S0}$. | | | | [Address Status] | | In the 80386SX mode this pin is ADS#. | | 46 | S1 [W/R#] | Processor Status 1 | | In the 80286 mode pin 46 is \$\overline{S1}\$. | | | | [Write Read] | | In the 80386SX mode pin 46 is W/R# | | 41 | BHE | Bus High Enable | 1/0 | As an input, BHE indicates a transfer of the high byte on the processor data bus. | | | | | | BHE is an output during DMA transfers. | | 43 | PEACK | Processor Extension | | In the 80286 mode, pin 43 is PEACK. | | | [D/C#] | Acknowledge [Data/Control] | | In the 80386SX mode, pin 43 is D/C#. | | 44 | M/ĪŌ | Memory or I/O | 1 | Processor Memory cycle or $\overline{I/O}$ Status cycle. | | 48 | HLDA | Hold Acknowledge | 1 | Processor hold acknowledge. | TABLE 3-2. SIGNAL DESCRIPTION (Continued) | PIN
NUMBER | MNEMONIC | SIGNAL NAME | I/O | DESCRIPTION | |--|---|--|------|---| | | | MAIN PROCESSOR | CON | ITROL (cont.) | | 53 | BUSYCPU | Processor Busy | 0 | Numeric Processor Busy (80287 or 80387SX) signal to CPU (80286 or 80386SX). | | 80 - 82
88 - 97
100
102 - 109
87
86 | A23 - A21
A20 - A11
A10
A9 - A2
A1
A0 [BLE#] | Processor Address
A23 through A00
[Bus Low Enable] | I/O | A23 through A1 are address lines from the 80286 or 80386SX. A0 is address bit A0 for the 80286, BLE# for the 80386SX, and is controlled by SA0 (AT Bus pin 24) during Master Mode operations. | | 00 | No [BEE#] | | | A21, A19 through A1 are outputs during refresh and DMA cycles and inputs in other modes. | | | | | | A20 and A0 are outputs during refresh, DMA and Master mode cycles and inputs in other modes. | | | | NUMERIC PROCE | SSOF | R CONTROL | | 34 | EPEREQ | Extend PERQ | 0 | PERQ extend signal to the 80386SX for IRQ13 handling. Used only for the 80386SX. | | 35 | NPRST | Numeric Processor
Reset | 0 | Reset to the numeric processor 80287 or 80387SX. | | 42 | NPERR | Numeric Processor
Error | ı | Error signal from the numeric processor 80287 or 80387SX. | | 85 | NPBUSY | Numeric Processor
Busy | 1 | Busy signal from the numeric processor 80287 or 80387SX. | | | | DATA | BUS | | | 73 - 70
68
66 - 56 | D15 - D12
D11
D10 - D0 | Data Bit 15 - Data Bit
12, Data Bit 11
Data Bit 10 - Data Bit
0 | I/O | The Data Bits are connected directly to the Local and Numeric processors, DRAM data and AT Bus data transceivers. | | 16 | DPL [CS3] | Data Parity
Low Byte
[Chip Select 3] | I/O | For DRAM cycles, DPL is the low byte parity bit. For I/O cycle, CS3 is bit three of the encoded chip select bus. | | 15 | DPH [CS4] | Data Parity
High Byte
[Chip Select 4] | 1/0 | For DRAM cycles, DPH is the high byte parity bit. For I/O cycle, CS4 is bit four of the encoded chip select bus. | **TABLE 3-2. SIGNAL DESCRIPTION (Continued)** | PIN
NUMBER | MNEMONIC | SIGNAL NAME | | DESCRIPTION | | | | |-------------------------------------|--|---|-----
--|--|--|--| | MEMORY AND E | | | | CONTROL | | | | | 126
127
128 | RA10/CS2
RA9/CS1
RA8/CS0 | DRAM Address Bit
10 through
DRAM Address Bit 8,
Chip Select 2 through
Chip Select 0 | 0 | The DRAM Address Bus is multi-functional. During DRAM cycles, RA10 through RA0 select the DRAM Row and Column. | | | | | 130
131
1
3
4
6
7 | RA7/ED7
RA6/ED6
RA5/ED5
RA4/ED4
RA3/ED3
RA2/ED2
RA1/ED1
RA0/ED0 | DRAM Address Bit
7 through
DRAM Address Bit
0,
EDATA 7 through 0 | I/O | During I/O cycles, CS2 through CS0, along with CS4 and CS3, are decoded by external logic to one of 32 possible Chip Selects. ED7 through ED0 represents the data from such devices as the Keyboard Controller on the EDATA bus. | | | | | 14
11
125
122 | RAS3
RAS2
RAS1
RAS0 | Row Address Select 3
through
Row Address Select 0 | 0 | RAS3 through RAS0 are designed to access the DRAM without the use of external drivers. | | | | | 12,
9,
123,
120 | CASH3
[CASIN]
CASH2
CASH1
CASH0 | Column Address Select High 3 through Column Address Select High 0 | 1/0 | CASH3 [CASIN] is tristated by a 50K pullup resistor internal to the WD76C10A when RSTIN at pin 17 is low. CAS Output Mode CASH3 through CASH0 operate as output signals and are designed to access the DRAM without the use of external drivers. Forcing CASH3 [CASIN] high while RSTIN is low, selects the CASH3 Output Mode. Holding CASH3 [CASIN] high as RSTIN goes high, maintains the CASH3 Output Mode. CAS Input Mode In this mode pins 12, 13 and 10 function as input pins controlled by CASIN, PE and WIRQ. CASH2, CASH1 and CASH0 (pins 9, 123 and 120) remain output signals. Forcing CASH3 [CASIN] low while RSTIN is low, selects the CAS Input Mode. Holding CASH3 [CASIN] low as RSTIN goes high, maintains the CAS Input Mode. | | | | **TABLE 3-2. SIGNAL DESCRIPTION (Continued)** | PIN
NUMBER | MNEMONIC | SIGNAL NAME | I/O | DESCRIPTION | | | | | | | |------------------------|--|---|-----------------|---|--|--|--|--|--|--| | | MEMORY AND EMS CONTROL (cont.) | | | | | | | | | | | | | | | The CASH3 [CASIN] pin may be forced low at reset with a 5K pulldown resistor or an open collector or tristate driver, driven by RSTIN. | | | | | | | | 13
10
124
121 | CASL3 [PE]
CASL2 [WIRQ]
CASL1
CASL0 | Parity Error Weitek Interrupt Column Address Select Low 3 | I/O
I/O
O | CAS Output Mode CASL3 through CASL0 are designed to access the DRAM without the use of external drivers. | | | | | | | | | | through
Column Address
Select Low 0 | | CAS Input Mode - PE When CAS Input Mode is selected by [CASIN] on pin 12, and bits 13 and 12 of Port 3872H are both 1, pin 13 becomes an input and represents a Parity Error. A parity error is indicated by the low to high transition of the PE signal. | | | | | | | | | | | | CAS Input Mode - WIRQ When CAS Input Mode is selected by [CASIN] on pin 12, pin 10 becomes an interrupt signal typically connected to IRQ13, the error signal of a Weitek coprocessor. | | | | | | | | | | | | When WIRQ goes from low to high, an IRQ13 is generated to the system. | | | | | | | | 119 | W/R | Write/Read | 0 | W/\overline{R} is output as a high signal to write to memory and output as a low signal to read from memory. W/\overline{R} should be buffered before use. | | | | | | | TABLE 3-2. SIGNAL DESCRIPTION (Continued) | PIN
NUMBER | MNEMONIC | SIGNAL NAME | I/O | DESCRIPTION | | | | | | | |-------------------------------------|----------|-----------------------------------|------|---|--|--|--|--|--|--| | POWER MANAGEMENT CONTROL | | | | | | | | | | | | 117 | PDREF | Power Down Refresh | - | PDREF is a 64 KHz signal from the WD76C20. During power down, PDREF is passed internally to pin 32 (REFRESH). | | | | | | | | 118 | PMCIN | Power Management
Control Input | | PMCIN is used to sample eight PMC inputs.
See Table 5-1 and Figure 5-1. | | | | | | | | | L | MISCELL | ANEO | ous . | | | | | | | | 5, 33,
67, 98,
99, 129
132 | Vss | | | Ground (7 pins) | | | | | | | | 2, 31,
69, 101 | Vcc | | ı | +5 Volts (4 pins) | | | | | | | TABLE 3-2. SIGNAL DESCRIPTION (Continued) # 4.0 INITIALIZATION AND CLOCKING This section describes the system Master Reset (RSTIN) operation, control of internal clock (CLK14), bus clock (SYSCLK) and the processor clock (CPUCLK). ### 4.1 POWER UP RESET The system reset signal, RSTIN, is generated externally at power up and is used to reset the entire system. When asserted, the System Controller outputs the CPURES signal to reset the Main Processor. At this time the System Controller also resets the AT bus by asserting DACKEN and MXCTL2-0 = 100, which are decoded externally as BUS_RST (DACK4), see sections 5.1, 5.1.1, Table 5-1 and Figure 5-1. An external RC circuit can be used to extend the time that RSTIN is asserted until the power supply reaches a proper level. CPURES and the AT bus reset signals are de-asserted 84 clock pulses after RSTIN reaches its switching threshold. It is during the reset period that the type of processor is detected by examining the state of the S1 signal. If S1 is asserted, the System Controller enters the 80386SX mode. If S1 is de-asserted, it enters the 80286 mode. If an 80386SX has been detected. BUSYCPU is asserted so that the processor may perform its self-test operation immediately following the power up reset. ### 4.2 CLOCKING The System Controller makes use of five clocks, CLK14, BCLK2, CPUCLK, CKA and SYSCLK. Figure 4-1 shows how the clocks interact with each other and the register used to select the clock and speed. # 4.2.1 Internal Clock (CLK14) CLK14 is an input signal from a 14.318 MHz crystal and is used for the control of the 8254 compatible timers. CLK14 is switched by the WD76C20 to 32 KHz during save and resume operations. # 4.2.2 System Bus Clock (SYSCLK) The AT bus is driven by the SYSCLK, which is derived from either the BCLK2 or CPUCLK, as selected by the Bus Timing Register at Port Address 1872H. SYSCLK is always one half or one fourth the value of the selected input clock (refer to Figure 4-1). # 4.2.3 Processor Clock (CPUCLK) The processor clock may be an output or input, depending on whether the System Controller generates CPUCLK or an external oscillator is used. At speeds higher than 50 MHz, CPUCLK may need to be generated by an external oscillator, making it possible to control the processor duty cycle more closely. At lower speeds, the System Controller may use BCLK2 to generate CPUCLK or, in a system without discrete cache, the System Controller may use CKA to generate CPUCLK. During reset, CPUCLK is an output. If the CPUCLK is initially placed in the input mode, it may be changed to the output mode by writing to the PMC Control Register at Port Address 7872H. The PMC control output 0 tristates the external clock oscillator. A processor reset (CPURES) is automatically generated during the clock switching process. When the CPUCLK is an output, it may be stopped by SCHH or SCH (CPU Clock Control Register - bits 01 or 00, at Port Address 1072H) or divided down by CLK_SPD (bits 14-12). Only the WD76C10ALP/LV supports the CPUCLK stop function. When CPUCLK is stopped, it is in phase two of the 80C286. CPUCLK is restarted by an NMI or IRQ interrupt, qualified by the normal NMI and IRQ masking circuitry or by an NMI generated PMC logic. There are two methods for slowing the processor execution rate to provide software compatibility with programs expecting a particular CPU speed, such as game software. One method is to divide the CPUCLK by a factor of 2, 4 or 8. Dividing the clock rate may also have an effect on the CPU power consumption, so CLK_SPD also provides some choices of clock duty cycle. The other method can be used when the CPUCLK is an FIGURE 4-1. CLOCK CONTROL output or input and generated by an external oscillator. In this case, EXT_HOLD is used to extend the hold request time to the processor after every refresh. In a system without a cache or external memory controller, pin 51 can be defined as Clock A (CKA) and used in place of the BCLK2. This choice is determined by SRC (CPU Clock Control Register - bit 15 at Port Address 1072H). SRC is set automatically at power up reset, if a clock source is present at pin 51 (CKA). # 4.2.4 CPU Clock (CPUCLK) Control Register Port Address 1072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|----|---------|----|-------------|----|--------|-----| | SRC | (| CLK_SP[|) | AUT_
FST | AL | T_CLK_ | SPD | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|-------|------|----|----|----|------|-----| | | EXT_F | HOLD | | | | SCHH | SCH | | | | | | | | | | | Signal
Name | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--
---------------------------| | SRC | | | | | | | 0/1 | | CLK_SPD | | | | | | | 000/001 | | AUT_FST ☆ | | | | | | | 0 | | ALT_CLK_SPD ☆ | | | | | | | 000 | | EXTEND_HOLD | | | | | | | 0000 | | Bits 03, 02 | | | | | | | None | | SCH ☆ | | | | | | | 0 | | SCHH ☆ | | | | | | | 0 | ☆ Featured only in the WD76C10ALP/LV ### Bit 15 - SRC, CPUCLK Clock Source When CPUCLK is selected as an output by bits 14 - 12, SRC determines whether it is to be driven by BCLK2 or CKA. ### **Default Value** SRC is set to 0 and BLCK2 is used as the CPUCLK clock source if CKA does not change state within 64 clocks after RSTIN is de-asserted. SRC is set to 1 and CKA is used as the CPUCLK clock source if CKA changes state within 64 clocks after RSTIN is de-asserted, or when operating in the 80486 Mode. The 80486 Mode is selected by holding SDT/R low during RSTIN transition from low to high. SRC = 0 - BCK2 is the CPUCLK source. SRC = 1 - CKA is the CPUCLK source. ## Bits 14-12 - CLK SPD, CPUCLK Clock Speed CLK SPD determines whether CPUCLK is to be an input or output. When selecting CPUCLK as an output, CLK SPD also determines the divisor and duty cycle values. The CLK_SPD *defaults to 000 or 001 at power up. Changing the CPUCLK from an input (CLK_SPD = 000) to an output automatically asserts the processor reset (CPURES) and the CPUCLK Driver Enable from the PMC latch is forced low, tristating the external clock oscillator. One ms later, CPUCLK becomes active as an output. One ms and 16 CPUCLK clocks (or one ms) later, the CPURES is de-asserted. This method allows switching the clock source while tolerating glitches in the CPUCLK, generated due to the clock driver not being able to synchronously switch the clock. The one ms and 16 clocks or one ms. selection is made through the Diagnostic Register at Port 9872H. CLK_SPD 14 13 12 - 0 0 CPUCLK pin is an input, speed determined by external driving source (* Default value). - 0 0 1 CPUCLK pin is an output, source divided by 1 (* Default value). - 0 1 0 OUT, source divided by 2. - 0 1 1 OUT, source divided by 4, 25% duty cycle. - 1 0 0 OUT, source divided by 4, 75% duty cycle. - 1 0 1 OUT, source divided by 8, 12% duty cycle. - 1 1 0 OUT, source divided by 8, 88% duty cycle. - * Based upon the value of CLOCK_DIR_IN at power up (refer to Table 5-1, Figure 5-1 and section 5.1.2). # Bit 11 - AUT_FST, Automatic Processor Clock Speed Switching Featured only in the WD76C10ALP/LV When automatic CPUCLK switching is enabled. the processor clock is switched between high and low clock speeds, depending upon activity. If the external TURBO signal is de-asserted when auto switching is enabled, the CPUCLK is normally at the alternate clock or slower When speedup activity occurs, the rate. clock speed switches to the nominal clock rate, normally the higher, for a period of time determined by Table 4-2. When no further activity occurs, the clock speed switches back down to the alternate speed. If the external TURBO signal is asserted, the clock rate is set to the nominal clock rate specified by the CLK SPD field. A halt state also causes the clock rate to slow, unless the SCHH or SCH field is programmed to stop the clock. The clock restarts or returns to the faster rate when any interrupt occurs. Table 4-2 shows the activity that triggers a higher clock rate. ### AUT FST = 0 - Automatic Clock Switching is disabled. TURBO determines whether CLK_SPD or ALT_CLK_SPD is to be used as the CPU clock. Refer to Table 4-1 for the appropriate selection, as determined by TURBO. ### AUT FST = 1 - Automatic CPUCLK Switching between CLK_SPD and ALT_CLK_SPD is enabled when TURBO is de-asserted. CLK_SPD is selected when TURBO is asserted. Refer to Table 4-1. The EXT_HOLD field must be 0000 when AUT_FST = 1. | TURBO | TURBO AUTO_FST CPU CLOCK SPEED | | | | | | | | |------------------|--------------------------------|---|--|--|--|--|--|--| | 0
0
1
1 | 0
1
0 | CLK_SPD
CLK_SPD
ALT_CLK_SPD
CLK_SPD or ALT_CLK_SPD | | | | | | | TABLE 4-1. CLOCK SWITCH SELECTION | SPEEDUP ACTIVITY | TIME PERIOD | |--|---| | Hard disk interrupt,
Hard disk or numeric
processor I/O,
SCSI, floppy, port B I/O | 1 second | | Keyboard interrupt | 1 second or
until next video
access | | Video access or processor reset | 1 millisecond | | Any NMI or IRQ interrupt, except keyboard or hard disk | 1 millisecond | **TABLE 4-2. SPEEDUP ACTIVITY** # Bits 10-08 - ALT_CLK_SPD, Alternate Clock Speed Featured only in the WD76C10ALP/LV ALT_CLK_SPD 10 09 08 - 0 0 CPUCLK unchanged from CLK SPD (Default value). - 0 0 1 Equals source. - 0 1 0 Equals source div by 2. - 0 1 1 Equals source div by 4, 25% duty cycle. - 1 0 0 Equals source div by 4, 75% duty cycle. - 1 0 1 Equals source div by 8, 12% duty cycle. - 1 1 0 Equals source div by 8, 88% duty cycle. # Bits 07-04 - EXT_HOLD, Extend Processor Hold Processor execution may be slowed for software compatibility by extending the processor hold request after refresh cycles. If the external TURBO signal is asserted, EXT_HOLD is forced to 0000. When the external TURBO signal is de-asserted, the EXT_HOLD returns to its programmed value, allowing an external TURBO switch to slow the processing speed. Ø. EXT_HOLD 07 06 05 04 0 0 0 0 - No hold extension, (Default value). 0 0 1 - 1 μ s hold after refresh. 0 0 1 0 - 2 μs hold after refresh. 0 0 1 1 - 3 μs hold after refresh. 0 1 0 0 - 4 μ s hold after refresh. 1 1 0 1 - 13 μs hold after refresh. 1 1 1 0 - 14 us hold after refresh. 1 1 1 1 - 15 μs hold after refresh. Bits 03-02 - Reserved for future use, must be set to zero **Bit 01 - SCHH**, Stop CPUCLK at next Halt and Hold. Featured only in the WD76C10ALP/LV SCHH is applicable only for 80C286 or Am386SXL type processors in which the clock may be stopped. This option should only be used when the clock source is the WD76C10ALP/LV rather than an external oscillator. Any unmasked processor interrupt, or NMI, restarts the CPUCLK. The SCHH bit remains set and the clock will be stopped again if a halt and hold condition is detected. The refresh rate may be as programmed by the Refresh Timer at Port Address 041H, or at the slower rate selected by the Refresh Control Register at Port 2072H. SCHH = 0 - Normal processor clock (default value). SCHH = 1 - Stop processor clock at next halt and hold cycle. **Bit 00 - SCH,** Stop CPUCLK at next Hold Featured only in the WD76C10ALP/LV SCH is applicable only for 80C286 or Am386SXL type processors in which the clock may be stopped. This option should only be used when the clock source is the WD76C10ALP/LV instead of an external oscillator. Any unmasked processor interrupt, or NMI, restarts the CPUCLK and sets the SCH bit to zero. DRAM refresh continues while the processor clock is stopped. The refresh rate may be as programmed by the Refresh Timer at Port Address 041H, or at the slower rate as selected by the Refresh Control Register at Port 2072H. SCH = 0 - Normal processor clock (Default value). SCH = 1 - Stop processor clock at next processor hold cycle. ### **5.0 AT BUS** This section describes the logic required to control the interrupts and timing between the AT bus and the System Controller. ### 5.1 INTERRUPT MULTIPLEXING To reduce the number of pins required, the System Controller generates and outputs the MXCTL2-0 and DACKEN signals used by external logic to multiplex the DACKs, DRQs and IRQs down to single inputs. See Figure 5-1. MXCTL2-0 are set to 100 during a System Reset (RSTIN) to provide a Bus Reset (BUS_RST), and to determine the ROM width (ROM8) and processor clock (CPUCLK) pin direction. See Table 5-1. ### 5.1.1 Data Acknowledge DACK7-5, 3-0 An external 74F138, 3 to 8 Decoder for desktop systems, or 74ACT138, 3 to 8 Decoder for laptop systems, uses MXCTL2-0 to generate the DACK7-5 and DACK3-0, which are applied to the AT bus. The unused combination develops the AT BUS_RST (bus reset). The decoder is enabled by the DACKEN signal from the System Controller. ### 5.1.2 Data Request DRQIN The MXCTL2-0 signals are also used by an external 74F151, 8 to 1 Multiplexer for desktop systems, or 74ACT151, 8 to 1 Multiplexer for laptop systems, to develop the DRQIN signal received by the System Controller. The MXCLT2-0 signals are held stable during DMA transfers. Immediately following a System Reset (RSTIN), DRQIN input 100 is sampled. If low, the processor clock (CPUCLK) pin is an output. If high, the CPUCLK starts as an output but is switched to an input shortly after RSTIN is de-asserted. See Table 5-1 and Figure 5-1. This controls the default value of CLK_SPD in the CPU Clock (CPUCLK) Control Register at Port 1072H. See section 4.2.4. ### 5.1.3 Interrupt Requests The Interrupt Requests are multiplexed by the WD76C30. The multiplexing is performed as shown in Table 5-1 and Figure 5-1, and provides the System Controller with the IRQSET1 and IRQSET0 signals. DRQIN, IRQSET1 and IRQSET0 are sampled by the System Controller at every rising edge of SYSCLK2. This allows all DMA, DRQ and IRQ lines to be sampled within 500 ns, when SYSCLK is 8 MHz. The ROM8 input is sampled at the completion of a RSTIN to determine ROM data width (ROM8). The RESCPU and A20GT inputs come from the 8042 keyboard controller. # 5.1.4 AT Address Bus, Data Bus And Terminal Count (TC) Signal The AT Address Bus SA19-00 and BHE are generated from A19-00 with external latches and tristate buffers. The AT Data Bus SD15-00 uses D15-00 and external bidirectional buffers. The TC signal is generated by an external gate when DACKEN and $\overline{\text{CSEN}}$ are both asserted. # 5.2 POWER MANAGEMENT CONTROL PMCIN The power control signals are placed on the PMCIN input pin by way of an eight to one multiplexer, controlled by the MXCTL2-0 signals from the System Controller. In the WD76C10A, the TURBO
signal may be connected directly to PMCIN. In the WD76C10ALP/LV, the external 8:1 MUX is always used. See Figure 5-1. Bits 14 and 13 of Port 1872H (Section 5.3) control the power down of the processor and peripheral. **%** | MXCTL
2 1 0 | DRQIN | DACKEN | IRQSET0 | IRQSET1 | PMCIN | |----------------|------------------|---------|---------|---------|---------------------| | 000 | DRQ0 | DACK0 | IRQ8 | IRQ12 | TURBO | | 001 | DRQ1 | DACK1 | IRQ9 | IRQ1 | PROC_PWR_GOOD | | 010 | DRQ2 | DACK2 | IRQ10 | A20GT | LCL RQ or USER DEF. | | 011 | DRQ3 | DACK3 | IRQ11 | IRQ3 | USER DEF. | | 100 | CLOCK_
DIR IN | BUS_RST | ROM8 | IRQ4 | USER DEF. | | 101 | DRQ5 | DACK5 | RESCPU | IRQ5 | USER DEF. | | 110 | DRQ6 | DACK6 | IRQ14 | IRQ6 | USER DEF. | | 111 | DRQ7 | DACK7 | IRQ15 | IRQ7 | USER DEF. | | | | | | | • | TABLE 5-1. MXCTL2 - 0 DECODING FIGURE 5-1. MXCTL2-0 MULTIPLEXING **//** 3/19/92 5-27 ### 5.3 NUMERIC PROCESSOR # 5.3.1 Numeric Processor Busy, Bus Timing, And Power Down Register Port Address 1872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |------------|------------|-----|----|-----|------|-----|------| | NP_
BSY | PRO_
PD | FPD | | BUS | _MOD | BRC | _DEL | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|-------|-----------|-----------|----|-----|----|-----| | BAH | C_DEL | WSI
16 | WSM
16 | WS | 818 | w | SM8 | | Signal
Name | | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|---|---|--|---------------------------| | NP_BSY . | | | | | | | | | 0 | | PRO_PD ☆ | | | | | | | | | 0 | | Bit 12 | | | | | | | | | None | | FPD ☆ | | | | | | | | | 0 | | BUS_MOD | | | | | | | | | 00 | | BRQ_DEL | | | | | | | | | 00 | | BAK_DEL | | | | | | | | | 11 | | WSI_16 . | | | | | | | - | | 0 | | WSM_16 | | | | | | | | | 0 | | WS18 | | | | | | | | | 10 | | WSM8 | | | | | | ٠ | | | 10 | # ☆ Featured only in the WD76C10ALP/LV Bit 15 - NP_BSY, Numeric Processor Busy NP_BSY must be set for systems using an 80286 CPU where the CPU runs faster than the AT bus. This causes BUSYCPU to be asserted early during any CPU write to I/O ports F8H through FFH. BUSYCPU is deasserted at the end of the I/O write if the coprocessor has not asserted its own NPBUSY by this time. Early assertion of BUSYCPU is necessary to prevent a loss of synchronization between the 80286 and 80287. Bit 15 is ignored when an 80386SX is used. NP BSY = 0 - Force an early BUSYCPU for I/O writes to coprocessor addresses F8H through FFH. (Default value). NP_BSY = 1 -____ Normal BUSYCPU assertion. # Bit 14 - PRO_PD, Processor Power Down Featured only in the WD76C10ALP/LV When PRO_PD has been changed from zero to one, a power down sequence for the 80286 or 80386SX processor will be initiated at the next Halt State and the expansion bus will continue to operate normally. The processor should not be powered down if DMA cycles are likely to occur. When PRO_PD is set and a halt state occurs, the processor inputs are ignored and appear to the WD76C10ALP/LV to be in the passive state. The input buffers connected to the processor signals do not consume power even if the processor signals do not reach ground. The internal pullups on inputs connecting to the processor are disabled to reduce power. PMC output 5 from Port 7072H (Processor Power Down) is set. This can be used to control the power transistor and turn off the power to the processor. All outputs going to the processor will be tristated. When an unmasked interrupt, DRQ or NMI occurs, PMC output 5 is reset, re-powering the processor. A voltage comparator should be used to generate a Processor Power Good (PPG) signal. The PPG signal is sampled by bit 01 of the PMC Input Register at Port Address 8872H. When PPG is high, the outputs to the processor are driven and the processor is reset. PRO_PD = 0 Normal processor power (Default value). $PRO_PD = 1 -$ Start processor power down sequence. # Bit 13 - FPD, Full Power Down Featured only in the WD76C10ALP/LV When FPD equals one and a halt state occurs, all processor and peripheral outputs except the PMC, DRAM controls and RA/ED bus are tristated and all inputs except RSTIN, CLK14 and PMC inputs are ignored. CAS before RAS refresh will be performed if enabled by Port 2072H. All circuitry except the PMC and refresh timer logic is stopped and PMC output 7 (Full Power Down) from Port 7072H is set. This enables the powering chips except DRAM, of all WD76C10ALP/LV, WD76C20, WD76C30 and WD90C20. The WD76C20 provides PDREF 5 (a 64 KHz refresh signal on input pin 117) during the power down mode. This signal is then gated by the System Controller to the REFRESH signal as an output on pin 32. When a PMC interrupt occurs, PMC output 7 at Port 7072H is reset, enabling the power up sequence. A CPURES and BUS_RST (see Figure 5-1) are asserted until the PMCIN 01 PPG at Port 8872H input is high. The tristated outputs are restored and the inputs are no longer masked. FPD remains a 1 until replaced by a 0. FPD = 0 - No power down (Default value). FPD = 1 - Full power down and in standby mode. **Bit 12 -** Ignored by the System Controller, may be 0 or 1. # Bits 11, 10 - BUS_MOD, Bus Mode The System Controller defaults to mode 00 at power up. Therefore, the bus clock (SYSCLK) is controlled by BCLK2 and is asynchronous with CPUCLK (see Figure 4-1). This allows CPUCLK to be faster than SYSCLK and vary without affecting the bus timing. Normally, BCLK2 is either 16 MHz or 32 MHz. SYSCLK is divided by two regardless of the mode selected by BUS MOD, and if BCLK2 is 16 MHz at power up, it is divided by two again, providing a SYSCLK clock rate of 4 MHz until programmed to mode 01. In mode 01, the SYSCLK rate is 8 MHz for a BCLK2 of 16 MHz. Both mode 00 and 01 are asynchronous and require the appropriate synchronization delays to be established by BRQ_DEL and BAK_DEL of this register. In modes 10 and 11, the SYSCLK is synchronous with the CPUCLK and synchronization delays are not needed. The bus clock mode may need to be reprogrammed when the processor clock changes. Refer to Table 5-2 for the appropriate choices according to the CPU type and speed and AT bus speed employed. BUS_MOD 11 10 - 0 0 Bus logic uses BCLK2 divided by 2 (Default value). - 0 1 Bus logic uses BCLK2 divided by 1. - 1 0 Bus logic uses CPUCLK divided by 2. - 1 1 Bus logic uses CPUCLK divided by 1. # Bits 09, 08 - BRQ_DEL, Bus Request Delay An asynchronous AT bus state machine requires a synchronization delay at the start of the bus cycle. Refer to Table 5-2 for the appropriate choices according to the CPU type and speed and AT bus speed employed. BRQ_DEL 09 08 - 0 0 1 Bus clock delay (Default value) - 0 1 .5 Bus clock delay. - 1 0 No clock delay. - 1 1 Reserved. # Bits 07, 06 - BAK_DEL, Bus Acknowledge Delay The AT bus state machine has several options available for signaling the CPU control logic that an AT bus cycle has completed. The timing of this signal determines AT bus hold time for the data and address. Proper timing is determined by the CPU speed, AT bus speed and whether they are synchronous or asynchronous. The delay settings listed here are referenced to the trailing edge of the AT command strobe. Refer to Table 5-2 for the appropriate choices according to the CPU type and speed and AT bus speed employed. BAK_DEL 07 06 0 0 - No delay. 0 1 - -.5 Bus clock delay. 1 0 - -1 Bus clock delay. 1 1 - +.5 Bus clock delay (Default value) Bit 05 - WSI16, Wait State for 16 bit I/0 WSI16 = 0 - 1 Bus clock wait state (Default value). WS116 = 1 - 2 Bus clock wait state Bit 04 - WSM16, Wait State for 16 bit Memory WSM16 = 0 - 1 Bus clock wait state (Default value). WSM16 = 1 - 2 Bus clock wait state. Bits 03, 02 - WSI8, Wait State for 8 bit I/O WS₁₈ 03 02 0 0 - 2 Bus clock wait state. 0 1 - 3 Bus clock wait state. 1 0 - 4 Bus clock wait state (Default value). 1 1 - 5 Bus clock wait state. Bits 01, 00 - WSM8, Wait State for 8 bit Memory WSM8 01 00 0 0 - 2 Bus clock wait state. 0 1 - 3 Bus clock wait state. 1 0 - 4 Bus clock wait state (Default value). 1 1 - 5 Bus clock wait state. # 5.3.2 Numeric Processor Busy (NPBUSY) Reset Port Address 0F0H - Write only Writing any data to this port resets the 80287 busy signal (de-asserts NPBUSY). The data is ignored. | Signal
Name | | | | | | | | e <u>fault</u>
it RSTIN | |----------------|--|--|--|--|--|--|--|----------------------------| | All signals | | | | | | | | None | # 5.3.3 Numeric Processor Reset (NPRST) Port Address 0F1H - Write only Writing any data to this port asserts NPRST and resets the 80287. The main processor is wait stated for 128 clocks when writing to this port. The data is ignored. | Signal
Name | | | | | | | | _ | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---|---------------------------| | All signals | | | | | | | | | None | | CPU
TYPE | CPU
SPEED | AT BUS
SPEED | AT BUS
MODE | BUS
MOD | BRQ
DEL | BAK
DEL | |-------------|--------------|-----------------|----------------|------------|------------|------------| | 80286 | 25 MHz | 8 MHz | ASYNC | οx | 00 | 00 | | | 20 MHz | 8 MHz | ASYNC | 0X | 01 | 01 | | | 20 MHz | 10 MHz | SYNC | 10 | 10 | 10 | | | 16 MHz | 8 MHz | SYNC | 10 | 10 | 10 | | | 12.5 MHz | 8 MHz | ASYNC | ΟX | 01 | 10 | | | 10 MHz | 10 MHz | SYNC | 11 | 10 | 10 | | | 8 MHz | 8 MHz | SYNC | 11 | 10 | 10 | | 80386SX | 25 MHz | 8 MHz | ASYNC | 0X | 01 | 00 | | | 20 MHz | 10 MHz | SYNC | 10 | 10 | 10 | | | 20 MHz | 8 MHz | ASYNC | 0X | 01 | 00 | | | 16 MHz | 8 MHz | SYNC | 10 | 10 | 10 | | | 12.5 MHz | 8 MHz | ASYNC | 0X | 01 | 10 | **TABLE 5-2. BUS TIMING PARAMETERS** ### 5.4 DMA CONTROL The System Controller contains two DMA controllers. DMA controller #1 is in the I/O address space from 000H to 00FH and is used for 8-bit transfers. DMA controller #2 is in the I/O space from 0C0H to 0DEH and is used for 16-bit transfers. Channel 0 of DMA controller #2 is used to cascade DMA controller #1. Table 5-4 identifies the Controller/Channel location and function.
 AT Bus
DMA Channel | DMA
Controller | Transfer Type | |-----------------------|-------------------|-------------------------| | О | #1 Channel 0 | 8-bit | | 1 | #1 Channel 1 | 8-bit | | 2 | #1 Channel 2 | 8-bit | | 3 | #1 Channel 3 | 8-bit | | 4 | #2 Channel 0 | Cascade DMA
Cont. #1 | | 5 | #2 Channel 1 | 16-bit | | 6 | #2 Channel 2 | 16-bit | | 7 | #2 Channel 3 | 16-bit | **TABLE 5-3. DMA TRANSFER TYPES** ### 5.4.1 Transfer Modes Each DMA channel may be programmed in Single Transfer Mode, Block Transfer Mode, Demand Transfer Mode or Cascade Mode. Refer to Section 5.4.12 - Mode Register, bits 7 and 6 for programming. ### Demand Mode - 00 In demand mode, a transfer continues to take place until DRQ is de-asserted or a Terminal Count (TC) is reached. If the DRQ is de-asserted, the bus will be released. If DRQ is re-asserted, the transfer will resume. The address and word count behave as in single mode. ### Single Transfer Mode - 01 In single transfer mode, the channel makes one transfer for each request. The word count is decremented, and the address is incremented or decremented at the end of each transfer. When the word count goes from 0000H to FFFFH, a Terminal Count (TC) is generated. To start a transfer, the DRQ should be asserted until a DACK is received. If the DRQ is asserted through the cycle, only one transfer will take place. The DRQ must be de-asserted and then re-asserted to start another transfer. The bus is released between transfers. ### **Block Transfer Mode - 10** A transfer is started in block mode by a DRQ and continues until a TC is reached. The DRQ should be held active until DACK is asserted. Block mode should be used with caution since refresh is locked out. The address and word count behave as in single mode. ### Cascade Mode - 11 Cascade mode is used to cascade DMA controller #2 to DMA controller #1, and for bus master transfers. A channel in cascade mode gets the bus when a DRQ is asserted, but the word count and address are ignored. The channel holds the bus until DRQ is deasserted. The IOR, IOW, MEMR and MEMW signals must be generated by the bus master device. The addresses from the System Controller are tristated when the MASTER signal is asserted. # 5.4.2 Transfer Types There are three types of transfers: verify, write and read. Refer to Section 5.4.12 - Mode Register, bits 3 and 2 for programming. ### Verify - 00 A verify transfer is a pseudo transfer that does not generate \overline{IOR} , \overline{IOW} , \overline{MEMR} or \overline{MEMW} signals. ### Write - 01 A write transfers data from an I/O device to memory. ### **Read - 10** A read transfers data from memory to an I/O device. ### 5.4.3 Autoinitialize A channel may be programmed to autoinitialize for any transfer type. In this mode, when a TC is reached, the channel is loaded with the original word count and address and is ready to start another transfer. Refer to Section 5.4.12 - Mode Register, bit 4 for programming. ## 5.4.4 Priority 5-32 Each DMA controller has two types of priority, fixed and rotating. For fixed priority, channel 0 has the highest priority and channel 3 has the lowest. In rotating priority, the last channel to be serviced has the lowest priority. ### 5.4.5 Extended Write In normal timing, the MEMR or IOR pulse is two clock cycles and the MEMW or IOW is one clock cycle. If extended write is selected, the MEMW or IOW will be the same as the MEMR or IOR. # 5.4.6 Base and Current Address Each channel has a 16-bit base and current address register. The current address register is loaded from the base register when the base register is loaded or when in autoinitialize mode. The current address register is incremented or decremented during a transfer. Addresses are driven to the bus while REFRESH is asserted, indicating a refresh cycle. Only address bits A23-A16 (from the page register) and bits A10-A0 (from the refresh counter) are meaningful during refresh. The address counter is incremented on the rising edge of REFRESH. ### 5.4.7 Base and Current Word Count Each channel has a 16-bit base and current word count register. The current word count register is loaded from the base register when the base register is loaded or when in autoinitialize mode. The current word count is decremented during a transfer. | I/O Address
Hex | Read/Write | DMA Controller | Function | |--------------------|----------------|---|--| | 000 | Read/Write | 1 | Channel 0 Address | | 001 | Read/Write | 1 | Channel 0 Word Count | | 002 | Read/Write | 1 | Channel 1 Address | | 003 | Read/Write | 1 | Channel 1 Word Count | | 004 | Read/Write | 1 | Channel 2 Address | | 005 | Read/Write | 1 | Channel 2 Word Count | | 006 | Read/Write | 1 | Channel 3 Address | | 007 | Read/Write | 1 | Channel 3 Word Count | | 008 | Read | 1 | Status | | 008 | Write | 1 | Command Register | | 009 | Write | 1 | Request Register | | 00A
00B | Write | 1 | Single Mask | | 00C | Write | 1 | Mode Register | | 00C | Write
Write | 1 | Clear Pointer | | 00E | Write | 1 | Master Clear | | 00E
00F | Write | 1 | Clear Mask | | 080-09F | vviile | 1 | Mask All | | 000-091
0C0 | Read/Write | | DMA Page Register | | 0C2 | Read/Write | 2 2 | Channel 0 Address | | 0C4 | Read/Write | | Channel 0 Word Count | | 0C6 | Read/Write | 2 | Channel 1 Address Channel 1 Word Count | | 0C8 | Read/Write | 2 | Channel 2 Address | | 0CA | Read/Write | 2 | Channel 2 Word Count | | 0CC | Read/Write | 2 | Channel 3 Address | | 0CE | Read/Write | 2 | Channel 3 Word Count | | 0D0 | Read | 2 | Status | | 0D0 | Write | 2 | Command Register | | 0D2 | Write | 2 | Request Register | | 0D4 | Write | 2 | Single Mask | | 0D6 | Write | $\bar{2}$ | Mode Register | | 0D8 | Write | 2 | Clear Pointer | | 0DA | Write | 2 | Master Clear | | 0DC | Write | 2 | Clear Mask | | 0DE | Write | 2 | Mask All | | B872 | Read | 2
1, 2 | DMA Mode Shadow | TABLE 5-4. DMA CONTROLLER/CHANNEL FUNCTION MAP # 5.4.8 Command Register Port Addresses 008H, 0D0H - Write only The Command Register is reset by RSTIN or by writing any data to Port Address 00DH or 0DAH (see section 5.4.14). | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|-----------|------------|---|------------|---|---| | | | EX_
WR | RO_
PRI | 0 | CO_
DIS | | | | Signal
Name | | | | | | | | Default
At RSTIN | |----------------|--|--|--|--|--|--|--|---------------------| | All signals | | | | | | | | . 0 | Bits 7, 6 - Not used, state is ignored Bit 5 - EX WR, Extended Write Bit 4 - RO PRI, Rotating Priority Bit 3 - Must be set to 0 Bit 2 - CO DIS, Controller Disabled Bits1, 0 - Not used, state is ignored ### 5.4.9 Status Register Port Addresses 008H, 0D0H - Read only Bits 3-0 are reset by RSTIN, writing any data to Port Address 00DH or 0DAH (see section 5.4.14) or when read by a Status Read Command. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|-----| | CH3_ | CH2_ | CH1_ | CH0_ | CH3_ | CH2_ | CH1_ | CH0 | | DRQ | DRQ | DRQ | DRQ | TC | TC | TC | TC | | Signal
Name | De <u>fault</u>
At RSTIN | |--------------------------------|-----------------------------| | CH3_DRQ - CH0_DRQ | | | Bit 7 - CH3_DRQ, Channel 3 DRQ | active | Bit 6 - CH2 DRQ, Channel 2 DRQ active Bit 5 - CH1_DRQ, Channel 1 DRQ active Bit 4 - CH0_DRQ, Channel 0 DRQ active Bit 3 - CH3_TC, Channel 3 has reached TC Bit 2 - CH2 TC, Channel 2 has reached TC Bit 1 - CH1_TC, Channel 1 has reached TC Bit 0 - CH0 TC, Channel 0 has reached TC ### 5.4.10 Request Register Port Addresses 009H, 0D2H - Write only Each channel may be started by a software request. These requests are not affected by the Mask Register. The Request Register is reset by RSTIN or by writing any data to Port Address 00DH or 0DAH (see section 5.4.14). | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|---|-----|----|------------| | | | | | | CRQ | CH | ⊣ # | | | | | | | , | | | | Signal
Name | | | | | | | | e <u>fault</u>
it RSTIN | |----------------|--|--|--|--|--|--|--|----------------------------| | All signals | | | | | | | | 0 | Bits 7-3 - Not used, state is ignored Bit 2 - CRQ, Channel Requested Bits 1, 0 - CH#, Channel Number Requested CH# 1 0 0 0 - Channel 0 0 1 - Channel 1 1 0 - Channel 2 1 1 - Channel 3 ### 5.4.11 Mask Registers Each channel has a mask bit associated with it. If it is set, the channel is disabled. The bits may be set or reset by software, or set by a Terminal Count (TC) if the channel is not in autoinitialize mode. All the bits are set by a RSTIN, or by writing any data to Port Address 00DH or 0DAH (see section 5.4.14). # 5 # 5.4.11.1 Single Mask Register Port Addresses 00AH, 0D4H - Write only | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|---|-----------|----|----| | | | | | | SE_
MA | CH | H# | Bits 7-3 - Not used, state is ignored Bit 2 - SE MA, Set Mask SE_MA = 0 -Clear Mask SE_MA = 1 -Set Mask Bits 1, 0 - CH#, Channel Number Requested CH# 1 0 0 0 - Channel 0 0 1 - Channel 1 1 0 - Channel 2 1 1 - Channel 3 # 5.4.11.2 Clear Mask Register Port Addresses 00EH, 0DCH - Write only Writing any data to this register resets all Masks. The data is ignored. Signal Default Name At RSTIN All signals None Bits 7-0 - Not used, state is ignored # 5.4.11.3 Mask Multiple Register Port Addresses 00FH, 0DEH - Write only | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|------------|------------|------------|------------| | | | | | CH3_
MA | CH2_
MA | CH1_
MA | CH0_
MA | Signal Default Name At RSTIN Bits 7-4 - Not used, state is ignored Bit 3 - CH3_MA, Channel 3 Mask Bit 2 - CH2_MA, Channel 2 Mask Bit 1 - CH1_MA, Channel 1 Mask Bit 0 - CH0 MA, Channel 0 Mask # 5.4.12 Mode Register All signals Port Addresses 00BH, 0D6H - Write only This register selects the mode and type of transfer for each channel. Refer to sections 5.4.1 through 5.4.1.4 for a description of the Transfer Modes, sections
5.4.2 through 5.4.2.3 for a description of the Transfer Types and section 5.4.3 for a description of Autoinitialize. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|-----|------|----|-----|----|-----| | TF | A_ | AD_ | AUTO | TF | RA_ | CI | HA# | | MC | DD | DEC | | TY | 'P | SI | EL | Signal
NameDefault
At RSTINAll signalsNone Bits 7, 6 - TRA_MOD, Transfer Mode TRA MOD 7 6 0 0 - Demand 0 1 - Single 1 0 - Block 1 - Cascade # Bit 5 - AD DEC, Address Decrement AD DEC = 0 Address is incremented. AD DEC = 1 Address is decremented after each DMA cycle. ### Bit 4 - AUTO, Autoinitialize AUTO = 0 Autoinitialization is disabled. AUTO = 1 Autoinitialization is enabled. # Bits 3, 2 - TRA_TYP, Transfer Type TRA_TYP 3 0 0 - Verify 0 1 - Write 1 0 - Read 1 1 - Not used ### Bits 1, 0 - CHA# SEL, Channel Select CHA# SEL 1 0 0 0 - Channel 0 0 1 - Channel 1 1 0 - Channel 2 1 1 - Channel 3 # 5.4.13 Clear Pointer Register Port Addresses 00CH, 0D8H - Write only Each DMA controller has a pointer flip flop that indicates which half of the word count or address is being accessed. Each time a word count or address is written or read, the pointer changes state. When the flip flop is reset, bits 7-0 are accessed, and when it is set, bits 15-8 are accessed. The pointer is reset by writing any data to the Clear Pointer Register, or to Port Address 00DH or 0DAH (see section 5.4.14). In either case, the data is ignored. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|---|---|---|---| | | 1 | • | | | | | | | | | | | | | | | | 1 | | | | | | | | | Signal
Name | | | | | | | | e <u>fault</u>
it RSTIN | |----------------|--|--|--|--|--|--|--|----------------------------| | All signals | | | | | | | | None | Bits 7-0 - Not used, state is ignored ### 5.4.14 Master Clear Register Port Addresses 00DH, 0DAH - Write only Writing any data to the Master Clear Register will: - Clear the Command Register - 2. Clear the Status Register - 3. Clear the Request Register - 4. Set the Mask Register - 5. Clear the Pointer Flip-Flop All data is ignored. | Signal | De <u>fault</u> | |-------------|-----------------| | Name | At RSTIN | | All signals | None None | Bits 7-0 - Not used, state is ignored ## 5.4.15 DMA Mode Shadow Register Port Address B872H - Read only This register is particularly useful in laptop applications by allowing the suspend/resume software to restore correct status to on-board devices. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|----|----|------|------|----|----|----| | | | | DMA1 | MODE | | | | | | | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | | | | | |-----------|----|----|----|----|----|----|----|--|--|--|--| | DMA2 MODE | Signal
Name | De <u>fault</u>
At RSTIN | |----------------|-----------------------------| | DMA1 MODE |
0 | | DMA 2 MODE | 0 | #### Bits 15-08 - DMA1 MODE DMA 1 MODE contains a copy of the data written into the DMA1 Mode Register located at I/O address 00BH (see Table 5-4). ### Bits 07-00 - DMA 2 MODE DMA 2 MODE contains a copy of the data written into the DMA2 Mode Register located at I/O address 0D6H (see Table 5-4). ## 5.5 SYSTEM CONTROLLER 8259 INTERRUPT CONTROLLERS The System Controller contains two interrupt controllers. Interrupt controller #1 is in the I/O space of 020H to 021H and interrupt controller #2 is in the I/O space of 0A0H to 0A1H. Interrupt 2 of interrupt controller #1 is used to cascade interrupt controller #2. ### 5.5.1 Interrupt Sequence When an interrupt arrives from a peripheral device, the interrupt may only be programmed to be edge sensitive. In this mode, the interrupt must go low and high for each interrupt. The interrupt sets the appropriate bit in the Interrupt Request Register (IRR). | System
Interrupt | Interrupt
Controller | Use | |---------------------|-------------------------|--------------| | 0 | #1 Level 0 | Timer | | 1 | #1 Level 1 | Keyboard | | 2 | #1 Level 2 | Cascade | | 3-7 | #1 Level 3 - 7 | AT Bus | | 8 | #2 Level 0 | RTC | | 9-12 | #2 Level 1-4 | AT Bus | | 13 | #2 Level 5 | Co-Processor | | 14-15 | #2 Level 6-7 | AT Bus | #### **TABLE 5-5. INTERRUPT SEQUENCE** 2. If the interrupt has not been masked off, it is passed to the priority circuit. There are three types of priority. #### Fixed In fixed priority, interrupt 0 has the highest priority and interrupt 7 has the lowest. ### **Automatic Rotation** In automatic rotation, the last interrupt serviced has the lowest priority. ## **Specific Rotation** In this mode, the lowest priority interrupt can be set by software. The next interrupt will have the highest priority. For example if interrupt 4 is set to the lowest level, the priority will be 5, 6, 7, 0, 1, 2, 3 and 4. - 3. The interrupt controller sends an IRQ to the CPU. - 4. The CPU responds with an INTA cycle that freezes priority. - 5. The CPU sends another INTA, causing the interrupt controller to send a vector to the CPU, set the appropriate bit in the Interrupt Service Register (ISR) and clear the corresponding bit in the IRR, if it is in the edge triggered mode. As long as the bit in the ISR is set, all interrupts at the same level or lower are inhibited unless programmed for special mask mode. **//** WD76C10A/LP/LV AT BUS 6. An EOI is issued to end the interrupt. This clears the appropriate bit in the Interrupt Service Register. For the slave adapter (interrupt controller #2), two EOI's must be issued. There are three types of EOI's, Specific, Nonspecific and Automatic. ## **Specific** An EOI is issued by software for a specific interrupt. ## Non-Specific A non-specific EOI is also issued by software. The hardware generates an EOI for the highest level active interrupt. #### **Automatic** An automatic EOI is a non-specific EOI that is caused by the second INTA. The interrupt controllers may also be operated in a polled mode. In this mode, the CPU is set to disable the interrupt input. In this case, software must issue a poll command. This takes the place of an INTA, and the software can then read the interrupt level to determine the interrupt to be serviced. When cascading is used and the slave has issued an interrupt, other interrupts from the slave are locked out. If it is desired to preserve priority in the slave (i.e., allow higher interrupts to occur when a lower interrupt is being serviced), Special Fully Nested Mode should be programmed in the master. After a non-specific EOI has been sent to the slave, the ISR should be checked to see whether any other interrupts are active. If there are no interrupts active, a non-specific EOI should be sent to the master. | Interrupt
Controller | Address
Hex | Function | Read/Write | |---|----------------|-----------------|------------| | 1 | 020 | ICW1 | Write | | 1 | 021 | ICW2 | Write | | 1 | 021 | ICW3 | Write | | 1 | 021 | ICW4 | Write | | 1 | 021 | OCW1 | Write | | 1 | 020 | OCW2 | Write | | 1 | 020 | OCM3 | Write | | 1 | 020 | IRR | Read | | 1 | 020 | ISR | Read | | 1 | 021 | Mask | Read | | 1 | 020, 021 | Interrupt Level | Read | | 2 | 0 A 0 | ICW1 | Write | | 2 | 0A1 | ICW2 | Write | | 2 | 0A1 | ICW3 | Write | | 2 | 0A1 | ICW4 | Write | | 2 | 0A1 | OCW1 | Write | | 2 | 0 A 0 | OCW2 | Write | | 2 | 0 A 0 | OCM3 | Write | | 2 | 0A0 | IRR | Read | | 2 | 0 A 0 | ISR | Read | | 2 2 | 0A1 | Mask | Read | | 2 | 0A0, 0A1 | Interrupt Level | Read | **TABLE 5-6. INTERRUPT CONTROLLER FUNCTION MAP** **//**. # 5.5.2 Setup - Initialization Command Words (ICW) The interrupt controllers are set up by writing a series of Initialization Command Words (ICW). The sequence is started by writing a one to bit 4 of ICW1. If ICW4 is to be included in the sequence, a one must also be written to bit 0 of the ICW1. ## 5.5.2.1 ICW1 - Initialization Command Word 1 Port Addresses 020H, 0A0H - Write only Bit 4 of this register must be set to 1 or it will be interpreted as OCW2 or OCW3. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|-----|-----|---|----------|----------| | i | | | s_s | L_T | | N
C_M | ICW
4 | | Signal | | | | | | Default | | |-------------|--|--|--|--|--|---------|---| | Name | | | | | | At RST | ١ | | All signals | | | | | | None | | Bits 7-5 - Not used, state is ignored Bit 4 - S_S, Start Sequence S S Must be set to 1 Bit 3 - L T, Level Trigger The Interrupt Controller may be programmed to support Level Sensitive Mode for diagnostic adapters which may need to test this capability. $L_T = 0$ - Edge Triggered Mode is selected. L T = 1 - Level Triggered Mode is selected. EN_LVL (bit 00) in Port A872H must first be set to 1. Bit 2 - Not Used, state is ignored Bit 1 - N C M, Not Cascade Mode NCM=0 Cascade Mode selected $NC_{M} = 1 -$ Single Mode selected Bit 0 - ICW4. Initialization Control Word 4 ICW4 = 0 - ICW4 not included in sequence ICW4 = 1 - ICW4 is included in sequence ## 5.5.2.2 |CW2 - Initialization Command Word 2 Port Addresses 021H, 0A1H - Write only | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|-------------------|---|---|---|---|---| | | | Interru
Vector | | | | | | | Signal | De <u>fault</u> | |-------------|-----------------| | Name | At RSTIN | | All cignale | None | Bits 7-3 - Interrupt Vector Bits 2-0 - Not used, state is ignored ## 5.5.2.3 ICW3 - Initialization Command Word 3 Port Addresses 021H - Write only This address accesses only Interrupt Controller 1. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|---|-----------|---|---| | 0 | 0 | 0 | 0 | 0 | 12
H_L | 0 | О | Signal Default Name At RSTIN All signals None Bits 7-3 - Not used, must be set to 0 Bit 2 - I2 H L, Interrupt 2 Has Slave I2 H_L = 0 - Interrupt 2 does not have the Slave 12 H L = 1 - Interrupt 2 has the Slave Bits 1-0 - Not used, must be set to 0 **//** 3/19/92 5-39 Port Addresses 0A1H - Write only This address accesses only Interrupt Controller 2. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | |---|---|---|---|---|----------|---|---
--|--| | 0 | 0 | 0 | 0 | 0 | Slave ID | | | | | | | | | | | | | | | | | Signal
Name | | | | | | | De <u>fault</u>
At RSTIN | |----------------|--|--|--|--|--|------|-----------------------------| | All signals | | | | | |
 | . None | Bits 7-3 - Not used, must be set to 0 Bits 2-0 - Slave ID ### 5.5.2.4 ICW4 - Initialization Command Word 4 Port Addresses 021H, 0A1H - Write only A Slave does not have ICW4. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|------------|---|---|------------|---| | 0 | 0 | 0 | S F
N M | 0 | o | AUT
EOI | 1 | | Signal | De <u>fault</u> | |-------------|-----------------| | Name | At RSTIN | | All eignale | None | Bits 7-5 - Not used, must be set to 0 Bit 4 - S F N M, Special Fully Nested Mode S F N M = 0 -Not Special Fully Nested Mode S F N M = 1 -Special Fully Nested Mode Bits 3-2 - Not used, must be set to 0 Bit 1 - AUT_EOI, Auto End Of Interrupt AUT_EOI = 0 -Normal End Of Interrupt AUT_EOI = 1 -Automatic End Of Interrupt Bit 0 - Not used, must be set to 1 5-40 ## 5.5.3 Operation Once the interrupt controllers are set up, they may be programmed by Operation Control Words One through Three (OCW1:3). ## 5.5.3.1 OCW1 - Operation Control Word 1 Port Address 021H, 0A1H - Write only | 7 | 6 | 5 | 4 | 3 | 1 | 0 | | |-----|-----|-----|-----|-----|-----|-----|-----| | INT | 7_M | 6_M | 5_M | 4_M | 3_M | 2_M | 1_M | 0_M | | Signal
Name | | | | | | | | _ | e <u>fault</u>
at RSTIN | |----------------|--|--|--|--|--|--|--|---|----------------------------| | All signals | | | | | | | | | None | Bit 7 - Interrupt 7 Mask Bit 6 - Interrupt 6 Mask Bit 5 - Interrupt 5 Mask Bit 4 - Interrupt 4 Mask Bit 3 - Interrupt 3 Mask Bit 2 - Interrupt 2 Mask Bit 1 - Interrupt 1 Mask Bit 0 - Interrupt 0 Mask #### 5.5.3.2 OCW2 - Operation Control Word 2 Port Address 020H, 0A0H - Write only | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | |---|----------|---|---|---|---------|---|---|--|--| | E | EOI_CONT | | 0 | 0 | INT_LEV | | | | | | | | | | | | | | | | #### 5.5.3.3 OCW3 Port Address 020H, 0A0H - Write only | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|----|---|---|-----|-----|------| | 0 | S | ММ | 0 | 1 | P_C | IRR | _ISR | | | | | | | | | | | Signal
Name | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | All signals | | | | | | | | None | #### Signal Default Name At RSTIN All signals None Bit 7 - Must be set to 0 ## Bits 7-5 - EQL CONT. End Of Interrupt | , , -5 | | | itt, End Of Interrupt | |--------|----|----|--------------------------------------| | EOI | CO | NT | | | | 7 | 6 | 5 | | | 0 | 0 | 0 - Clear Rotate On
Automatic EOI | | | 0 | 0 | 1 - Non-specific EOI | | | 0 | 1 | 0 - Not used | | | 0 | 1 | 1 - Specific EOI | | | 1 | 0 | 0 - Set Rotate on
Automatic EOI | | | 1 | 0 | 1 - Rotate on Non-
Specific EOI | | | 1 | 1 | 0 - Set Priority | | | 1 | 1 | 1 - Rotate on Specific EOI | | | | | | ## Bits 6, 5 - SMM, Special Mask Mode SMM 6 5 0 0 Not used 0 Not used 1 Reset Special Mask Mode 1 Set Special Mask Mode Bit 4 - Must be set to 0 Bit 3 - Must be set to 1 PC=0No Poll Command PC=1-Poll Command Bit 2 - P C, Poll Command Bits 4, 3 - Must be set to 0 INT LEV 2 1 0 0 1 Bits 2-0 - INT_LEV, Interrupt Level To enable the setting of the interrupt level (INT LEV), EOI CONT must be set to 1 1 0 (Set Priority). 0 - Interrupt Level 0 Bits 1-0 - IRR ISR, Interrupt Request Register and Interrupt Service Register > IRR ISR 1 0 0 - Not used 1 - Not used 0 - Read Interrupt Request Register 1 1 - Interrupt Level 7 1 1 - Read Interrupt Service Register ## 5.6 SYSTEM CONTROLLER 8254 TIMER The System Controller contains an 8254 equivalent timer containing three independent counters. All the timers run off of a 1.19 MHz clock derived from the 14.318 MHz clock input. The GATE0 and GATE1 signals are tied high. The GATE2 signal is tied to register 61H, bit 0. The counters decrement when counting. The largest possible count is 0. Each counter may be programmed for different counting modes and the count may be read back. To initialize a counter, the Control Word must be written, followed by one or two bytes of count if needed. Refer to Table 5-7 for the correct Control Word Format. Each counter may be programmed to count in BCD or binary. | I/O
Address | Use | Read/Write | |----------------|----------------------|------------| | 040H | Timer 0 Count/Status | Read/Write | | 041H | Timer 1 Count/Status | Read/Write | | 042H | Timer 2 Count/Status | Read/Write | | 043H | Control Word | Write | | Timer
Channel | Use | | |------------------|-------------------------|--| | 0 | Time of Day (Interrupt) | | | 1 | Refresh Request | | | 2 | Speaker | | | CONTROL | WORD (FORMAT | 1) - I/O Ad | dress 043H - Counter Latch Command | | | | | |---------|--------------|------------------|------------------------------------|--|--|--|--| | 0 | BCD | | | | | | | | 1-3 | Mode | 000 | Mode 0 | | | | | | | | 001 | Mode 1 | | | | | | | | X10 | Mode 2 | | | | | | | | X11 | Mode 3 | | | | | | | | 100 | Mode 4 | | | | | | | | 101 | Mode 5 | | | | | | 4-5 | Function | 00 | Counter Latch Command | | | | | | | | 01 | Read/Write Low Byte | | | | | | | | 10 | Read/Write High Byte | | | | | | | | 11 | Read/Write Low Byte then High Byte | | | | | | 6-7 | Counter | 00 | Counter 0 | | | | | | | | 01 | Counter 1 | | | | | | | | 10 | Counter 2 | | | | | | CONTROL | WORD (FORMAT | 2) - I/O Ad | dress 043H - Read Back Command | | | | | | 0 | | 0 | | | | | | | 1 | | Selec | t Counter 0 | | | | | | 2 | | Select Counter 1 | | | | | | | 3 | ļ | Select Counter 2 | | | | | | | 4 | | Latch Status | | | | | | | 5 | | Latch | Count | | | | | | 6-7 | | 11 | | | | | | **TABLE 5-7. CONTROL WORD FORMAT** ### 5.6.1 Setup Each counter may be set in one of six modes by writing a Control Word (format 1). The Control Word must specify the counter and the number of count bytes to be written. A new count may be written at any time. ## 5.6.1.1 Mode 0 Interrupt on Terminal Count The counter starts when the count is loaded. When the count = 0, the counter continues counting from FFFFH in binary mode or 9999 in BCD mode. GATE = 1 enables counting. GATE = 0 disables counting. OUT goes low when the counter starts. It goes high when the count = 0, and stays high until a new count or mode is written. If a new count is written while the counter is counting, it will be loaded on the next clock pulse. # 5.6.1.2 Mode 1 Hardware Retriggerable One Shot The counter starts when GATE goes from low to high. When the count = 0, the counter continues counting from FFFFH in binary mode or 9999 in BCD mode. Any time GATE goes from low to high, the counter is reloaded with the original count and the counter started. OUT goes low when GATE goes from low to high. It goes high when the count = 0. If a new count is written while the counter is counting, it will be loaded the next time GATE goes from low to high. #### 5.6.1.3 Mode 2 Rate Generator The counter starts when the count is loaded. When the count = 0, the counter is reloaded and the counter is started again. GATE = 1 enables counting. GATE = 0 disables counting. If GATE goes from low to high, the counter is reloaded. OUT is initially high. When the count = 1, OUT goes low for one clock. If a new count is written while the counter is counting, it will be loaded the next time the count = 0 or when GATE goes from low to high. ## 5.6.1.4 Mode 3 Square Wave Generator The counter starts when the count is loaded. When the count = 0, the counter is reloaded and the counter started again. GATE = 1 enables counting. GATE = 0 disables counting. If GATE goes from low to high, the counter is reloaded. When the counter starts, OUT is high. When the count is half done, OUT goes low. If GATE goes low then OUT will go high. If a new count is written while the counter is counting, it will be loaded the next time the count = 0 or when GATE goes from low to high. ## 5.6.1.5 Mode 4 Software Triggered Strobe The counter starts when the count is loaded. When the count = 0, the counter continues counting from FFFFH in binary mode or 9999 in BCD mode. GATE = 1 enables counting. GATE = 0 disables counting. OUT is initially high. When the count = 0, OUT goes low for one clock. If a new count is written while the counter is counting, it will be loaded on the next clock pulse. ## 5.6.1.6 Mode 5 Hardware Triggered Strobe The counter starts when the count is loaded. When the count = 0, the counter continues counting from FFFFH in binary mode or 9999 in BCD mode. GATE = 1 enables counting. GATE = 0 disables counting. If GATE goes from low to high, the counter is reloaded. OUT is high when the counter starts. When count = 0, OUT goes low for one clock. If a new count is written while the counter is counting, it will be loaded the next time the count = 0 or when GATE goes from low to high. WD76C10A/LP/LV ### 5.6.2 Reading The Counter There are three ways of reading the counters: - The count is read directly. This mode can cause false readings due to the fact that the counter may be changing while it is read. - The count may be read via a Counter Latch Command. (See Control Word format 1). This command latches the count so that it may be read without changing. - The count may be read via a Read Back Command. (See Control Word format 2). This command is the equivalent of multiple Counter Latch Commands. ## 5.6.3 Reading Status The status of a counter may be read by issuing a Read Back Command with data bit 4 = 0. (See Control Word format 2). Bits 0-5 are the same as the command word for the counter. Bit 6 tells whether the last count that was written has been loaded into the counter. Bit 7 reflects the state of the OUT pin. | STATUS
WORD | | |----------------|-------------------| | 0 | BCD | | 1-3 | Mode | | 4-5 | Function | | 6 | New Count Written | | 7 | Out Status | ## 5.6.4 Page The page register is an 8-bit by 16-byte dual-ported RAM. It is used during refresh cycles and to generate address bits
16 to 23 for 8-bit DMA transfers and address bits 17 to 23 for 16-bit DMA transfers. One port of the RAM is a read-only port for DMA or refresh cycles and the other is a read/write port for the 80286 CPU. #### 5.6.5 Refresh Address This block contains an 11-bit counter that is used for the address during a refresh. ### 5.7 SYSTEM CONTROLLER DECODE | | | | A | ddr | ess | ; | | | | Decodes | Hex | |---|---|---|---|-----|-----|---|---|---|---|-----------------------------|----------------| | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | DMA Controller 1 (Ch 0-3) | 000-00F | | 0 | 0 | 0 | 0 | 1 | Х | Χ | Χ | Χ | Х | Interrupt Controller Master | 020-03F | | 0 | 0 | 0 | 1 | 0 | Х | Χ | Χ | Х | Х | Timer | 040-05F | | 0 | 0 | 0 | 1 | 1 | 0 | Χ | Χ | Х | 1 | Port B (PIO) | 061-06F (odd) | | 0 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | 0 | Real-Time Clock (Address) | 070-07E (even) | | 0 | 0 | 0 | 1 | 1 | 1 | Χ | Χ | Х | 1 | Real-Time Clock (Data) | 071-07F (odd) | | 0 | 0 | 1 | 0 | 0 | Х | Χ | Χ | Х | Х | Page Register (except 092H) | · , | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | ALT 20 GATE, Hot Reset | 092 | | Ó | Ó | 1 | Ō | 1 | X | X | X | X | X | Interrupt Controller Slave | 0A0-0BF | | Ō | Ō | 1 | 1 | Ó | X | X | X | X | X | DMA Controller 2 (Ch 4-7) | 0C0-0DF | **TABLE 5-8. DECODE ADDRESSES** ## 5.7.1 Page Register Decodes | Address | Decode | |--|--| | 0087H
0083H
0081H
0082H
008BH
0089H | DMA Channel 0
DMA Channel 1
DMA Channel 2
DMA Channel 3
DMA Channel 5
DMA Channel 6 | | 008AH | DMA Channel 7 | | 008FH | Refresh | TABLE 5-9. PAGE REGISTER DECODES ## NOTE Page register data appears on address bits A23-A16 during refresh and 8-bit DMA cycles. For 16-bit DMA cycles (channels 5-7), the LSB of the page register does not appear. 3/19/92 #### 5.8 NMI AND REAL-TIME CLOCK ## 5.8.1 Real-Time Clock Address Register Port Address 070H-07EH even - Write only There is only one RTC Address Register. All even number addresses from 070H through 07EH access this register. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |-----|-----|-----|-----|-----|-----|-----|-----| | D_ | RTC | NMI | A6 | A5 | A4 | A3 | A2 | A1 | A0 | | Signal
Name | De <u>fault</u>
At RSTIN | | | |----------------|-----------------------------|------|--| | D_NMI | | | | | RTC6 - RTC0 | | None | | ## Bit 7 - D_NMI, Disable Non-Maskable Interrupt D NMI = 0 - Non-Maskable Interrupt enabled D NMI = 1 - Non-Maskable Interrupt disabled (Default value) ## Bits 6-0 - RTCA6 through RTCA0, Real-Time Clock Address RTCA6 through RTCA0 provide the 128 addresses of the Real-Time Clock area. The data selected by this address is available by reading the RTC Data Register at the odd numbered locations, 071H-07FH. ## 5.8.2 Real-Time Clock Data Register Port Address 071H-07FH odd - Read and Write There is only one RTC Data Register. All odd number addresses from 071H through 07FH access this register. Data is transferred between this register and the memory location selected by the RTC Address Register. The data bus used is selected by bit 15 of the register at Port Address 2872H (refer to section 7.2). | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | |---|----------------------|---|---|---|---|---|---|--|--|--|--| | | Real-Time Clock Data | ## 5.8.3 Lock Pass, Alternate A20G And Hot Reset Port Address 092H - Read and Write | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |---|---|---|---|---------------|---|--------------|-------------| | | | | | LOCK_
PASS | - | ALT_
A20G | HOT_
RST | | Signal
Name | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | Bits 7-4, 2 . | | | | | | | | None | | LOCK_PASS | | | | | | | | 0 | | ALT_A20G | | | | | | | | | | LIOT DOT | | | | | | | | 0 | ## Bit 3 - LOCK PASS LOCK_PASS is used to prevent access to the eight byte password located in the Real-Time Clock area. The protected addresses are 38H through 3FH. Before LOCK_PASS can be set, bit 02 of the register at Port Address 2872H must be set to 0. Once LOCK_PASS is set, it can only be reset by RSTIN. LOCK PASS = 0 - The eight byte password area is accessible. LOCK PASS = 1 - The eight byte password area is not accessible. 5-46 3/19/92 **%** ## Bit 1 - ALT A20G, Alternate A20 Gate Normally, the state of ALT_A20G is ORed with the external A20GT signal. If either ALT_A20G or A20GT is high, the A20 line is ungated. If both ALT-A20G and A20GT are low, A20 will be gated low. As an option, ALT_A20G may be programmed by the Diagnostic Register at Port Address 9872H to automatically change state to match that of the Keyboard's A20GATE. ## Bit 0 - HOT RST, Hot Reset A processor reset (CPURES) is generated 128 CPUCLKs after the HOT_RST changes from a 0 to 1. The CPURES is 16 clock pulses wide. # 5.9 PARITY ERROR AND I/O CHANNEL CHECK Port Address 061H- 06FH odd Bits 7-4 - Read only, Bits 3-0 - Read and Write Odd numbered Port Addresses 061H through 06FH provide access to parity error and I/O Channel Check of the expansion bus. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|------|----------|-----------|-----------|----------|-----------|-----------| | PE | IOCK | OUT
2 | REF
DT | D_
IOC | D_
PE | ENS
PK | TMR
2G | | Signal
Name | | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|--|---------------------------| | PE | | | | | | | | | 0 | | IOCK | | | | | | | | | 0 | | OUT2 | | | | | | | | | NA | | REFDT | | | | | | | | | 1 | | D_IOC | | | | | | | | | 0 | | D_PE | | | | | | | | | 0 | | ENSPK | | | | | | | | | 0 | | TMR2G | | | | | | | | | 0 | Bit 7 - PE, Parity Error (read only) PE = 0 - No Parity Error PE = 1 - Parity Error Bit 6 - IOCK, I/O Channel Check from the expansion bus (read only) IOCK = 0 - No I/O Channel Check Error IOCK = 1 - I/O Channel Check Error Bit 5 - OUT2, from timer channel 2 (read only) OUT2 represents the state of the Timer 2 output. **Bit 4 - REFDT**, changes state on each refresh (read only) Bit 3 - D_IOC, Disable I/O Channel Check (read and write) D IOC = 0 - I/O channel check from the expansion bus is not disabled. $D_IOC = 1 -$ I/O channel check from the expansion bus is disabled. Bit 2 - D_PE, Disable Parity Error Check (read and write) DPE = 0 Parity error checking not disabled. This may be overridden by Port Address register 6072H, bit 10 for systems without parity RAM. D PE = 1 - Parity error checking disabled Bit 1 - ENSPK, Enable Speaker ENSPK = 0 - Speaker is not enabled FNSPK = 1 - Speaker is enabled Bit 0 - TMR2G. Gate for Timer Channel 2 TMR2G = 0 - Timer Channel 2 gated low TMR2G = 1 - Timer Channel 2 output enabled **//**. 5-47 ## 6.0 MEMORY AND EMS CONTROL This section describes the DRAM address bus and the EMS memory configuration and control registers. ## 6.1 DRAM ADDRESS AND DATA BUS The memory address bus is multi-functional. During DRAM cycles, the DRAM row and column addresses are present on RA10 through RA0. During I/O cycles, RA10, RA9 and RA8 become CS2, CS1 and CS0 and, along with CS3, are used to decode 16 possible Chip Selects. Also, during I/O cycles to devices such as the Keyboard Controller, RA7 through RA0 become the Data Bus bits ED7 through ED0. The RAS and CAS lines are designed to drive the DRAM array directly without the use of external drivers. RA10 through RA0 are capable of driving 350 pF, the equivalent load of two banks of one bit wide RAM, plus two banks of four bit wide RAM (48 DRAMs). The W/R signal at pin 119 should be buffered before use. Write protection is accomplished by not asserting CAS to the local DRAM while MEMW at pin 37 is asserted. The on-board DRAM may be disabled so that external cards such as EMS may provide memory. The DRAM may be disabled in three stages, from 128 Kbyte to 640 Kbyte, 256 Kbyte to 640 Kbyte and 512 Kbyte to 640 Kbyte. When disabling any on-board DRAM, the register at Port Address 6872H must not be programmed to enable the on-board Lower EMS Page Frame. All versions of the System Controller provide support for DRAM banks to be independent or two-way page interleaved. DRAM banks that are interleaved must be of the same DRAM size. #### 6.2 MEMORY CONFIGURATION ## 6.2.1 Memory Control Port Address 3872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |------------|----|----|----|----|----|-----|----| | PG_
CAS | | CA | | PG | | ILV | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----------|----|-----------|----|-----------|----|-------------|----| | SIZ
BN | _ | SIZ
BN | | SIZ
BN | | SIZI
BNI | | | Signal
Name | Default
At RSTIN | |----------------|---------------------| | PG_CAS | . 0 | | CA | . 00 | | PG | | | ILV | | | SIZE_BNK3 | . 00 | | SIZE_BNK2 | | | SIZE_BNK1 | . 00 | | SIZE BNK0 | . 00 | ## Bit 15 - PG_CAS, Page Mode CAS Width PG_CAS = 0 - Read CAS pulse width is 2.5 CPUCLK clocks (Default value). PG_CAS = 1 - Read CAS pulse width is 2 CPUCLK clocks. This is required for 80386SX Pipeline mode. Bit 14 - Reserved for future use, should be set to 0. #### Bits 13, 12 - CA. Cache Mode Enabling the Cache Mode adds an additional wait state to the beginning of on-board read cycles. On-board read cycles occur only for cache misses. If the RDYIN signal indicates that the external cache has experienced a zero wait state read hit, the DRAM read cycle is aborted. Pin 51 of the System Controller serves one of three functions, depending upon the mode selected by CA. Pin 51 may represent the RDYIN (Ready In), CKA (Alternate Clock) or PE (Parity Error). When CA is changed, a hold acknowledge cycle is required before the change goes into effect. #### CA 13 12 - 0 0 Cache Mode not enabled. Pin 51 may be used as the alternate clock CKA. (Default value) - 0 1 Cache Mode enabled. RDYIN at pin 51 indicates discrete cache hit or miss. - 1 0
External Memory Controller. Pin 51 becomes PE and is connected to the parity error line of the Discrete Cache controller. - 1 1 External Memory Controller. Pin 51 may be used as the alternate clock CKA. When CAS Input Mode is enabled, PE on pin 13 becomes an input and represents an error. (See pin 12 description in Table 3-2 on selecting CAS Mode.) ## Bit 11 - PG, Page Mode PG = 0 - Non-page mode (Default value) Word interleaving is employed when bank interleaving is enabled by ILV. PG = 1 - Page mode Page mode interleaving is performed when bank interleaving is enabled by ILV. ## Bits 10-08 - ILV, Interleave In Non-page Mode (PG = 0), word interleaving is employed. In Page Mode (PG = 1), Page Mode interleaving is used. Four way interleave is only supported in Page Mode with four banks of 4 Mbit \times 16 DRAMs installed. Interleave of 64 Kbit \times 16 DRAM is not supported by any of the System Controllers. DRAM banks must be of the same size and assigned the same starting address when they are interleaved together. ILV 10 09 08 0 0 - No interleaving performed 0 0 1 - Banks 0 and 1 are interleaved Banks 2 and 3 are not interleaved Banks 0 and 1 must be the same size 0 1 0 - Banks 0 and 1 are not interleaved Banks 2 and 3 are interleaved 0 1 1 - Banks 0 and 1 are interleaved Banks 2 and 3 are interleaved (Each pair must be the same size. Banks 0 and 1 may be a different size from Banks 2 and 3.) 1 0 0 - Page Mode four way interleave (Banks 0, 1, 2 and 3 must have 4 Mbit × 16 DRAM installed.) ## Bits 07, 06 - SIZE BNK3, Size of Bank 3 All versions of the System Controller support all DRAM sizes. The DRAM sizes may be mixed. SIZE_BNK3 0 0 - 64 Kbit × 16 (Default value) 0 1 - 256 Kbit × 16 1 0 - 1 Mbit × 16 1 1 - 4 Mbit × 16 Bits 05, 04 - SIZE_BNK2, Size of Bank 2 All versions of the System Controller support all DRAM sizes. The DRAM sizes may be mixed. SIZE_BNK2 05 04 0 0 - 64 Kbit × 16 (Default value) 0 1 - 256 Kbit × 16 1 0 - 1 Mbit × 16 1 1 - 4 Mbit × 16 ## Bits 03, 02 - SIZE BNK1, Size of Bank 1 All versions of the System Controller support all DRAM sizes. The DRAM sizes may be mixed. SIZE_BNK1 03 02 0 0 - 64 Kbit × 16 (Default value) 0 1 - 256 Kbit × 16 1 0 - 1 Mbit × 16 1 1 - 4 Mbit × 16 ## Bits 01, 00 - SIZE BNK0, Size of Bank 0 All versions of the System Controller support all DRAM sizes. The DRAM sizes may be mixed. SIZE_BNK0 01 00 0 0 - 64 Kbit × 16 (Default value) 0 1 - 256 Kbit × 16 1 0 - 1 Mbit × 16 1 1 - 4 Mbit × 16 # 6.2.2 Memory Bank 3 Through Bank 0 Starting Address Port Address 4872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|-----|----|----|----------------|----|-----|-----| | A24 | A23 | | | A20
address | | A18 | A17 | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|-----|----|----|----------------|----|-----|-----| | A24 | A23 | | | A20
address | | A18 | A17 | Port Address 5072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|-----|------|---------|---------|----|-----|-----| | A24 | A23 | | | A20 | | A18 | A17 | | | | Bank | 3 start | address | 3 | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|-----|----|----|----------------|----|-----|-----| | A24 | A23 | | | A20
address | | A18 | A17 | The starting address of the bank must be programmed on boundaries corresponding to the bank size. Smaller banks must be placed at a higher starting address than larger banks. The size of the bank is automatically set by the type and size of the RAM. When banks are interleaved, in either page or non-page mode, the interleaved banks should be enabled and programmed to the same starting address. The bank size is doubled for two-way interleave and quadrupled for four-way interleave. For example, if bank 0 has 256 Kbit DRAMs and banks 2 and 3 have 1 Mbit DRAMs, the starting address for banks 2 and 3 should be zero. Both banks should be enabled. The size of the combined banks is 4 Mbytes, double the size of the individual banks. The starting address for bank 0 should then be at 4 Mbytes. For three banks of the same size, in which two are interleaved, the two interleaved banks must be placed at a lower starting address than the third bank. | RAM SIZE | PAGE SIZE | BANK SIZE | |---------------|------------|-------------| | 64 Kbits X 1 | 512 Bytes | 128 Kbytes | | 256 Kbits X 1 | 1024 Bytes | 512 Kbytes | | 1 Mbits X 1 | 2048 Bytes | 2048 Kbytes | | 4 Mbits X 1 | 4096 Bytes | 8192 Kbytes | ## 6.2.3 Split Starting Address Port Address 5872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |------------|------------|------------|------------|------------|----|------------|----| | EN_
BK3 | EN_
BK2 | EN_
BK1 | EN_
BK0 | DR/
DR/ | | SP
SIZE | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|-----|-----|-----|-----|-----|----|----| | A24 | A23 | A22 | A21 | A20 | A19 | | | | | | | | | | | | | Signal
Name | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | EN_BK3 | | | | | | | | 0 | | EN_BK2 | | | | | | | | 0 | | EN_BK1 | | | | | | | | 0 | | EN_BK0 | | | | | | | | 0 | | DRAM_DRV | | | | | | | | 00 | | SPLIT_SIZE | | | | | | | | 00 | | Bits 01, 00 . | | | | | | | | None | ## Bit 15 - EN BK3, Enable Bank 3 EN BK3 = 0 - Bank 3 is disabled (Default value) EN BK3 = 1 - Bank 3 is enabled ## Bit 14 - EN BK2, Enable Bank 2 EN BK2 = 0 - Bank 2 is disabled (Default value) EN BK2 = 1 - Bank 2 is enabled ### Bit 13 - EN BK1, Enable Bank 1 EN BK1 = 0 - Bank 1 is disabled (Default value) EN BK1 = 1 - Bank 1 is enabled ### Bit 12 - EN BK0, Enable Bank 0 EN BK0 = 0 - Bank 0 is disabled (Default value) EN BK0 = 1 - Bank 0 is enabled ## Bits 11, 10 - DRAM_DRV, DRAM Driver Strength The DRAM address driver strength may be adjusted for capacitive load. When adjusted properly, output overshoot and undershoot is minimized while still meeting worst case DRAM timing. The DRAM RAS, CAS and address buffers also automatically compensate for variations in temperature, voltage and manufacturing process. ## DRAM_DRV 11 10 - 0 0 Full strength DRAM address drive, up to 350 pF (Default value) - 0 1 Low strength DRAM address drive, up to 100 pF - 1 0 Medium strength DRAM address drive, up to 180 pF - 1 1 High strength DRAM address drive, up to 260 pF ## Bits 09, 08 - SP SIZE, Split Size The split is implemented by moving the block of memory between 0A0000H through 0FFFFFH to another area. The destination area must start on a 512 Kbyte boundary. If BIOS is to be shadowed, the split size must be 320 Kbyte for a 64 Kbyte shadow or 256 Kbyte for a 128 Kbyte shadow, and the RAM Shadow And Write Protect Register (Port 6072H) must also be programmed. Figure 6-1 illustrates that the memory from 0A0000H (640 Kbyte) to 100000H (1024 Kbyte) is available for remapping. The remapping may start at 100000H, providing 384 Kbyte of extended memory, or may start at 0F0000H to allow BIOS shadowing, with 320 Kbyte of extended memory. Only a single bank may be split. The bank to be split must be at least 512 Kbyte or larger. #### SPLIT SIZE 09 08 - 0 0 No split (Default value) - 0 1 256 Kbyte split, memory moved from 0A0000H to 0DFFFFH - 1 0 320 Kbyte split, memory moved from 0A0000H to 0EFFFFH - 1 1 384 Kbyte split, memory moved from 0A0000H to 0FFFFFH Bits 07-02 - A24-A19, Split Starting Address Bits 01, 00 - Not used, state is ignored FIGURE 6-1. SPLIT SIZE ### 6.2.4 RAM Shadow And Write Protect Port Address 6072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-------|-----|-----------|----|-------------|-------------|----|----| | DIS_I | мем | HM_
WP | WP | INV_
PAR | PAR_
DIS | SH | D | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----------|----|-----|-----|----------|-----------|------|-----| | X_
MEM | | VB_ | SIZ | R(
T) | DM_
′P | BL_! | MOU | | Signal
Name | | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|---|--|--|--|--|--|--|--|---------------------------| | DIS_MEM | | | | | | | | | 00 | | HM_WP . | | | | | | | | | 0 | | WP | | | | | | | | | 0 | | INV_PAR | | | | | | | | | 0 | | PAR_DIS | | | | | | | | | 0 | | SHD | | | | | | | | | 00 | | X_MEM . | | | | | | | | | 0 | | Bit 06 | | | | | | | | | None | | VB_SIZ . | | | | | | | | | 00 | | ROM_TYP | | | | | | | | | 00 | | BL_MOU ☆ | 7 | | | | | | | | 00 | ☆ Featured only in the WD76C10ALP/LV ## Bits 15, 14 - DIS MEM, Disable On-board Memory DIS_MEM 15 14 - 0 0 On-board memory from 128 KB to 640 KB not disabled (Default value). - 0 1 On-board memory from 512 KB to 640 KB disabled. - 1 0 On-board memory from 256 KB to 640 KB disabled. - 1 1 On-board memory from 128 KB to 640 KB disabled. # **Bit 13 - HM_WP**, High Memory Write Protect Enable This bit enables the write protection for the memory boundary established by the register at Port C072H. HM WP = 0 - High memory write protect not enabled (Default value). HM WP = 1 - High memory write protect enabled. ## Bit 12 - WP, Shadowed BIOS Write Protect Enable WP = 0 - Write protect for shadowed BIOS not enabled (Default value). WP = 1 - Write protect for shadowed BIOS enabled. ## Bit 11 - INV PAR, Invert Parity INV PAR = 0 - Normal parity when writing to on-board DRAM (Default value). INV PAR = 1 - Invert parity when writing to on-board DRAM. ## Bit 10 - PAR DIS, Parity Checking Disabled Parity checking is normally enabled or disabled by Port 061H. Setting PAR_DIS overrides the Port 061H setting and disables parity checking. This ability is provided for systems without parity RAM. PAR DIS = 0 - Parity checking as selected by Port 061H (Default value). $PAR_DIS = 1 -$ Parity checking disabled. ## Bits 09, 08 - SHD, Shadow BIOS Before the BIOS can be shadowed, the SPLIT_SIZE field in the Split Starting Address Register at Port 5872H must be programmed to non-zero. ROM at FE0000H - FFFFFFH, the top of 16 MByte address space is never shadowed. Option SHD 11 should be used when Video Remap Function is desired (i.e. Video BIOS in the lower half of EPROM shows up at
C0000H). 64 Kbyte of system BIOS at 0F0000H - 0FFFFFH, and up to 64 Kbyte of video BIOS at 0C0000H - 0CFFFFH, may be shadowed. This type of shadowing is accomplished by setting SHD = 10 and then writing the system and video BIOS into 0E0000H - 0FFFFFH. When SHD is set to 11, the video BIOS appears at 0C0000H - 0CFFFFH rather than 0E0000H - 0EFFFFH. The video shadow size at 0C0000H - 0CFFFFH is determined by VB_SIZ, the video BIOS size field ### SHD 09 08 - ☆ 0 0 No BIOS shadowing, allows 384 KB remap (Default value). - 0 1 64 KB system BIOS shadow, 0F0000H - 0FFFFFH, allows 320 KB remap. - 1 0 128 KB system BIOS shadow, 0E0000H - 0FFFFFH, allows 256 KB remap. - ☆ 1 1 64 KB system BIOS shadow, 0F0000 - 0FFFFF and video BIOS shadow, allows 256 KB remap. - ☆ See note following bits 01, 00. # Bit 07 - X_MEM, Shadow BIOS for Read/Write Memory When SHD (bits 09 and 08) equals 11, X_MEM provides the means of using RAM from E8000H through EFFFFH not being used for video BIOS shadowing, to be used as read/write memory. $$X_MEM = 0$$ - SHD = 11 ROM_TYP = 10 - VB_SIZ = 01 FIGURE 6-2. $X_MEM = 0$ FIGURE 6-3. X MEM = 1 Bit 06 - Not used, state is ignored Bits 05, 04 - VB_SIZ, Video BIOS Size VB_SIZ ☆ 05 04 0 0 - 16 KB video BIOS (Default value) 0 1 - 32 KB video BIOS 1 0 - 48 KB video BIOS 1 1 - 64 KB video BIOS ☆ See note following bits 01, 00. ## Bits 03, 02 - ROM TYP, ROM Type For ROM type 00, CSPROM is asserted when the address is 0E0000H - 0FFFFFH or FE0000H - FFFFFFH. For ROM type 10, CSPROM is asserted when the address is 0F0000H - 0FFFFFH, FF0000H - FFFFFH or 0C0000H - 0CXFFFH where X is determined by VB_SIZ. This allows either a 128 Kbyte BIOS with a 64 Kbyte system BIOS and a 64 Kbyte video BIOS, or a 64 Kbyte BIOS with a 32 Kbyte system BIOS and a 32 Kbyte video BIOS. The 32 Kbyte video BIOS portion must be in the bottom half of the EPROM and is accessed both at C0000H - CX000H and F0000H - FX000H. 64 Kbyte EPROM needs addresses SA15 - SA0. A 128 Kbyte EPROM needs addresses SA16 - SA0. Neither EPROM needs translated addresses. CSPROM is CS4 through CS0, decoded as the value of 00. ## ROM_TYP 03 02 - 0 0 128 KB system BIOS, located at E0000H FFFFFH - 0 1 64 KB system BIOS, located at F0000H FFFFFH (Default value) - ↑ 0 64 KB or 128 KB shared BIOS System BIOS located at F0000H FFFFFH, video BIOS located at C0000H CX000H - 1 1 Reserved - ☆ See note following bits 01, 00. ## Bits 01, 00 - BL_MOU, Backlight Mouse Control Featured only in the WD76C10ALP/LV Enabling the Backlight Mouse Control increases the CPU speed for one second if Auto Clock Switching is on. The AUT_FST bit is located at Port 1072H bit 11. Enabling the Backlight Mouse Control also affects the Back/light and LCD timers in the PMC Timer Register at Port Address 8072H. ## BL_MOU 01 00 0 0 - No mouse control (Default value) 0 1 - INT12 mouse 1 0 - INT4 mouse 1 1 - INT3 mouse #### **☆ NOTE** When SHD = 11 and X_MEM = 0, or SHD = 00 and ROM_TYP = 10, the portion of 0E0000H DRAM memory that is not mapped to 0C0000H (as determined by VB_SIZ) is not accessible. Once a portion of 0E0000H segment is mapped to 0C0000H, all 0E0000H accesses go to the expansion bus without generation of CSPROM. This allows AT bus plug-in boards and/or drivers to access the E0000H segment. ## 6.2.5 High Memory Write Protect Boundary Port Address C072H - Read and Write | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|----|-------|----------|-------------|----------------|-------------------| | | | | | • | | | | | | | | | | | | | 14 | 14 13 | 14 13 12 | 14 13 12 11 | 14 13 12 11 10 | 14 13 12 11 10 09 | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|-----|-----|-----|-------------|-----|-----|-------------| | A24 | A23 | A22 | A21 | A 20 | A19 | A18 | A 17 | | | | | | | | | | | Signal
Name | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | Bits 15-08 | | | | | | | | None
00 | Bits 15-08 - Not used, state is ignored ## Bits 07-00 - A24-A17, Boundary Address Memory above the high memory write protect boundary is write protected when enabled by the HM_WP, bit 13 of the RAM Shadow And Write Protect Register at Port 6072H. This provides an additional write protect region for disk caching. #### 6.3 **MEMORY TIMING** The DRAM timing is determined by an internal delay line for DMA and Master Mode transfers. The RAS leading edge becomes active from the active level of MEMR and MEMW. The delay line is automatically tuned to fixed delays, using the 14.318 MHz clock CLK14 as reference. When writing to the DRAM memory timing register at Port 4072H, the memory timing mode changes immediately. The code that programs this register should be in ROM and not shadowed in RAM. ## 6.3.1 Non-page Mode DRAM Memory Timing Port Address 4072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|------|-----|------------|------|------|-------|------| | | NP_M | DDE | NP_
RAW | NP_V | VCAS | _NP_F | RCAS | | 07 | 06 | 05 | 04 | 04 03 02 | | 01 | 00 | |----|-------------|------|----|----------|--|----|-----| | | NP_f
HLD | RAS_ | N | P_PWE | | NP | _ws | | Signal
Name | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|---------------------------| | Bits 15, 07 | | | | | | | None | | NP_MODE . | | | | | | | 00 | | NP_RAW | | | | | | | 0 | | NP_WCAS . | | | | | | | 00 | | NP_RCAS | | | | | | | 00 | | NP_RAS_HLD | | | | | | | 00 | | NP_PWE | | | | | | | 000 | | NP_WS | | | | | | | 00 | Bit 15 - Not used, state is ignored ## Bits 14, 13 - NP_MODE, Non-Page Mode There are two non-page modes available, Mode-00 and Mode-01. Mode-00 provides one processor clock of row address hold time and is used for 1, 2 or 3 wait state memory cycles. Mode-01 provides a half processor clock of row address hold time and is used for 0 wait state memory cycles. Because the memory timing may be adjusted in increments of half a processor clock. Mode-00 is suited for all DRAM and processor speeds. Mode-01 provides a half processor clock row address hold time, which is usually sufficient for system speeds of 12.5 MHz and slower. This compressed timing allows zero wait state operation. Table 6-1A shows typically required DRAM speeds and register programming values for various processor speeds. Because DRAM timing varies among manufacturers, the required DRAM speed may differ from those listed in the table. ## NP MODE 14 13 - 0 0 Minimum 1 wait state. - 0 1 Minimum 0 wait state. | PROCESSOR
SPEED | NP_
MODE | DRAM
SPEED | WAIT
STATES | REGISTER
4072H | |--------------------|-------------|---------------|----------------|-------------------| | 12.5 MHz | 01 | 80 ns | 0 | 3560H | | 16 MHz | 01 | 53 ns | 0 | 3560H | | 16 MHz | 00 | 80 ns | 1 1 | 1025H | | 20 MHz | 00 | 80 ns | 1 1 | 1025H | | 20 MHz | 00 | 100 ns | 2 | 107AH | | | | | 1 | | **TABLE 6-1A. TYPICAL DRAM SPEEDS** ## Bit 12 - NP_RAW, Non-page disable Read After Write EMS accesses and interleave miss cycles (I/O cycle to device on RAD) may add one additional wait state. NP RAW = 0 - Memory read cycles immediately following a write cycle causes an automatic wait state to be added before initiating the read cycle. NP RAW = 1 - Read after write cycles do not have additional wait states ## Bits 11, 10 - NP WCAS, Non-page Write CAS Delay NP WCAS 11 10 0 0 - CAS write delay 1.0 CLK2 0 1 - CAS write delay 1.5 CLK2 1 0 - CAS write delay 2.0 CLK2 1 1 - CAS write delay 2.5 CLK2 **//** Bits 09, 08 - NP_RCAS, Non-page Read CAS Delay NP_RCAS 09 08 0 0 - CAS read delay 1.0 CLK2 0 1 - CAS read delay 1.5 CLK2 1 0 - CAS read delay 2.0 CLK2 1 1 - CAS read delay 2.5 CLK2 Bit 07 - Not used, state is ignored # Bits 06, 05 - NP_RAS_HLD, Non-page CAS to RAS Hold Time The RAS active delay is reduced by half a clock during writes if NP_WCAS is set to 1X, or during reads if NP_RCAS is set to 1X. NP_RAS_HLD 06 05 - 0 0 RAS active until 1.0 clock after CAS - 0 1 RAS active until 1.5 clock after CAS - RAS active until 2.0 clock after CAS. - 1 RAS active until 2.5 clock after CAS. # Bits 04-02 - NP_PWE, Non-page CAS Pulse Width Extension The pulse width is reduced by half a clock during writes if NP_WCAS is set to X1, or during reads if NP RCAS is set to 1X. NP_PWE 04 03 02 0 0 0 - No extension (2 CLK2 normal) 0 0 1 - Extended by 0.5 CLK2 0 1 0 - Extended by 1.0 CLK2 0 1 1 - Extended by 1.5 CLK2 1 0 0 - Extended by 2.0 CLK2 1 0 1 - Extended by 2.5 CLK2 1 1 0 - Extended by 3.0 CLK2 1 1 1 - Extended by 3.5 CLK2 ## Bits 01, 00 - NP WS, Non-page Wait States NP_WS makes it possible to unconditionally add wait states to all DRAM cycles. Conditional wait states may be added to read after write cycles, EMS accesses and interleave miss cycles, with NP RAW (bit 12). NP_WS 01 00 0 0 - No wait states added 0 1 - 1 Wait state added 1 0 - 2 Wait states added 1 1 - 3 Wait states added NPWF = Bit 10 NPCAS = Bits 04, 03 NPHB = Bit 05 | TIMING | NUMBER O | FCLK2'S | |------------------------------|------------------------------------|---------------------------------| | | MODE-00 | MODE-01 | | Row address to RAS | 2 | 2 | | RAS width | 3 + NPH + NPHB / 2 | 1 + NPH + NPHB / 2 | | Row address hold | 1 | 0.5 | | Column address setup (read) | 1 + NPRF / 2 | 0.5 + NPRF / 2 | | Column address setup (write) | 1 + NPWF / 2 | 1 + NPWF / 2 | | RAS hold (read from CAS) | 1 + NPHB / 2 - NPRF / 2 + NPH | 0.5 - NPRF / 2 + NPH | | RAS hold (write) | 1 + NPHB / 2 - NPWF / 2 + NPH | 0.5 - NPWF / 2 + NPH | | CAS width (read) | ① + NPCAS + NPCB / 2 - NPRF / 2 | ① + NPCAS + NPCB / 2 - NPRF / 2 | | CAS width (write) | ① + NPCAS + NPCB / 2 - NPWF / 2 | ① + NPCAS + NPCB / 2 - NPWF / | | RAS precharge | $2 \times (2 + NP_WS)$ - RAS width | 2 × (2 + NP_WS) - RAS width | | Column address hold | 1 - NPCB / 2 | 1 - NPCB / 2 | **TABLE 6-1B. NON-PAGE MODE TIMING** NPH = Bit 06 NP_WS = Bits 01, 00 NPRF = Bit 08 NPCB = Bit 02 ## 6.3.2 Page Mode Table 6-2. identifies the type of DRAM cycle and number of wait states for the
80286 and 80386SX processors. | | PAGE MODE DRAM CYCLE | WAIT
STATES | |---|--|--| | 80286 | Write page hit Write page first access ☆ Write page miss Read page hit Read after write page hit Read page first access ☆ Read page miss | 0
1
2
0
1
2
3 | | 80286
With
Discrete
Cache | Write page hit Write page first access ☆ Write page miss Read cache hit Read cache miss, page hit Read cache miss, page first access ☆ Read cache miss, page miss | 0
1
2
0
1
3
4 | | 80386SX | Write page hit, pipeline mode Write page hit, non-pipeline mode Write page first access, pipline mode Write page miss, pipeline mode Write page miss, non-pipeline mode Read page hit, pipeline mode Read after write page hit, pipeline mode Read page first access non-pipeline mode Read page miss, pipeline mode Read page miss, pipeline mode Read page miss, pipeline mode | 0
1
1
2
3
0
1
1
3
3 | | 80386SX
With
Discrete
Cache,
Non-pipe | Write page hit Write page first access Write page miss Read cache hit Read cache miss, page hit Read cache miss, page first access Read cache miss, page miss | 0
1
2
0
1
3
4 | ☆ Equal Bank sizes, non-EMS cycle First access is a page mode memory cycle which immediately follows a refresh, DMA or master cycle. It is not necessary for the DRAMs to be precharged for a first access cycle, since all RAS signals have been high in the previous cycle. This shortens a first access page mode cycle by one wait state. For example, a read page miss, non-pipeline mode in 80386SX mode is four wait states. A read page miss, non-pipeline mode, first access in 80386SX mode is three wait states. All installed DRAMs must be the same size and configuration and the memory cycle cannot be an EMS cycle for a first access to occur. **TABLE 6-2. PAGE MODE WAIT STATES** ## 6.3.3 Memory Address Multiplexer The memory address multiplexer generates the DRAM row and column address. The DRAM address multiplexer is designed so that the same type socket may be used for 64 Kbyte, 256 Kbyte, 1 Mbyte or 4 Mbyte SIMM memory modules. | | RA10 | RA9 | RA8 | RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RAO | |-----|--------|-------|------------|------------|------------|------------|------------|--------|--------------|-------------|------------| | | | | | 64K I | NON-IN | ITERL | EAVE | | - | | | | ROW | A22 | A20 | A18 | | A15 | A14 | A13 | A12 | A11 | A10 | A 9 | | COL | A11 | A10 | A9 | A8 | A 7 | A 6 | A5 | A4 | АЗ | A 2 | A1 | | | | 64K 2 | 2-WAY | INTER | LEAVI | OR 2 | 56K N | ON-IN | TERLE | AVE | | | ROW | A22 | A20 | A18 | A16 | A15 | A14 | A13 | A12 | A11 | A 10 | A17 | | COL | A11 | A10 | A 9 | A8 | A 7 | A 6 | A 5 | A4 | АЗ | A 2 | A1 | | | 64K 4- | WAY, | 256K 2 | -WAY | INTER | LEAVE | OR 1 | Mb No | DN-INT | ERLE | AVE | | ROW | A22 | | A18 | | | | A13 | A12 | A11 | A19 | A17 | | COL | A11 | A10 | A 9 | A8 | A 7 | A 6 | A 5 | A4 | А3 | A 2 | A 1 | | | 256K | 4-WAY | /, 1 Mb | 2-WA | Y INTE | RLEA | /E OR | 4 Mb N | ION-IN | ITERL | EAVE | | ROW | A22 | | A18 | A16 | A15 | A14 | A13 | A12 | A21 | A19 | A17 | | COL | A11 | A10 | A9 | A8 | A 7 | A 6 | A 5 | A4 | АЗ | A2 | A 1 | | | | 1 Mb | 4-WAY | OR 4 | Mb 2-V | VAY IN | TERL | EAVE | 1 | | | | ROW | A22 | A20 | A18 | A16 | A15 | A14 | A13 | A23 | A21 | A19 | A17 | | COL | A11 | A10 | A 9 | | A 7 | A 6 | | A4 | A 3 | A 2 | A1 | | | | | | 4 Mb | 4-WAY | INTER | RLEAV | E | | | | | ROW | | | A18 | A16 | A15 | A14 | A24 | A23 | A21 | A19 | A17 | | COL | A11 | A10 | A 9 | A8 | A 7 | A 6 | A 5 | A4 | A 3 | A2 | A1 | | | | | | REFR | ESH A | DDRE | SS | | _ | | | | ROW | A10 | A9 | A8 | A 7 | A6 | A 5 | A4 | АЗ | A 2 | A1 | Α0 | TABLE 6-3. PAGE MODE DRAM ADDRESS MULTIPLEXER CONFIGURATION | | RA10 | RA9 | RA8 | RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 | | |-----|------|-----|------------|-----|-----|------------|------------|-----|-----|------------|-------------|--------| | ROW | A11 | A10 | A 9 | A8 | Α7 | A 6 | A 5 | A4 | А3 | A 2 | A1 | ALL | | COL | A22 | A20 | A18 | A16 | A15 | A14 | A13 | A12 | A11 | A10 | A 9 | 64 Kb | | COL | A22 | A20 | | | | | | | | | | 256 KI | | COL | A22 | A20 | | | | | | | | | A 17 | | | COL | A22 | A20 | A18 | | | | | | | | | | TABLE 6-4, NON-PAGE NON-INTERLEAVE ADDRESS CONFIGURATION | | RA10 | RA9 | RA8 | RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 | | |-----|------|-----|-----|-----|------------|-----|-----|------------|------------|------------|-----|-------| | ROW | A11 | A10 | A9 | A8 | A 7 | A6 | A5 | A 4 | A 3 | A 2 | A13 | ALL | | COL | A22 | | | | | | | | | | | 64 Kb | | COL | A22 | A20 | A18 | A16 | A15 | A14 | A19 | A12 | A11 | A10 | A17 | 256 K | | COL | A22 | A20 | A18 | A16 | A15 | A14 | A21 | A12 | A11 | A19 | A17 | 1 Mb | | COL | A22 | A20 | A18 | A16 | A15 | A14 | A12 | A23 | A21 | A19 | A17 | 4 Mb | TABLE 6-5. NON-PAGE 2-WAY INTERLEAVE ADDRESS CONFIGURATION // #### 6.4 EMS ## 6.4.1 EMS Control And Lower EMS Boundary Port Address 6872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|------|-----|----|----|------|----|----| | INC | PF_L | OC. | | EM | S_EN | | | | | | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |------------|-----|----|----|----|---------------|----|-------------| | EN_
RES | A23 | | | | A19
JNDARY | | A 17 | | Signal
Name | | | | | | | e <u>fault</u>
t RSTIN | |-----------------|--|--|--|--|--|--|---------------------------| | INC | | | | | | | 0 | | PF_LOC | | | | | | | | | Bits 12, 09, 08 | | | | | | | | | EMS_EN | | | | | | | | | EN_RES | | | | | | | 0 | | A23-A17 | | | | | | | 0 | ### Bit 15 - INC, Increment EMS Pointer The INC bit controls whether or not the EMS Pointer at Port E072H is to be incremented after each read or write of the EMS Page Register at Port E872H. INC = 0 - The EMS pointer does not increment (Default value). INC = 1 - EMS pointer increments after access to EMS Page Register. ### Bits 14-13 - PF LOC, Upper Page Frame Location PF_LOC determines the starting location of a block eight frames. See Table 6-6 for the upper page frame assignments. PF_LOC 14 13 - 0 0 Upper page frame starts at C4000H (Default value) - 0 1 Upper page frame starts at C8000H - 1 0 Upper page frame starts at CC000H - 1 1 Upper page frame starts at D0000H Bit 12 - Not used, state is ignored ## Bits 11, 10 - EMS EN, EMS Enable EMS_EN determines whether all EMS frames are to be enabled, only the upper page frames or no page frames. Tables 6-6 and 6-7 show the upper and lower page frame assignments. EMS_EN 11 10 - 0 0 Disable EMS (Default value) - 0 1 Enable EMS Register programming without having to enable a Page Frame. This is useful for initializing the lower Page Frame. - 1 0 Enable upper Page Frame assignments and EMS register programming. - 1 1 Enable upper and lower Page Frame assignments and EMS register programming. Bits 09, 08 - Not used, state is ignored ## Bit 07 - EN RES, Enable Lower Boundary EN_RES determines whether A23 through A17 (bits 06 through 00 of this register) are to be used as the lower EMS boundary or ignored. When the LOWER_EMS_BOUNDARY is enabled, the memory above the boundary is removed from the extended memory and reserved for EMS. EN RES = 0 - Ignore LOWER_EMS_BOUNDARY (Default value) EN RES = 1 - Enable LOWER EMS BOUNDARY ## Bits 06-00 - A23-A17, LOWER EMS BOUNDARY The lower_EMS_boundary provides address bits A23 through A17 and determines the starting address. This address must be set to 128 Kbyte below the actual start address. For example, to start EMS at the 1 Mbyte boundary, this field should be set to 07H. // ## 6.4.2 EMS Page Register Pointer Port Address E072H - Bits 15-06 Read only, Bits 05-00 Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|----|----|----|-----|----|----|----| | | | | (| DLT | | | | | 16 | 15 | 15 | 13 | 12 | 11 | 10 | 9 | | 07 06 | 05 | 04 | 03 | 02 | 01 | 00 | |------------|----|----|------|-----|----|----| | DLT
8 7 | | | POIN | TER | | | | Signal
Name | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | DLT
POINTER | | | | | | | | | The EMS Page Register Pointer is used as an indirect address register. It is loaded with the EMS Page Register Number, ranging from 00 to 39 decimal. If the INC bit is set in Port 6872H, the EMS Page Register Pointer is incremented after each read or write of the EMS Page Register at Port E872H. Tables 6-6 and 6-7 shows the EMS Page Register Pointer value and the page frame assignments. ## Bits 15-06 - DLT, Delay Line Test In the Delay Line Test Mode, these bits represent the state of internal Delay Line signals. The Delay Line Test is initiated by bit 8 (TDL) in the Test Enable Register at Port Address A872H. # Bits 05-00 - POINTER, EMS Page Register Number Decimal number, 00 through 39. When programming this field, the hex equivalent 00 through 27H should be used. | EMS
REG
NUM | PF_LOC = 00 | EMS
REG
NUM | PF_LOC = 01 | EMS
REG
NUM | PF_LOC = 10 | EMS
REG
NUM | PF_LOC = 11 | |-------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|
| 32 | E0000-E3FFF | 33 | E4000-E7FFF | 34 | E8000-EBFFF | 35 | EC000-EFFFF | | 39 | DC000-DFFFF | 32 | E0000-E3FFF | 33 | E4000-E7FFF | 34 | E8000-EBFFF | | 38 | D8000-DBFFF | 39 | DC000-DFFFF | 32 | E0000-E3FFF | 33 | E4000-E7FFF | | 37 | D4000-D7FFF | 38 | D8000-DBFFF | 39 | DC000-DFFFF | 32 | E0000-E3FFF | | 36 | D0000-D3FFF | 37 | D4000-D7FFF | 38 | D8000-DBFFF | 39 | DC000-DFFFF | | 35 | CC000-CFFFF | 36 | D0000-D3FFF | 37 | D4000-D7FFF | 38 | D8000-DBFFF | | 34 | C8000-CBFFF | 35 | CC000-CFFFF | 36 | D0000-D3FFF | 37 | D4000-D7FFF | | 33 | C4000-C7FFF | 34 | C8000-CBFFF | 35 | CC000-CFFFF | 36 | D0000-D3FFF | EMS registers 32 through 39 (decimal) can be individually enabled or disabled by the EN (bit 15) of the EMS Page Register. See Port E872H description. TABLE 6-6. UPPER PAGE FRAME ASSIGNMENTS | EMS
REG
NUM | HEX | DEC | EMS
REG
NUM | HEX | DEC | |-------------------|--------------|-----------|-------------------|-------------|-----------| | 23 | 5C000-5FFFF | 368K-384K | 7 | 9C000-9FFFF | 624K-640K | | 22 | 58000-5BFFF | 352K-368K | 6 | 98000-9BFFF | 608K-624K | | 21 | 54000-57FFF | 336K-352K | 5 | 94000-97FFF | 592K-608K | | 20 | 50000-53FFF | 320K-336K | 4 | 90000-93FFF | 576K-592K | | 19 | 4C000-4FFFF | 304K-320K | 3 | 8C000-8FFFF | 560K-576K | | 18 | 48000-4BFFF | 288K-304K | 2 | 88000-8BFFF | 544K-560K | | 17 | 44000- 47FFF | 272K-288K | 1 | 84000-87FFF | 528K-544K | | 16 | 40000-43FFF | 256K-272K | 0 | 80000-83FFF | 512K-528K | | 15 | 3C000-3FFFF | 240K-256K | 31 | 7C000-7FFFF | 496K-512K | | 14 | 38000-3BFFF | 224K-240K | 30 | 78000-7BFFF | 480K-496K | | 13 | 34000-37FFF | 208K-224K | 29 | 74000-77FFF | 464K-480K | | 12 | 30000-33FFF | 192K-208K | 28 | 70000-73FFF | 448K-464K | | 11 | 2C000-2FFFF | 176K-192K | 27 | 6C000-6FFFF | 4320-448K | | 10 | 28000-2BFFF | 160K-176K | 26 | 68000-6BFFF | 416K-432K | | 9 | 24000-27FFF | 144K-160K | 25 | 64000-67FFF | 400K-416K | | 8 | 20000-23FFF | 128K-144K | 24 | 60000-63FFF | 384K-400K | | | 1 | <u> </u> | l. | | | EMS registers 0 through 31 (decimal) are enabled or disabled as a block. If the EMS_EN field of Port 6872H is 11, the EMS registers 0 through 31 are enabled and the EN (bit 15) of the EMS Page Register is treated as a one. See Port E872H description. **TABLE 6-7. LOWER PAGE FRAME ASSIGNMENTS** ## 6.4.3 EMS Page Register Port Address E872H - Bits 14-12 Read only, Bits 15, 11-00 Read and Write There are 40 EMS Page Registers accessible through Port E872H. Only EMS registers 32 through 39 are initialized to zero. EMS registers 0 through 31 are not initialized. The EMS Page Register Pointer at Port E072H provides the offset location for Port E872H. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|----|----|----|-----|-----|----|----| | EN | 0 | 0 | 0 | P11 | P10 | P9 | P8 | | | | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|----|----|----|----|----|----|----| | P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0 | | | | | | | | | | | Signal
Name | | | | | | | | _ | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|---|--|--|---|---------------------------| | EN | | | | | | | | | 0 | | Bits 14-12 | | | | | | | | | 0 | | P11-P0 . | | | | | , | | | | 0 | ### Bit 15 - EN, Enable EMS Page Register EMS Page Registers 32 through 39 can be individually enabled or disabled by the EN bit. EMS Page Registers 0 through 31 are enabled or disabled as a block by the setting of the EMS_EN field in the EMS Control Register at Port 6872H. When EMS_EN equals 11, the EN bit in this register is treated as a one for the lower Page Frame. EN = 0 - This EMS Page Register is disabled EN = 1 - This EMS Page Register is enabled Bits 14-12 - Read only, not used by the System Controller ## Bits 11-00 - P11 through P00, EMS Page Number EMS page numbers 8 through 39 and 64 through 2047 are supported for on-board memory, equal to 31.5 MBytes of EMS memory. The memory address is generated by reading the EMS page number from the System Controller and multiplying it by 16 Kbytes, then adding the lower 14 bits of the processor address to the product. This results in EMS page numbers zero through seven being mapped to the lower 128 Kbytes of memory and On-board extended memory being able to be accessed in real mode via the EMS logic. EMS page numbers 2048 through 2303, equal to 4 MBytes, are used for external EMS memory, providing a method of accessing plug-in RAM or ROM cards. If P11 is 1 when an external EMS access occurs, EMS page number bits P7 through P0 are output on RA0-7/ED0-7 and the EMS chip select is asserted. The RAM/ROM card should access data on the expansion data bus, using MEMR, MEMW, MEMCS16 and IOCHRDY to make the transfer. #### NOTE When using external EMS memory with P11 = 1, EN (bit 15) must be 0. # 7.0 PORT CHIP SELECT AND WD76C10ALP/LV REFRESH This section describes refresh control logic peculiar to the WD76C10ALP/LV and used by the power down feature. This section also describes the registers used to control the following functions: - Port chip select and control - · High speed hard disk access - · AT hard disk IDE mode - 8/16 bit 80287 bus timina - · Real-Time Clock bus location - Access to the CMOS RAM password Table 7-1 identifies the ports, their Chip Select number, I/O address and function. # 7.1 REFRESH CONTROL, SERIAL AND PARALLEL CHIP SELECTS Port Address 2072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----------|-----------|-------------|------------|------|----|----|-----------| | M_
REF | V_
REF | CBR_
REF | CBR_
SR | SCSI | PA | ıR | PAR_
L | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|-------|----|------------|----|-------|----|------------| | | SER_A | | SER_
AL | | SER_I | В | SER_
BL | | Signal
Name | | | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|---|-----|---|--|--|--|--|--|--|---------------------------| | M_REF ☆ | | | | | | | | | | 0 | | V_REF ☆ | | | | | | | | | | 0 | | CBR_RE | F | r\$ | | | | | | | | 0 | | CBR_SR | | | | | | | | | | 0 | | SCSI | | | | | | | | | | 0 | | PAR | | | | | | | | | | 00 | | PAR_L . | | | | | | | | | | 0 | | SER_A | | | | | | | | | | 000 | | SER_AL | | | | | | | | | | 0 | | SER_B | | | | | | | | | | 000 | | SER_BL | | | , | | | | | | | 0 | [☆] Featured only in the WD76C10ALP/LV # Bit 15 - M_REF, Memory Refresh Power Down Mode Featured only in the WD76C10ALP/LV The refresh period may be lengthened for extended refresh DRAM while maintaining bus compatibility. When slow refresh is selected, main on-board memory is refreshed at one eighth the normal rate. In the Full Power Down mode, selected by the FPD bit in the register at Port 1872H, and M_REF=1, the on-board DRAM is refreshed with every eighth PDREF. PDREF is a 64 KHz input signal supplied by the WD76C20. M REF = 0 - Normal refresh period for main onboard memory (Default value). M REF = 1 - Slow refresh main on-board memory. ## Bit 14 - V_REF, Video Refresh Power Down Mode Featured only in the WD76C10ALP/LV The refresh period may be lengthened for extended refresh DRAM while maintaining bus compatibility. When slow refresh is selected, main on-board memory is refreshed at one eighth the normal rate. In the Full Power Down mode, selected by the FPD bit in the register at Port 1872H, and V_REF = 1, the on-board DRAM is refreshed with every eighth PDREF. PDREF is a 64 KHz input signal supplied by the WD76C20. V REF = 0 - Normal refresh period for video memory (Default value) V REF = 1 - Slow refresh video memory ## Bit 13 - CBR_REF, CAS Before RAS Refresh For On-board DRAM Featured only in the WD76C10ALP/LV Most standard DRAMs support this type of CAS before RAS refresh, while special DRAMs do not CBR REF = 0 - Normal refresh for on-board DRAM (Default value) CBR_REF = 1 -CAS before RAS refresh **//** Bit 12 - CBR SR, CAS Before RAS Self Refresh CAS before RAS self refresh is supported only by special DRAMs. CBR SR = 0 - No CAS before RAS self refresh (Default value) CBR SR = 1 - CAS before RAS self refresh of DRAM is supported during suspend and resume, where CAS is held low continuously while in suspend. Bit 11 - SCSI, Small Computer System Interface Chip Select The SCSI is selected by chip select number 12. See Table 7-1. SCSI = 0 - SCSI chip select disabled (Default value) SCSI = 1 - SCSI chip select at I/O port 353XH Bits 10, 09 - PAR, Parallel Port Chip Select The parallel port is selected by chip select number 0FH and may be located at I/O address 278H through 27FH, 378H through 37FH, or 3BCH through 3BFH. Bits 10 and 09 may disable the chip select or locate it at one of three areas. See Table 7-1. PAR 10 09 - 0 0 PAR chip select disabled (Default value) - 0 1 PAR chip select at I/O port 3BCH 3BFH - 1 0 PAR chip select at I/O port 378H - 37FH - 1 1 PAR chip select at I/O port 278H - 27FH Bit 08 - PAR L, Parallel Port Bus Location PAR L=0- Parallel port is located on the RA0-7/ED0-7 bus. This is typical when the WD76C30 is used. PAR L = 1 - Parallel port is located on the expansion data bus. Bits 07, 06, 05 - SER A, Serial Port A Chip Select The serial port A is selected by chip select number 0EH and may be located at I/O address 2E8H through 2EFH, 2F8H through 2FFH, 3E8H through 3EFH or 3F8H through 3FFH. Bits 07, 06, and 05 may disable the chip select or locate it at one of the four areas. See Table 7-1. It is possible to select the same I/O port address for serial port A and serial port B. Selecting the same address for both ports results in an unpredictable response and should not be done. SER_A 07 06 05 - 0 0 Serial port A chip select disabled (Default value) - 0 0 1 Serial port A chip select at I/O port 3F8H 3FFH - 0 1 0 Serial port A chip select at I/O port 2F8H 2FFH - 0 1 1 Serial port A chip select at I/O port 3E8H 3EFH - 1 0 0 Serial port A chip select at I/O port 2E8H 2EFH Bit 04 - SER AL, Serial A Port Bus Location SER AL = 0 - Serial port A is located on the RA0-7/ED0-7 bus. This is typical when the WD76C30 is used. SER AL = 1 - Serial port A is located on
the expansion data bus. Bits 03, 02, 01 - SER_B Serial Port B Chip Select The serial port B is selected by chip select number 10 and may be located at I/O address 2E8H through 2EFH, 2F8H through 2FFH, 3E8H through 3EFH or 3F8H through 3FFH. Bits 03, 02 and 01 may disable the chip select or locate it at one of the four areas. See Table 7-1. It is possible to select the same I/O port address for serial port B and serial port A. Selecting the same address for both ports results in an unpredictable response and should not be done. SER_B 03 02 01 - 0 0 Serial port B chip select disabled (Default value) - 0 0 1 Serial port B chip select at I/O port 3F8H 3FFH - 0 1 0 Serial port B chip select at I/O port 2F8H 2FFH - 0 1 1 Serial port B chip select at I/O port 3E8H 3EFH - 1 0 0 Serial port B chip select at I/O port 2E8H 2EFH ## Bit 00 - SER BL, Serial B Port Bus Location SER BL = 0 - Serial port B is located on the RA0-7/ED0-7 bus. This is typical when the WD76C30 is used. SER BL = 1 - Serial port B is located on the expansion data bus # 7.2 RTC, PVGA, 80287 TIMING, AND DISK CHIP SELECTS Port Address 2872H - Read and Write Bits 12 through 07 and Port Address 3072H control the use and location of the Programmable Chip Select. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----------|-------------|--------------|------------|-----------|----|------|----| | RTC_
L | FST_
VGA | FST_
SCSI | EN_
PCS | U_
MSK | | L_MS | < | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----------|-----------|----|-----|------------|------------|-----------|-----------| | PRG_
L | HS_
HD | | P/S | HS_
287 | LK_
PSW | DS_
HD | DS
FLP | | Signal
Name | | | | | | | | e <u>fauit</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | RTC_L . | | | | | | | | 0 | | FST_VGA | | | | | | | | 0 | | FST_SCSI | | | | | | | | 0 | | EN_PCS . | | | | | | | | 0 | | U_MSK | | | | | | | | 00 | | L_MSK . | | | | | | | | 00 | | PRG_L | | | | | | | | 0 | | HS HD | | | | | | | | | 000 | |--------|--|--|--|--|--|--|--|--|-----| | P/S | | | | | | | | | 000 | | HS 287 | | | | | | | | | 0 | | LK PSW | | | | | | | | | | | DS HD | | | | | | | | | 0 | | DO ELD | | | | | | | | | Ô | ## Bit 15 - RTC L, Real-Time Clock The Real-Time Clock is normally on the RA0-7/ED0-7 bus but may be placed on the expansion data bus. RTC L = 0 - Real-Time Clock is on the RA0-7/ED0-7 bus (Default value). RTC L = 1 - Real-Time Clock is on the expansion data bus. This is the required setting when the WD76C20 is used. ## Bit 14 - FST VGA, Fast VGA Video The performance of Western Digital Imaging PVGA display controllers may be enhanced by reducing wait states for access to video I/O. This feature should only be used with Western Digital Imaging PVGA1A, WD90C90, WD90C30, WD90C20, WD90C11 and WD90C10 devices. I/O cycles to eight-bit ports 3C0H - 1H, 3C4H - 5H and 3CEH - FH are made with one wait state cycles. $FST_VGA = 0$ Normal PVGA control (Default value) FST VGA = 1 - One wait state I/O cycle to PVGA ## Bit 13 - FST SCSI, Fast SCSI The performance of the WD33C93 SCSI Contoller is enhanced by performing eight-bit accesses with one wait state rather than four wait states. $FST_SCSI = 0 -$ Four Wait States (Default value) FST SCSI = 1 - One Wait State # Bit 12 - EN_PCS, Enable Programmable Chip Select The Programmable Chip Select logic is selected with chip select 11 and may be disabled or enabled. See Table 7-1. EN PCS = 0 - Disable Programmable Chip Select (Default value) EN PCS = 1 - Enable Programmable Chip Select ## Bit 11 - U MSK, Upper Address Bits Masked U_MSK determines whether or not the upper address bits A15 through A10 are to be used as designated in the Programmable Chip Select Address Register at Port 3072H. U MSK = 0 - A15 through A10 are ignored (Default value). U MSK = 1 - A15 through A10 are included in the address ## Bits 10, 09, 08 - L_MSK, Lower Address Bits Masked L_MSK determines whether the lower four address bits A03 through A00 are to be used as designated in the Programmable Chip Select Address Register at Port 3072H. L_MSK 10 09 08 0 0 - A09 through A00 are included in the address (Default value). 0 0 1 - A00 is ignored. 0 1 0 - A00, A01 are ignored. 0 1 1 - A00, A01, A02 are ignored. 1 0 0 - A00, A02, A03 are ignored, A01 is not ignored, ver. A-F. A00, A01, A02 A03 are ignored, WD76C10A and newer. # **Bit 07 - PRG_L**, Programmable Chip Select Bus Location PRG L=0 - Programmable Chip Select is on the RA0-7/ED0-7 bus (Default value). PRG L = 1 - Programmable Chip Select is on the expansion bus. ## Bit 06 - HS_HD, High Speed Hard Disk Data Transfer Rate Enabling the high speed data transfers results in hard disk, 16-bit data transfers to be performed at a compressed timing rate rather than at the compatible bus rate. When operating in the high speed mode, the first data transfer is made at the compatible bus rate. Subsequent accesses to the hard disk port are made at high speed, with IOCS16 ignored and the WD76C20 hard disk chip select remaining stable. #### NOTE This feature requires the use of the WD76C20 and should only be used with Western Digital IDE drives WD-AC280, WD-AC140, WD-AC160, WD-AC2120, WD-AP4200, WD-AB130 and WD-AH260. HS HD = 0 - Compatible bus timing enabled (Default value). $HS_HD = 1 -$ High speed hard disk accesses enabled. Bit 05 - Not used, the state is ignored ## Bit 04 - P/S, Primary Or Secondary Disk The P/S bit is only used to select the floppy disk chip select address in the IDE mode. See Table 7-1, chip select numbers 08H through 0BH. P/S = 0 - Primary hard disk and Floppy address selected (Default value). P/S = 1 - Secondary hard disk and Floppy address selected. # **Bit 03 - HS_287,** Co-processor 80287 High Speed Timing Normal I/O read and write access to the 80287 is made with eight bit bus timing. Setting HS_287 results in 16 bit bus timing. HS 287 = 0 - Normal 80287 timing (Default value). HS 287 = 1 - Fast 80287 timing. ## Bit 02 - LK PSW, Prevent Locking Password Port 092H bit 3 (Lock_Pass) is used to prevent access to the CMOS RAM password area located at 38H through 3FH. Setting LK_PSW before attempting to set Lock_Pass, inhibits the setting of Lock_Pass. In this instance, it is possible to access the CMOS RAM password area. If Lock_Pass is set before LK_PSW, LK_PSW will have no effect. LK PSW = 0 - Port 092H bit 3, Lock_Pass can be set (Default value). LK PSW = 1 - Port 092H bit 3, Lock_Pass can not be set. Bit 01 - DS_HD, Hard Disk Chip Select 0CH, 0DH DS HD = 0 - Hard disk chip select is enabled (Default value). $DS_HD = 1 -$ Hard disk chip select is not generated. Bit 00 - DS_FLP, Floppy Disk Chip Select 08H, 09H, 0AH, 0BH $DS_FLP = 0 -$ Floppy disk chip select is enabled (Default value). DS FLP = 1 - Floppy disk chip select is not generated. # 7.3 PROGRAMMABLE CHIP SELECT ADDRESS Port Address 3072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|-----|-----|-----|-----|-----|-----|-----| | A15 | A14 | A13 | A12 | A11 | A10 | A09 | A08 | | | | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|-----|-----|-----|-----|-----|-----|-----| | A07 | A06 | A05 | A04 | A03 | A02 | A01 | A00 | | | | | | | | | | | | | | [| 1 | | | 1 | ### 7.4 CACHE FLUSH Port Address F872H - Write only | i 13 | 12 | 11 | 10 | 09 | 08 | |--------|----|-------|----------|-------------|------------------| | | | | _1 | | | | | | | | | | | | 13 | 13 12 | 13 12 11 | 13 12 11 10 | 1 13 12 11 10 09 | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|----|----|----|----|----|----|----| | | | • | - | | | • | | | | | | | | | | | | Signal
Name | | | | | | | | efault
it RSTIN | |----------------|--|--|--|--|--|--|--|--------------------| | All signals | | | | | | | | None | # 7.5 I/O PORT ADDRESSES AND CHIP SELECT ASSIGNMENTS Table 7-1 lists the I/O addresses and chip selects generated for each fixed port type. Address bits A15 through A10 are ignored for the I/O addresses listed with three digits. The ports are listed in the sequence of the chip select value. | PORT | I/O HEX
ADDRESS | CS
HEX# | FUNCTION | |---|----------------------|------------|---| | ROM Chip Select | N/A | 00 | Chip Select For BIOS ROM | | Keyboard Control | 060 - 06E
Even | 01 | Chip Select For 8042 | | 80287 | 00E0 - 00FF | 02 | Chip Select For Numeric Processor | | Power Control | 7072 | 03 | PMC Write Strobe 0 | | Reserved | | 04 | Reserved | | Real-Time Clock | 070 | 05 | RTC ALE | | Real-Time Clock | 071 | 06 | RTC Write Strobe | | Real-Time Clock | 071 | 07 | RTC Read Strobe | | Floppy Operation
Chip Select | 3F2
372 | 08 | Primary Address
Secondary Address | | Floppy Chip Select | 3F4, 3F5
374, 375 | 09 | Primary Address
Secondary Address | | Floppy Control
Chip Select | 3F7
377 | 0 A | Primary Address
Secondary Address
(Floppy Enabled, HD Disabled) | | Floppy And HD
Control Chip
Select | 3F7
377 | 0B | Primary Address
Secondary Address
(Floppy Enabled, HD Enabled) | | Hard Disk Chip
Select | 1F0,
1F1 - 1F7 | 0C | Primary Address | | Select | 170,
171 - 177 | | Secondary Address | | Hard Disk
Chip Select | 3F6
3F7 ① | OD | Primary Address | | Critip Select | 376
377 ① | | Secondary Address | TABLE 7-1. I/O ADDRESS AND CHIP SELECT ASSIGNMENTS | PORT | I/O HEX
ADDRESS | CS ②
HEX# | FUNCTION | |--------------------------------|--|----------------|---| | Serial Port A
Chip Select | 2E8 - 2EF
2F8 - 2FF
3E8 - 3EF
3F8 - 3FF | 0E
② | | | Parallel Port 0
Chip Select | 278 - 27F
378 - 37F
3BC - 3BF | OF | | | Serial Port B
Chip Select | 2E8 - 2EF
2F8 - 2FF
3E8 - 3EF
3F8 - 3FF | 10
② | | | Program Chip
Select | PROG | 11 | | | SCSI | 3530 - 353X | 12 | | | Cache Flush
 F872 | 13 | | | EMS | F072
F472 | 14
15
16 | External EMS
48 MHz Clock Disabled
48 MHz Clock Enabled | | Power Control | 7872 | 17 | PMC Write Strobe 1 | | Floppy Chip Select | 3F0 - 3F1
370 - 371 | 18 | Primary Address
Secondary Address | | Floppy Chip Select | 3F3
373 | 19 | Primary Address
Secondary Address | | Reserved | | 1E | Reserved | | Reserved | | 1F | Reserved | ① IDE Hard disk enabled, floppy disabled TABLE 71. I/O PORT ADDRESS CHIP SELECT ASSIGNMENTS Continued ② The CS # (Chip Select number) is the decoded value of CS4 - CS0. If the programmed chip select corresponds to any other decode, the programmed chip select is suppressed. If serial port A and B are programmed for the same address, serial port B chip select is suppressed. #### 8.0 POWER MANAGEMENT CONTROL The WD76C10A supports only the PMC inputs and GATE A20 PMC output. It does not support any of the PMC interrupt functions. The WD76C10ALP/LV supports all PMC inputs, output and interrupt functions. #### 8.1 SYSTEM ACTIVITY MONITOR (SAM) The System Activity Monitor (SAM) found in the WD76C10ALP/LV is a hardware solution to monitoring system activity. SAM was conceived to solve the problems associated with system activity detection in various operating environments such as DOS, Windows, OS/2 and VCPI. With the WD76C10ALP/LV a software approach was employed to determine system activity. This software approach was accomplished using a watchdog timer. As a part of the watchdog timer service, the sources of activity are checked and a determination is then made on the state of system activity. This approach does not consider the state of the system activity between watchdog timer interrupts. However, with SAM, the system activity state is continuously monitored through hardware, thus providing a more universal approach to activity detection. With the help of SAM it is now possible to: - Provide a trigger when a pre-programmed period of system inactivity time elapses. - Enable/disable the sources that constitute system activity. - Select either coarse or fine timeout values for system inactivity period. #### **System Activity** System activity denotes periods of time in which the system performs useful tasks. The sources Of System Activity are: - Unmasked pending interrupts. - · Unmasked interrupts in service. - · Access to hard disk data port. - I/O Access to programmable chip select port. - · DMA transfers. - · Coprocessor cycles. - · A programmable PCU input. NMI. SAM allows for excluding the following interrupt sources from contributing to system activity: - IRQ 0, used by DOS to keep track of the system time. - IRQ7, used for spurious interrupts and parallel port interrupts. - IRQ 8, used by Windows, OS/2 and other multitasking environments to keep the scheduler running. - A programmable interrupt level used as a power management interrupt. SAM also takes into account programs such as MOUSE.COM which, in an attempt to locate a mouse on a communication port, generates interrupts on interrupt levels 3 and 4, and leaves them pending. To overcome this problem, SAM allows only the unmasked pending interrupts on 3 and 4 to constitute system activity. ## **Using SAM for System Power Management:** a) System Timeout Capability SAM can be programmed to determine coarse periods of inactivity, with the minimum period as one minute, four seconds, up to a maximum period of 16 minutes. It is also possible to extend the maximum limit to any value by reading the Activity Before bit (ACTBEF) in the Activity Monitor Control Register at Port Address B072H. On reaching the programmed period, SAM generates a Local Attention signal. Typically, the Local Attention is tied to a power management interrupt. In response to Local Attention, the power management interrupt handler makes it possible to prepare the system for a Suspend operation. b) Responding to a Suspend Request SAM can be programmed to determine a clean breakpoint for suspending the system upon receiving the Suspend request. At the time the Suspend request is received, it is possible that the system is busy performing an indivisible operation, and it is necessary to wait for the system to finish this indivisible operation before initiating suspend. In order to do this, control to the CPU must be relinquished for just enough time for the CPU to complete the operation. This is referred as Suspend arbitration. In addition to performing Suspend arbitration, SAM is also responsible for determining the earliest opportunity to initiate the Suspend sequence. For instance, if a Suspend request is caused by a low battery condition, it is imperative that the system be placed in the suspend state as soon as possible. Here the fine granularity of SAM may be used to determine brief periods of inactivity from as low as 7.8 milliseconds to as high as 117.2 milliseconds, and establish a clean breakpoint for Suspending the system. ## Advantages of SAM: - SAM is a reliable and consistent approach to detecting system activity. - SAM is hardware based making it truly non-obtrusive. - SAM is independent of the operating environment and the execution mode of the processor. - 4. SAM can perform in two modes: - Detection of system activity for extended periods of time, for the purposes of system timeout. - Detection of brief periods of inactivity for initiating Suspend. - Programmability allows for the control of sources of system activity and setting up coarse and fine timeout values. - SAM generates a signal called Local Attention (LCL_ATN) on reaching programmed periods of timeout. This signal is generally tied to an unused IRQ level to invoke the Power Management program. - SAM also carries information on DMA activity state. This is used for determining whether it is appropriate to place the processor in the Sleep Mode. - SAM makes it possible to read the state of the interrupt controllers and, if needed, reprogram them on Resume. This is provided to handle the spurious interrupts that are generated by devices at powerup time on Resume. #### NOTE SAM cannot be used for determining when the processor should be placed in the Sleep Mode. This determination is intimately tied to the operating environment and is handled by Western Digital's Power Management drivers DOS/VCPI, Windows and OS/2 #### 8.2 PROCESSOR POWER DOWN MODE The Processor Power Down Mode is initiated by setting bit 13 of the register at Port Address 1872H to one. The CPURES signal is asserted, then tristated. An internal 200K pullup resistor holds the CPURES active. The Processor Power Down (PMC # 5) signal from the PMC Control Register is used to control the power converter from the processor. The WD76C10ALP/LV holds CPUCLK, READY, HOLD, INTRQ and NMI low to the processor. The same conditions used to restart a stopped clock also initiate the Power Up Mode. The Power Up Mode is entered by an unmasked DRQ, unmasked IRQ interrupt or a PMC input change, resulting in an unmasked NMI to Port 9072H. A Processor Power Good signal is then input on the PMCIN pin. After 1 ms., PMC Processor Power Good signal is checked for a logic 1 state. At this time, CPURES is driven high and the CPUCLK, READY, HOLD, INTRQ and NMI signals are driven to their correct states. CPURES remains asserted for 64 additional CPUCLKs. The PMC unit is composed of two external chips, 74HCT273 octal latch used for the eight PMC outputs from data bus ED0 - ED7 and a 74HCT151 8:1 multiplexer used for the PMCIN signal. The PMC output latches are cleared at power up (see Figure 5-1). The keyboard processor may access the WD76C10ALP/LV's internal registers by way of the PMC logic. The keyboard processor starts a local access by asserting LCL_REQ, which causes PMCIN 2 to be asserted and written in the PMC input register at Port 8872H (see Figure 5-1 and Table 8-2). The WD76C10ALP/LV arbitrates with refresh, DMA and master for a hold cycle from the processor. When the processor returns a hold acknowledge (HLDA), the WD76C10ALP/LV asserts LCL_ACK (PMC output 3 from Port 7072H) on the ED0 - ED7 data bus. The keyboard processor then passes the opcode/address byte to the WD76C10ALP/LV on the data bus and drops the LCL_REQ. The WD76C10ALP/LV responds by de-asserting LCL_ACK. If the opcode specified a register write, data high (D15 through D08) and data low (D07 through D00), bytes are passed to the WD76C10ALP/LV. If the opcode specified an I/O read, the data high and data low bytes are sent from the WD76C10ALP/LV to the keyboard processor. All special operation registers within the WD76C10ALP/LV may be accessed in this manner without first unlocking the register. See section 2.8.2, Port Address F073H, for Lock/Unlock Register. This method allows the keyboard processor to control speed switching and other parameters without host processor intervention. Figure 8-1 shows the handshake procedure, followed by the keyboard controller and the WD76C10ALP/LV. Figures 8-2 and 8-3 represents the power down and power up sequence and control. - 2 WD76C10ALP/LV returns LOCAL_ACK after receiving HLDA from the host processor - 3 8042 loads address and OPCODE into data register, then drops LOCAL_REQ - 4 WD76C10ALP/LV reads address and OPCODE - 5 8042 Reloads data register with high byte, then asserts LOCAL_REQ 6A WD76C10ALP/LV Reads high byte 7A WD76C10ALP/LV Read low byte, writes to internal register FOR READ CYCLE OF WD76C10ALP/LV INTERNAL REGISTER: 6B WD76C10ALP/LV Writes high byte to 8042 7B WD76C10ALP/LV writes low byte to 8042 DIR = 1 - Read register (generates IOW to 8042) DIR = 0 - Write register (generates IOR to 8042) FIGURE 8-1. REGISTER ACCESS BY KEYBOARD CONTROLLER ## 8.3 PMC OUTPUT CONTROL REGISTERS PMC OUTPUT CONTROL 7:0 Port Address 7072H - Bits 07-00 are Read only | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |------|----|----|------|----|----|----|------| | 1 -4 | | | _ '_ | | .0 | 09 | - 56 | | | | | | | | | | | | | | | | | | | PMC OUTPUT CONTROL 15:08 Port Address 7872H - Bits 07-00
are Read and Write | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|-----|-----|-----|-----|-----|-----|-----| | OUT | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Signal | | | | | | | | D | efault | |-------------|--|--|--|--|--|--|--|---|---------| | Name | | | | | | | | Α | t RSTIN | | All signals | | | | | | | | | None | 07 06 05 04 03 02 01 00 OUT | Signal
Name | | | | | | | | De <u>fault</u>
At RSTIN | |----------------|--|--|--|--|--|--|--|-----------------------------| | All signals | | | | | | | | . None | Featured only in the WD76C10ALP/LV Featured only in the WD76C10ALP/LV | PMC
NO. | PMC OUTPUT SIGNAL
PORT 7072H | PMC
NO. | PMC OUTPUT SIGNAL
PORT 7872H | |------------|---------------------------------|------------|---------------------------------| | он | CPU Clock driver enable | 8H | User defined | | 1H | LCD Enable | 9H | User defined | | 2H | Backlight enabled | AH | User defined | | 3H | LCL_ACK | BH | User defined | | 4H | LCL_ATN | CH | User defined | | 5H | Processor powerdown | DH | User defined | | 6H | Gate A20 | EH | User defined | | 7H | Full powerdown | FH | User defined | **TABLE 8-1. PMC OUTPUT SIGNALS** #### 8.4 PMC TIMERS Port Address 8072H - Read and Write When no keyboard or Mouse interrupts have occurred for the time specified by BL_TIMEOUT or LCD_TIMEOUT, PMC Output 1 or 2 is written to the PMC OUTPUT CONTROL 7:0 register at Port Address 7072H (see Table 8-1) to disable the LCD or Backlight. The timer is reset and the Backlight and LCD control re-enabled at the refresh cycle following a Keyboard or Mouse interrupt. The Mouse Interrupts are programmed by bits 01 and 00 (BL_MOU) in the RAM Shadow And Write Protect Register at Port Address 6072H. The same timer is used for the Backlight and LCD timeout. The timeout delay may be programmed in increments of five seconds, to a maximum of 1,270 seconds, or 21 minutes and 10 seconds. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|----|----|-------|-------|----|----|----| | | | | BL_TI | MEOUT | | | | | | | | DL_11 | inco. | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|----|----|-------|--------|----|----|----| | | | | LCD_1 | TIMEOU | Т | | | | | | | | | | | | | Signal
Name | | | | | | De <u>fault</u>
At RSTIN | |---------------------------------|--|--|--|--|--|-----------------------------| | BL_TIMEOUT ☆ .
LCD_TIMEOUT ☆ | | | | | | | ☆ Featured only in the WD76C10ALP/LV ## Bits 15-08 - BL_TIMEOUT, Backlight Time Out 00H - Backlight always disabled 01H - Enabled for 5 seconds 02H - Enabled for 10 seconds FEH - enabled for 254 X 5 seconds FFH - Backlight enabled #### Bits 07-00 - LCD TIMEOUT, LCD Time Out 00H - LCD always disabled 01H - Enabled for 5 seconds 02H - Enabled for 10 seconds (FEH - enabled for 254 X 5 seconds FFH - LCD enabled #### 8.5 PMC INPUTS Port Address 8872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |------|-----|----|----|----|----|----|----| | PMC_ | EN_ | AF | AF | AF | AF | AF | AF | | UPD | LCL | 7 | 6 | 5 | 4 | 3 | 2 | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|----|----|----|----|----|----|---------| | IN IN
0 | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Signal | | | | | | | D | efault | |-----------|--|--|--|--|--|--|---|---------| | Name | | | | | | | Α | t RSTIN | | PMC_UPD | | | | | | | | 0 | | EN_LCL ☆ | | | | | | | | 0 | | AF7-AF2 ☆ | | | | | | | | 0 | | IN7-IN0 | | | | | | | | None | ☆ Featured only in the WD76C10ALP/LV ## Bit 15 - PMC_UPD, Enable PMC Update $PMC_UPD = 0 -$ No update cycles occur. $PMC_UPD = 1 -$ A change of state of PMC outputs 7 through 0 (Port Address 7072H) or the internal A20 GATE, causes an update cycle of the PMC 7:0 output latch. ## Bit 14 - EN_LCL, Enable Local Request Featured only in the WD76C10ALP/LV EN_LCL enables the PMCIN 2 to initiate a local access of the WD76C10ALP/LV internal registers from the keyboard controller. EN LCL = 0 - PMCIN 2 is user defined. EN_LCL = 1 - PMCIN 2 is LOCAL_REQ. ## Bits 13-08 - AF7-AF2, Local Attention Flags Featured only in the WD76C10ALP/LV Local attention flags AF7 through AF2 are set to indicate which PMC input(s) have caused LCL_ATN in PMC Interrupt Enable Register at Port C872H to be asserted. To clear the flag and corresponding IN bit in the PMC Inputs Register, it is necessary to clear the corresponding EA bit in PMC Interrupt Enable Register. If both an EA bit and EI bit in the PMC Interrupt Enable Register are set, both must be reset to clear the corresponding IN status and AF flag. AF7 - AF2 = 0 - This PMC input did not cause LCL_ATN to be asserted. AF7 - AF2 = 1 - This PMC input caused LCL_ATN to be asserted. #### Bits 07-00 - IN7-IN0, PMC Inputs 7-0 The Activity Monitor Mask Register at Port Address D872H may be used to select one of the PMC inputs IN7 through IN2 as a source of activity for power management purposes. IN7 through IN0 are status flags which provide information about the corresponding PMC input IN7 through IN0. IN1 and IN0 represent the current state of the input, while IN7 through IN2 represent either the current state or a latched transition. An IN7 through IN2 status is unlatched when both the corresponding EI and EA bits in the PMC Interrupt Enable Register at Port C872H are reset. It becomes a latched status when either the corresponding EI or EA bit is set. See Table 8-2. #### 8.6 PMC INTERRUPT ENABLE Port Address C872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|--------------|-----------------|-----------------|-----------------|-----|----|----| | EI7 | E16
Non-m | EI5
naskable | EI4
Interrup | El3
t Enable | EI2 | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|----|----|-----------------|----|-----|----|----| | EA7 | | | EA4
ntion En | | EA2 | | : | | Signal
Name | | | | | | | | _ | e <u>fault</u>
t RSTIN | |------------------------|--|--|--|--|--|--|--|---|---------------------------| | EI7-EI2 ☆
EA7-EA2 ☆ | | | | | | | | | | [☆] Featured only in the WD76C10ALP/LV Bits 15-10 - EI7-EI2, Non-maskable Interrupt enable 7 through 2 Featured only in the WD76C10ALP/LV EI7 through EI2 enable the generation of an NMI when the corresponding PMC inputs IN_7 through IN_2 in Port 8872H change state. For example, when EI7 is a 1 and IN_7 changes from a 0 to 1 an NMI will be generated. F17-F12 = 0 - Non-maskable Interrupt not enabled FI7-FI2 - 1 Non-maskable Interrupt is enabled Bits 09, 08 - Not used, state is ignored Bits 07-02 - EA7-EA2, Local Attention Enable Featured only in the WD76C10ALP/LV EA7 through EA2 enable the assertion of LCL_ATN by the corresponding IN_7 through IN_2. LCL ATN is PMC output number 4. EA7-EA2 = 0 - LCL_ATN is not enabled EA7-EA2 = 1 - LCL_ATN is enabled Bits 01, 00 - Not used, state is ignored | PMC INPUT
NUMBER ① | PMC INPUT
NAME | INTERRUPT ON | SETS FLAG
NUMBER ② | |-----------------------|-------------------|--------------|-----------------------| | 00H | TURBO | | | | 01H | PROC_PWR_ GOOD | | | | 02H | LCL_REQ or | | IF2 or AF2 | | | User Defined | Transition | | | 03H | User Defined | Transition | IF3 or AF3 | | 04H | User Defined | Transition | IF4 or AF4 | | 05H | User Defined | Transition | IF5 or AF5 | | 06H | User Defined | Transition | IF6 or AF6 | | 07H | User Defined | Active Edge | IF7 or AF7 | ① Port Address 8872H, section 8.5 **TABLE 8-2. PMCIN INPUTS** **//** 5-81 ② Port Address 9072H, section 8.7 Port Address 8872H, section 8.5 #### 8.7 NMI STATUS Port Address 9072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|----|----|----|----|----|----|----| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|--------------|-----------------|-----------------|----------------|-----|----|----| | IF7 | IF6
Non-m | IF5
naskable | IF4
Interrup | IF3
t Flags | IF2 | 0 | 0 | | Signal
Name | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | IF7-IF2 ☆ | | | | | | | | 0-0 | ☆ Featured only in the WD76C10ALP/LV Bits 15-08 - Not used, must be 0 Bits 07-02 - IF7-IF2, Non-maskable Interrupt flags 7 through 2 Featured only in the WD76C10ALP/LV NMI interrupt flags IF7 through IF2 are set to indicate which PMC input(s), if any, have caused NMI to be asserted. To reset the flag and corresponding IN status bit in the PMC Input Register at Port 8872H, it is necessary to reset the corresponding bit in the PMC Interrupt Enable Register at Port C872H. If both an EA bit and EI bit in the PMC Interrupt Enable Register are set, both must be reset to clear the corresponding IN status and IF flag. Bits 01, 00 - Not used, must be 0 # 8.8 SERIAL/PARALLEL SHADOW REGISTER Port Address D072H - Read only The Shadow Register is particularly useful in laptop applications by allowing the suspend/resume software to restore correct status to on-board serial and parallel devices. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|----|-----|----|----|----|----|----| | SP | _A | SP_ | В | | PP | _2 | | | | | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|----|----|----|-----|----|----|----| | | | | PF | P_0 | | | | | | | | | | | | | | Signal | | | | | | | | Default | |-------------|--|--|--|--|--|--|--|----------| | Name | | | | | | | | At RSTIN | | All signals | | | | | | | | None | Bits 15, 14 - SP A, Serial Port A Register 2 This field represents bits 7 and 6 of Serial Port A Register 2. Bits 13, 12 - SP B, Serial Port B Register 2 This field represents bits 7 and 6 of Serial Port B Register 2. Bits 11-08 - PP 2, Parallel Port Register 2 This field represents bits 3-0 of Parallel Port Register 2 Bits 07-00 - PP 0. Parallel Port Register 0 This field represents bits 7-0 of Parallel Port Register 0. # 8.9 INTERRUPT CONTROLLER SHADOW REGISTER Port Address D472H - Read only When performing a resume operation, it may be advantageous to reset and reinitialize the interrupt controllers in the WD76C10A/LP/LV. Since many of the interrupt control registers are write
only, it is impossible to determine the state of the interrupt controllers at suspend time. This register makes it possible to determine the state of selected signals internal to the master and slave interrupt controllers. With this information, when the interrupt control registers are reinitialized during resume, they can be returned to the state in which they were before suspend. ICW2, ICW4, OCW2 and OCW3 referred to in this text is further defined in sections 5.5.2.2, 5.5.2.4, 5.5.3.2 and 5.5.3.3. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |------------|----|------|-----|-----|------------|-------------|------------| | AMT
OUT | DE | EV . | ТМ7 | TS7 | S F
N M | AUT_
EOI | RA_
EOI | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |---------|---------|--------|----------|----------|-------|-----|-----| | PLM2 | PLM1 | PLM0 | PLS2 | PLS1 | PLS0 | SMM | SMM | | Priorit | y Level | Master | Priority | Level \$ | Slave | M | S | | Signal
Name | De <u>fault</u>
At RSTIN | |----------------|-----------------------------| | Bits 15, 12-00 |
None | | Ditc 14 12 | 00 | ## Bit 15 - AMTOUT, Activity Monitor Timeout AMTOUT represents the current state of the timeout comparator in the activity monitor. It is for test purposes only #### Bits 14, 13 - DEV, Device DEV identifies the device as WD76C10A/LP/LV or WD7710 and is used in conjunction with VER at Port Address 9872H and SVER at Port Address A872H. DEV, VER and SVER are defined in Table 9.1. #### Bit 12 - TM7. Master Interrupt Vector Bit 7 TM7 represents bit 7 of the Interrupt Vector in the Master Interrupt Controller as set by ICW2. Bits 6 through 3 of the Interrupt Vector may be read from D6 through D3 by a Poll Command to the Master Interrupt Controller. The Poll Command is implemented by P_C = 1 (bit 2 of OCW3). #### Bit 11 - TS7. Slave Interrupt Vector Bit 7 TS7 represents bit 7 of the Interrupt Vector in the Slave Interrupt Controller as set by ICW2. Bits 6 through 3 of the Interrupt Vector may be read from D6 through D3 by a Poll Command to the Slave Interrupt Controller. The Poll Command is implemented by P_C = 1 (bit 2 of OCW3). ## Bit 10 - SFNM, Special Fully Nested Mode SFNM represents the state of ICW4 - bit 4 in the Master Interrupt Controller. The WD76C10A/LP/LV does not require SFNM for the slave interrupt controller and ignores its state. #### Bit 09 - AUT EOI, Auto End Of Interrupt AUT_EOI represents the state of ICW4 - bit 1 in the Master Interrupt Controller. The WD76C10A/LP/LV does not require AUT_EOI for the slave interrupt controller and ignores its state. #### Bit 08 - RA EOI, Rotate Auto End Of Interrupt RA_EOI indicates whether or not Rotate On Automatic End Of Interrupt has been selected in the Master Interrupt Controller by EOI_CONT (bits 7 through 5 of OCW2). The WD76C10A/LP/LV does not require Rotate On End Of Interrupt for the slave interrupt controller and ignores its state. #### RA EOI = 0 - Rotate On Auto End Of Interrupt has not been selected. ## RA EOI = 1- Rotate On Auto End Of Interrupt has been selected. #### Bits 07-05 - PLM2-PLM0, Priority Level Master PLM2-PLM0 represent the bottom priority level programmed into the Master Interrupt Controller by INT_LEV (OCW2 bits 2 through 0). 1/2 5-83 #### Bits 04-02 - PLS2-PLS0, Priority Level Slave PLS2-PLS0 represent the bottom priority level programmed into the Slave Interrupt Controller by INT_LEV (OCW2 bits 2 through 0). #### Bit 01 - SMMM, Special Mask Mode Master SMMM indicates whether Special Mask Mode has been set in the Master Interrupt Controller by a write to SMM in OCW3. SMMM = 0 - Special Mask Mode is not enabled. SMMM = 1 - Special Mask Mode is enabled. #### Bit 00 - SMMS, Special Mask Mode Slave SMMS indicates whether Special Mask Mode has been set in the Slave Interrupt Controller by a write to SMM in OCW3. SMMS = 0 - Special Mask Mode is not enabled. SMMS = 1 - Special Mask Mode is enabled. #### 8.10 PORT 70H SHADOW REGISTER Port Address E472H - Read only Bits 15 and 14 provide the information required to generate software delays, without incurring the operating system traps that result from accessing I/O Port 0061H in virtual 86 mode. Port 70H Shadow Register may be accessed without first being unlocked, making it possible to read bits 15 and 14 frequently for generating time delays. Bits 13 and 12 provide interrupt and DMA status information required to determine when the processor may be placed in Sleep Mode. Bits 07 through 00 provide a means of determining the contents of the write only Real-Time Clock Address Register at Port 0070H, described in section 5.8.1. Since it is necessary to access the Real-Time Clock CMOS RAM during suspend and resume operations, the Port 70H Shadow Register makes it possible to restore the Real-Time Clock to the state in which it was before entering Suspend Mode. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |------------|-----------|-----------|-----------|----|-----|-------|----| | CLK
32K | REF
DT | INT
RQ | NO
DMA | | Res | erved | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | | | 1/0 | Port 00 | 70H Sha | dow | | | | D_
NMI | RTC
A6 | RTC
A5 | RTC
A4 | RTC
A3 | RTC
A2 | RTC
A1 | RTC
A0 | | Signal
Name | | | | | | De <u>fa</u>
At R | | |-------------------|--|--|--|--|--|----------------------|----| | D_NMI | | | | | | 1 | | | Bits 11-08 | | | | | | |) | | All other signals | | | | | | No | ne | #### Bit 15 - CLK32K CLK32K is PDREF (at input pin 117) divided by two. CLK32K may be read to provide a stable timing reference, not subject to reprogramming of the refresh rate. CLK32K has a 30.5 µs period and a 50% duty cycle. #### Bit 14 - REFDT, Refresh Detect REFDT changes state on each refresh and is the same as bit 4 in Port Address 0061H described in section 5.9. ## Bit 13 - INTRQ, Interrupt Request This is the state of the INTRQ signal at output pin 55. #### Bit 12 - NODMA, No DMA NODMA = 0 - A DMA or Bus Master Cycle has occurred within the last $61 \mu s$ NODMA = 1 - A DMA or Bus Master Cycle has not occurred within the last 30.5 μs Bits 11-08 - Reserved. Currently defaults to 0000, but is subject to change. #### Bits 07-00 - **D_NMI**, Disable Non-maskable Interrupt **RTCA6-RTCA0**, Real-Time Clock Address Bits 07 through 00 represent the state of the Disable Non-maskable Interrupt and Real-Time Clock Address as set by the last write to Port Address 0070H. ## 8.11 ACTIVITY MONITOR CONTROL REGISTER Port Address B072H - Bits 15, 13-11, 08-00 Read and Write Bits 14, 10, 09 Read only For an overview of the Activity Monitor Register, see the general description of the Activity Monitor Mask Register in section 8.12. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|------|----|-----|-----|-----|-----|----| | IRR | CB12 | AM | ACT | IND | ACT | ACT | AM | | AE | | TM | LCH | ET | AFT | BEF | EN | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|----|------------------|----|----|----|------------------|----| | | | neout Co
AMC5 | | | | out Coun
AMC1 | | | Signal
Name | | | | | | | | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---------------------------| | IRRAE | | | | | | | | 0 | | CB12 | | | | | | | | None | | AMTM | | | | | | | | 0 | | ACTLCH | | | | | | | | None | | INDET | | | | | | | | None | | ACTAFT | | | | | | | | None | | ACTBEF | | | | | | | | None | | AMEN | | | | | | | | 0 | | AMC7-AMC0 | | | | | | | | 0-0 | ## Bit 15 - IRRAE, Interrupt Request Register Activity Enable IRRAE controls whether or not the IRR (Interrupt Request Register) bits from the Interrupt Controller at Port Address 020H, 0A0H may be a source of activity (refer to section 5.5). IRRAE = 0 - No IRR bits can be used as an activity source. IRRAE = 1 - IRR bits can be a source of activity. IRR8, IRR7 and IRR0 may still be masked by Port Address D872H. #### Bit 14 - CB12, Counter Bit 12 For factory use only. The activity monitor circuitry contains a 17-bit timeout counter for generating long timeouts. For test purposes, CB12 represents the twelfth bit of that counter. #### Bit 13 - AMTM, Activity Monitor Test Mode AMTM = 0 - Activity Monitor functions normally. AMTM = 1 - Activity Monitor is in Test Mode. Activity Monitor State Machine is clocked faster than normal and nine stages of the 17-bit timeout counter are bypassed. #### Bit 12 - ACTLCH, Activity Latch This latch is always enabled, regardless of other enable bit settings. Writing a 1 to ACTLCH has no effect. ACTLCH = 0 - The Activity Latch is reset by writing 0 to ACTLCH. ACTLCH = 1 - Activity by an unmasked source has occurred. #### Bit 11 - INDET, Inactivity Detect Writing a 1 to INDET has no effect. INDET = 0 - Writing 0 to INDET, or placing the Activity Monitor in the idle state by writing 0 to AMEN (bit 8), resets INDET, ACTAFT and ACTBEF. INDET = 1 - System is idle and the Activity Monitor has requested the local attention output be set. This occurs when there has been no unmasked activity, allowing the predetermined timeout (bits 07-00) to be reached. #### NOTE PMCIN transitions may also cause the local attention (LCL_ATN PMC 4) output to be set. #### Bit 10 - ACTAFT, Activity After INDET ACTAFT is a read only bit and its state is ignored during writes. ACTAFT = 0 - Writing 0 to INDET, or placing the Activity Monitor in the idle state by writing 0 to AMEN (bit 8), resets INDET, ACTAFT and ACTBEF. 1/2 #### ACTAFT = 1 - Activity has occurred after INDET had been set. This would happen when activity occurs during the time it takes to reach the interrupt service routine invoked by the local attention output request. ## Bit 09 - ACTBEF, Activity Before INDET ACTBEF is a read only bit and its state is ignored during writes. #### ACTBEF = 0 - Writing 0 to INDET, or placing the Activity Monitor in the idle state by writing 0 to AMEN (bit 8), resets INDET, ACTAFT and ACTBEF. ## ACTBEF = 1 - Activity did occur and reset the
timeout counter before INDET was set. This is important if consecutive timeout periods are being counted in a service routine to obtain a system timeout period other than that available using AMC7-AMC0 (bits 07-00). It would be necessary for the routine to clear the software counter if ACTBEF were set, since there would have been no activity only for the period of time programmed in AMC7-AMC0. #### Bit 08 - AMEN, Activity Monitor Enable This is the master enable for the Activity Monitor. #### AMEN = 0 - Writing 0 to AMEN places the Activity Monitor in the idle state. ### **AMEN** = 1 - Writing 1 to AMEN causes the Activity Monitor to start clocking the timeout counter. Each time an unmasked source of activity is detected, the counter is cleared. If no unmasked source of activity is detected before the timeout counter reaches the value programmed by ACM7-ACM0, INDET and the local attention output are set. The timeout counter is then cleared and a new timeout sequence begins. ## Bits 07-04 - AMC7-AMC4, Activity Monitor Counter Coarse AMC7-AMC4 establish the timeout values from 64 seconds to 16 minutes in 64 second increments. These bits must only be written when the Activity Monitor is disabled (AMEN = 0). They may be read at any time. | AMC | 7 | 6 | 5 | 4 | | | |-----|---|---|---|---|---|------------------------| | | 0 | 0 | 0 | 0 | - | 0 seconds | | | 0 | 0 | 0 | 1 | - | 1 minute, 4 seconds | | | 0 | 0 | 1 | 0 | - | 2 minutes, 8 seconds | | | 0 | 0 | 1 | 1 | - | 3 minutes, 12 seconds | | | 0 | 1 | 0 | 0 | - | 4 minutes, 16 seconds | | | 0 | 1 | 0 | 1 | - | 5 minutes, 20 seconds | | | 0 | 1 | 1 | 0 | - | 6 minutes, 24 seconds | | | 0 | 1 | 1 | 1 | - | 7 minutes, 28 seconds | | | 1 | 0 | 0 | 0 | - | 8 minutes, 32 seconds | | | 1 | 0 | 0 | 1 | - | 9 minutes, 36 seconds | | | 1 | 0 | 1 | 0 | - | 10 minutes, 40 seconds | | | 1 | 0 | 1 | 1 | - | 11 minutes, 44 seconds | | | 1 | 1 | 0 | 0 | - | 12 minutes, 48 seconds | | | 1 | 1 | 0 | 1 | - | 13 minutes, 52 seconds | | | 1 | 1 | 1 | 0 | - | 14 minutes, 56 seconds | | | 1 | 1 | 1 | 1 | - | 16 minutes, 0 seconds | #### Bits 03-00 - AMC3-AMC0, Activity Monitor Counter Fine AMC3-AMC0 establish the timeout values from 7.8 milliseconds to 117.2 milliseconds in 7.8 millisecond increments. Tolerance on time delays is -0, +3.9 milliseconds. These bits must only be written when the Activity Monitor is disabled (AMEN = 0). They may be read at any time. | AMC | 3 | 2 | 1 | 0 | | | |-----|---|---|---|---|---|--------------------| | | 0 | 0 | 0 | 0 | _ | 0 milliseconds | | | 0 | 0 | 0 | 1 | - | 7.8 milliseconds | | | 0 | 0 | 1 | 0 | - | 15.6 milliseconds | | | 0 | 0 | 1 | 1 | - | 23.4 milliseconds | | | 0 | 1 | 0 | 0 | - | 31.3 milliseconds | | | 0 | 1 | 0 | 1 | - | 39.1 milliseconds | | | 0 | 1 | 1 | 0 | - | 46.9 milliseconds | | | 0 | 1 | 1 | 1 | - | 54.7 milliseconds | | | 1 | 0 | 0 | 0 | - | 62.5 milliseconds | | | 1 | 0 | 0 | 1 | - | 70.3 milliseconds | | | 1 | 0 | 1 | 0 | - | 78.1 milliseconds | | | 1 | 0 | 1 | 1 | - | 85.9 milliseconds | | | 1 | 1 | 0 | 0 | - | 93.8 milliseconds | | | 1 | 1 | 0 | 1 | - | 101.6 milliseconds | | | 1 | 1 | 1 | 0 | - | 109.4 milliseconds | | | 1 | 1 | 1 | 1 | - | 117.2 milliseconds | #### NOTE The fine timeout delay (AMC3-AMC0) is added to the coarse timeout delay (AMC7-AMC4) to obtain the total timeout delay. 1/2 #### 8.12 ACTIVITY MONITOR MASK REGISTER Port Address D872H - Read and Write The activity monitor provides a hardware solution for determining inactivity in a system. Knowing when a system is inactive is key to performing such power reduction activities as suspend. When the Activity Monitor is enabled by the Activity Monitor Control Register at Port Address B072H, the Activity Monitor clocks a counter and invokes a service routine using local attention when the counter reaches a programmed timeout value. However, while the counter is being clocked, the Activity Monitor continuously monitors for any of several events that would indicate that the system is active. If any of these events occur, the counter is reset and the timeout starts over. Thus the service routine is only invoked when the system has been inactive for a programmed period of time. To provide a high degree of flexibility in determining what is active and what is not, many sources are routed to the Activity Monitor. These include the IRR (Interrupt Request Register) and ISR (In Service Register) bits from the Interrupt Controller, the PMC inputs, NMI output, DMA (or AT Master) cycles and I/O accesses to either the numeric coprocessor, hard disk data port or programmable chip select. All of these sources are considered activity unless masked. The interrupt input masks are controlled in the lower byte. All ISR and IRR bits are detected as activity except those specifically masked. Note, however, that ISR2 and IRR2 are not examined since they are cascade interrupts only. Also, IRR3 and IRR4 are qualified by the Mask Register in the Interrupt Controller before being passed to the Activity Monitor. The master mask for all IRR bits is the IRRAE bit in the register at Port Address B072H. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----|-----|-----|-----|-----|-----|-----|-----| | PCS | PMC | PMC | PMC | PMC | NMI | HDD | COP | | M | ILS | IS2 | IS1 | IS0 | M | M | M | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |------|------|-----------|-----------|-----------|-----------|-----------|-----------| | IMS1 | IMS0 | IRR8
M | IRR7
M | IRRO
M | ISR8
M | ISR7
M | ISR0
M | | Signal
Name | | | | | | | | Default
At RSTIN | |----------------|--|--|--|--|--|--|--|---------------------| | All signals | | | | | | | | . 0 | Bit 15 - PCSM, Programmable Chip Select Mask PCSM = 0 - Read or write I/O accesses to the ports defined by the programmable chip select in the WD76C10ALP/LV are considered activity. PCSM = 1 - Read or write I/O accesses to the ports defined by the programmable chip select in the WD76C10ALP/LV are ignored. Bit 14 - PMCILS, Power Management Control Input Level Select PMCILS determines which logic level on the selected PMC input is to be considered active. (See bits 13-11, PMCIS2-0.) PMCILS = 0 - PMCIN is active low. PMCILS = 1 - PMCIN is active high. Bits 13-11 - PMCIS2-PMCIS0, Power Management Control Input Select > One of the PMC inputs IN7 through IN2 at Port Address 8872H may be selected for detection as a source of activity. #### NOTE The El and EA bits at Port Address C872H, corresponding to the selected IN signal, should be cleared to prevent the IN signal from being latched internally. PMCIS 2 1 0 0 0 0 - PMC input 2 selected 0 0 1 - PMC input 3 selected 0 - PMC input 4 selected 0 1 1 PMC input 5 selected 0 - PMC input 6 selected 0 1 - PMC input 7 selected 1 0 - Reserved 1 1 1 - Disabled, no PMC inputs checked Bit 10 - NMIM, Non-maskable Interrupt Mask NMIM = 0 - The NMI output is used as a source of activity. NMIM = 1 - The NMI output is ignored. **%** ### Bit 09 - HDDM, Hard Disk Data Port Mask HDDM = 0 - If the hard disk chip select has been enabled by bit 01 at Port Address 2872H, I/O read and write operations to the 16-bit hard disk data port are allowed as a source of activity. HDDM = 1 - The hard disk data port I/O is ignored. #### Bit 08 - COPM, Coprocessor Mask COPM = 0 - I/O cycles to the coprocessor are treated as a source of activity. For an 80286 system, this is I/O address range 00F8H-00FFH. For an 80386SX system, this is when A23 is high and M/IO is low. COPM = 1 - I/O to the coprocessor is ignored. ## Bits 07, 06 - IMS1-0, Interrupt Mask Select The local attention generated by the Activity Monitor will be routed to an available interrupt input to invoke a service routine. That interrupt is not to be detected as a source of activity. IMS1-0 provide a selection of four possible inputs to be used for this function and masks the corresponding IRR and ISR bits as sources of activity. IMS 1 0 0 0 - IRQ5 masked 0 1 - IBQ10 masked 1 0 - IRQ11 masked 1 1 - IRQ15 masked #### Bit 05 - IRR8M, Interrupt Request Register 8 Mask IRR8M = 0 - Real-Time Clock Interrupt (IRR8) may be detected as a source of activity. Bit 15 in the Activity Monitor Control Register at Port Address B072H must also be set IRR8M = 1 - Real-Time Clock Interrupt (IRR8) is ignored. Bit 04 - IRR7M, Interrupt Request Register 7 Mask IRR7M = 0 - Parallel Port or Spurious Interrupt (IRR7) may be detected as a source of activity. Bit 15 in the Activity Monitor Control Register at Port Address B072H must also be set. IRR7M = 1 - Parallel Port or Spurious Interrupt (IRR7) is ignored. Bit 03 - IRROM, Interrupt Request Register 0 Mask IRROM = 0 - Time Of Day Interrupt (IRR0) may be detected as a source of activity. Bit 15 in the Activity Monitor Control Register at Port Address B072H must also be set. IRROM = 1 - Time Of Day Interrupt (IRR0) is ignored. Bit 02 - ISR8M, Interrupt Service Register 8 Mask ISR8M = 0 - Real-Time Clock Interrupt (ISR8) may be detected as a source of activity. ISR8M = 1 - Real-Time Clock Interrupt (ISR8) is ignored. Bit 01 - ISR7M, Interrupt Service Register 7 Mask ISR7M = 0 - Parallel Port or Spurious Interrupt (ISR7) may be detected as a source of activity. ISR7M = 1 - Parallel Port or Spurious Interrupt (ISR7) is ignored. Bit 00 - ISROM, Interrupt Service Register 0 Mask ISROM = 0 - Time Of Day Interrupt (ISR0) may be detected as a source of activity. ISROM = 1 - Time Of Day Interrupt (ISR0) is ignored. #### 8.13 SAVE AND RESUME When the WD76C10ALP/LV is in the Save And Resume Mode, it typically draws less than 500 μ A. Figures 8-2 and 8-3 illustrate the steps that the WD76C10ALP/LV goes through during power down and power up. FIGURE 8-2. POWER DOWN FIGURE 8-3. POWER UP **//**/ 3/19/92 5-89 #### 9.0 DIAGNOSTIC MODE Simultaneously asserting MASTER, MEMR and MEMW while RSTIN is asserted, causes all output pins to become tristated. The outputs remain tristated if RSTIN is de-asserted while MASTER, MEMR and MEMW are asserted. The outputs become
active drivers when RSTIN is asserted and any of the MASTER, MEMR or MEMW are not asserted. This all output tristate mode allows an in-circuit board tester to drive the System Controller's output pins. #### 9.1 DIAGNOSTIC REGISTER Port Address 9872H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |----|-----|----|-------------|-------------|-------------|----|-----------| | ı | VER | | CLK_
TST | REF_
MAS | AUT_
A20 | | CLK
SW | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |----|----|----|----|-----|----|----|----| | sx | DS | | | DIA | \G | | | | | | | | | | | | | Signal
Name | | | | | | | | A | e <u>fault</u>
t RSTIN | |----------------|--|--|--|--|--|--|--|---|---------------------------| | VER | | | | | | | | | VER# | | CLK TST | | | | | | | | | 0 | | REF MAS | | | | | | | | | 0 | | AUT A20 | | | | | | | | | 0 | | Bit 09 | | | | | | | | | None | | CLK SW | | | | | | | | | 0 | | SX | | | | | | | | | None | | DS | | | | | | | | | 0 | | DIAG | | | | | | | | | 0-0 | #### Bits 15, 14,13 - VER, Version Number The initial version number is 000 and is incremented with every mask change. If version seven is read, it is necessary to read the device type (DEV) from Port Address D472H, then the secondary version number (SVER) from Port Address A872H. See Table 9-1. #### Version 000 WD76C10 Initial Rev. A 001 WD76C10 Rev. B 010 WD76C10 Rev. C 011 WD76C10 Rev. D 100 WD76C10 Rev. E 101 WD76C10 Rev. F 110 WD76C10A Rev. A 111 Extended Versions | PORT AD | DRESS D472H | | | | | | A872H
RSION | |------------|-------------|------|----|----|----|----|----------------| | Bits 14 13 | B Device | Bits | 15 | 14 | 13 | 12 | Version | | loo | WD76C10A | ļ | 0 | 0 | 0 | 0 | Α | | 0 1 | WD7710 | | 0 | 0 | 0 | 1 | В | | 1 0 | Reserved | | 0 | 0 | 1 | 0 | С | | 1 1 | Reserved | | - | - | - | - | | | | | | 1 | 1 | 1 | 1 | Р | #### TABLE 9-1. EXTENDED VERSION NUMBER ### Bit 12 - CLK TST, Clock Test Diagnostics for factory use only. #### Bit 11 - REF MAS, Bus Master Refresh Additional external logic may be required to support the bus master initiated refresh. REF MAS = 0 - Does not support bus master initiated refresh (Default value). REF_MAS = 1 - Supports bus master initiated refresh. #### Bit 10 - AUT A20, Automatic Gate A20 Normally, the Alternate Gate A20 signal from Port 092H is OB'ed with the 8042 Gate A20. When the AUT_A20 bit is set, the Alternate Gate A20 control bit automatically changes state to match the keyboard's Gate A20. Bit 1 (ALT_A20G) of Port 092H is set or reset according to the way 8042 is programmed. When the keyboard data port is read using the D1 keyboard controller command, the state of the Gate A20 status bit is replaced by that of AUT_A20. The state of the A20 gating signal is available on PMC output 6 by reading Port 7072H (see Table 8-1). // 5 AUT A20 = 0 - Normal Alternate Gate A20 (Default value). AUT_A20 = 1 -Automatic Gate A20 Bit 09 - Not used, state is ignored. ## Bit 08 - CLK SW, Clock Switch The short clock switch reset pulse width is 1 μ s plus 16 CPUCLKs. The 80486 processor requires a 1 ms clock switch. CLK SW = 0 - Short clock switch reset width (Default value) CLK SW = 1 - 1 ms clock switch reset width ## Bit 07 - SX, 80386SX Processor At power up the System Controller samples the type of processor in the system. SX = 0 - 80286 processor was detected. SX = 1 - 80386SX processor was detected. #### Bit 06 - DS, Diagnostic Signal DS represents the state of the diagnostic signal selected by DIAG (bits 05 through 00). #### Bits 05-00 - DIAG, Diagnostic Function DIAG selects the diagnostic function to be performed. The DS bit represents the state of the signal selected. Table 9-2. lists the tests available. DIAG = 00000 - Diagnostic output disabled, speaker normal. DIAG = 00001 - Diagnostic output disabled, speaker disabled. | DIAG | FUNCTION | DIAG | FUNCTION | |-------|------------------|-------|----------| | 00000 | Normal Speaker | 10000 | Reserved | | 00001 | Speaker Disabled | 10001 | " | | 00010 | Reserved | 10010 | " | | 00011 | п | 10011 | " | | 00100 | l n | 10100 | " | | 00101 | п | 10101 | " | | 00110 | п | 10110 | - | | 00111 | " | 10111 | " | | 01000 | 11 | 11000 | " | | 01001 | " | 11001 | n | | 01010 | " | 11010 | " | | 01011 | ** | 11011 | " | | 01100 | ** | 11100 | " | | 01101 | " | 11101 | " | | 01110 | н | 11110 | " | | 01111 | u u | 11111 | | | | | | | **TABLE 9-2. DIAGNOSTIC TESTS** **%** 3/19/92 #### 9.2 DELAY LINE DIAGNOSTIC REGISTER Port Address A072H - Read and Write | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 80 | |----|----|----|----|----|----|----|----| 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|----|----|----|-------|----|----|----| | LAT | DL | | | DELAY | , | | | | | | | | | | | | | Signal
Name | Default
At RSTIN | |----------------|---------------------| | Bits 15-08 |
. None | | LAT |
. 0 | | DL |
. 0 | | DELAY |
None | ## Bit 07 - LAT, Latch Output Strength The delay line count value (bits 05-00) is used to control the output buffer strength. The output buffer strength is normally adjusted every time the delay count changes. LAT may be used to lock the buffer strength at its present value. LAT = 0 - The output buffer strength is adjusted when the delay count changes. LAT = 1 - The output buffer strength is locked at its present value. #### Bit 06 - DL, Delay Freeze The internal self tuning delay line normally is updated by one delay element during every refresh cycle. For test purposes, the delay may be forced to stop generating calibration cycles. When delay line updates are frozen, the tester may write different delay line counter values in bits 05-00. DL = 0 - Normal delay line operation (Default value) DL = 1 - Freeze delay line ## Bits 05-00 - DELAY, Delay Counter Value The delay line counter value is used to control the output buffer strength. This register may be written to when DL is set to one. ## 5 #### 9.3 TEST ENABLE REGISTER Port Address A872H - Bits 15-10 Read only Bits 09-00 Read and Write The test function bits 07-03 are for factory use only. | | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | | | |---|----|-----|----|----|------|------|------|-----|--|--| | | | SVE | ≣R | | BF40 | BC40 | RSVD | TDL | | | | ĺ | | | | | | | | | | | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |-----|----------|-----------|-----------|------------|------------|-------|------------| | OLD | BFC
3 | BIST
3 | BFC
40 | BIST
40 | EN_
PLD | DISFA | EN_
LVL | | Signal | | | | | | | | D | efault | |-------------|--|---|--|--|--|--|--|---|---------| | Name | | | | | | | | Α | t RSTIN | | All signals | | - | | | | | | | 0-0 | Bits 15-12 - SVER, Secondary Version Number. Refer to VER at Port Address 9872H and Table 9-1. Bit 11 - BF40, EMS Register Self Test Status Bit 10 - BC40, EMS Register Self Test Status Bit 09 - RSVD, Reserved for future use. Bit 08 - TDL, Test Delay Line. Bit 07 - OLD IHLD, OLD_IHLD = 0 - SX test not enabled OLD IHLD = 1 - SX test enabled Bit 06 - BFC3. BFC3 = 0 - DMA register file test BFC3 = 1 - DMA register file test Bit 05 - BIST3. BIST3 = 0 - DMA register file test BIST3 = 1 - DMA register file test Bit 04 - BFC40. BFC40 = 0 - EMS mapping RAM BFC40 = 1 - **EMS** mapping RAM Bit 03 - BIST40. BIST40 = 0 - EMS mapping RAM BIST40 = 1 - **EMS** mapping RAM Bit 02 - EN PLD, Enable Pulldown EN PLD = 0 - Pulldown resistors are not enabled. EN PLD = 1 - 40K to 100K internal pulldown resistors will be enabled during processor power down or full power down on processor address lines A23 through A00, and on processor data lines D15 through D00. Bit 01 - DISFA, Disable First Access DISFA = 0 - First access Page Mode cycles are not disabled. DISFA = 1 - First access Page Mode cycles are disabled. Page Miss cycles occur instead. Bit 00 - EN LVL, Enable Level The Interrupt Controller may be programmed to support Level Sensitive Mode for diagnostic adapters which may need to test this capability. EN LVL = 0 - Level Sensitive Interrupt Mode in the 8259 Interrupt Controller is not supported. L_T (bit 3) at Port 020H has no effect. **EN LVL = 1 -** Level Sensitive Interrupt Mode in the 8259 Interrupt Controller is supported. L_T (bit 3) at Port 020H now controls the selection of Edge or Level sensed interrupts. #### 9.4 TEST STATUS REGISTER Port Address DC72H - Read only For factory use only. | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | |-----------|-----------------|----------------|------|------|------|------|------| | De
CAL | lay Line
MED | Status
SLOW | DLT6 | DLT5 | DLT4 | DLT3 | DLT2 | | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 | |------|------|------|------|------|------|------|----| | DLT1 | DLT0 | BF34 | BF33 | BF32 | BF31 | BF30 | вс | | | | | | | | | | | Signal | | | | | | | | D | e <u>fault</u> | |-------------|--|--|--|--|--|--|--|---|----------------| | Name | | | | | | | | Α | t RSTIN | | All signals | | | | | | | | | None | ## Bit 15 - CAL, Calibration CAL = 0 - Internal delay line has not completed initial calibration. CAL = 1 - Internal delay line has completed initial calibration. #### Bits 14, 13 - MED, SLOW, Medium and Slow These bits provide information regarding the output buffer strength and pertain to the WD76C10A/LP/LV. | MED | SLOW | | |-----|------|---| | 0 | 0 - | Output buffers are set to low strength (fast). | | 0 | 1 - | Invalid | | 1 | 0 - | Output buffers are set to medium strength (medium speed). | | 1 | 1 - | Output buffers are set to full strength (slow). | #### Bits 12-06 - DLT6-DLT0, These bits provide information about internal nodes and are for test purposes only. Their state is dependent upon the test mode selected and the speed of the WD76C10A/LP/LV. #### Bits 05-01 - BF34-BF30, These bits provide information about internal nodes and are for test purposes only. Their state is dependent upon the test mode selected and the speed of the WD76C10A/LP/LV. #### Bit 00 - BC This bit
provides information about internal nodes and are for test purposes only. Its state is dependent upon the test mode selected and the speed of the WD76C10A/LP/LV. ## 10.0 DC ELECTRICAL SPECIFICATIONS This section provides the DC Operating Characteristics for the WD76C10A/LP. The parameters for the WD76C10ALV that differ from these are marked with an * and appear in the appendix. #### 10.1 MAXIMUM RATINGS | Supply Voltage (Vcc) wi | th r | esp | ec | t to | ۷s | s (ç | gro | und | 1) | | | Vcc - Vss ≤ 7.0 Volts | |-------------------------|------|-----|-------|------|------|------|-----|-----|----|--|--|----------------------------------| | Voltage on any pin with | res | pe | ct to |) Vs | ss (| gro | un | d) | | | | Vss -0.3 Volts to Vcc +0.3 Volts | | Operating Temperature | | | | | | | | | | | | 0°C (32°F) to 70°C (158°F) | | Storage Temperature | | | | | | | | | | | | -40°C (-40°F) to 125°C (257°F) | | Power Dissipation . | | | | | | | | | | | | 600 mW * | #### NOTE Maximum limits indicate where permanent device damage occurs. Continuous operation at these limits is not intended and should be limited to those conditions specified in the DC Operating Characteristics. ### 10.2 DC OPERATING CHARACTERISTICS $TA = 0^{\circ}C (32^{\circ}F) \text{ to } 70^{\circ}C (158^{\circ}F)$ Vcc = +5V ±.25V (5%) for WD76C10A and WD76C10ALP * | SYMBOL | CHARACTERISTIC | MiN | MAX | UNIT | CONDITIONS | |--------|--|----------|------------|----------|--| | IIL | Input Leakage | | ± 10 | μА | Vin = .4 to Vcc | | IOZ | Tristate And Open Drain
Output Leakage | | ± 10 | μА | Vout = .4 to Vcc | | VIH | Input High Voltage | 2.0 | | V | | | VIL | Input Low Voltage | | .8 | V | | | VIHC | CPUCLK Input High * | 3.6 | | v | | | VIL | CPUCLK Input Low | | .6 | V | | | VIH | RSTIN Input High Voltage | Vcc -0.5 | | V | | | VIL | RSTIN Input Low Voltage | | 0.5 | V | | | ICC | Supply Current * | | 200
150 | mA
mA | Inputs at 2.0V
Inputs at 5.0V
Outputs Open,
CPUCLK = 32 MHz | | ICCSB | Typical Supply Current,
Power Down Mode For
WD76C10ALP | .5 | | mA | Typical,
CPUCLK Off,
CLK14 = 32 KHz | **TABLE 10-1. DC OPERATING CHARACTERISTICS** 3/19/92 #### FOR PINS WITH INTERNAL PULLUPS: MASTER, IOCK, IOCS16, MEMCS16, ZEROWS, IOCHRDY, RDYIN, PDREF | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|------|------|-----------------------------| | IIL | Input Pullup Current * | -30 | -110 | μА | Not suspend and resume mode | ## **TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued)** M/IO. PEACK, NPERR, NPBUSY, SO, S1, NPRST, CPURES, DPH, DPL | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|------|------------|---------------------------------------| | IIL | Input Pullup Current * | -30 | -110 | m A | Not processor down or
suspend mode | ## **TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued)** PMCIN, IOCHRDY, ZEROWS, IOCS16, MEMCS16, MASTER, PDREF, REFRESH, BHE, IOR, IOW, MEMR, MEMW | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|------|------|------------------| | IIL | Input Pullup Current * | -30 | -110 | mA | Not suspend mode | ## TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued) CASL3, CASL2, CASH3, SDT/R | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|------|------|--------------| | IIL | Input Pullup Current * | -30 | -110 | mA | RESET IN = 0 | ## **TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued)** #### FOR PINS WITH INTERNAL PULLDOWNS: A23-A0, D15-D0 | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|--------------------------|-----|------|------|---| | IIL | Input Pulldown Current * | -30 | -110 | μА | Processor power down or
suspend mode | TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued) 7/ ## **FOR OUTPUTS:** DACK2-0, DACKEN, D15-D0, READY, CPURES, HOLD, INTRQ, A23-A0, NMI, DPH, DPL, RA10-RA8, RA7/ED7-RA0/ED0, BHE, RAS3-RAS0, CASL3-CSL0, CASH3-CASH0, W/R, DT/R, DEN1, DEN0, SDT/R, SDEN, CSEN, LOMEG | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|-----------------------|------|-----|------|----------------| | VOH | Output High Voltage * | Vcc8 | i | V | IOUT = -100 μA | | VOH | Output High Voltage * | 2.4 | | V | IOUT = -2 mA | | VOL | Output Low Voltage * | | .4 | V | IOUT = 2 mA | TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued) #### FOR OUTPUTS: MXCTL2-0 | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|-----------------------|------|-----|------|----------------| | VOH | Output High Voltage | Vcc8 | | v | IOUT = -200 μA | | VOH | Output High Voltage * | 2.4 | | V | IOUT = -4 mA | | VOL | Output Low Voltage * | ļ | .4 | V | IOUT = 4 mA | | | | | 1 | | | ## **TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued)** #### **FOR OUTPUTS:** IOR, IOW, MEMR, MEMW, AEN, SYSCLK, BALE, LA20, SA0 | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|----------------------|-----|-----|------|--------------| | VOH | Output High Voltage | 2.4 | | v | IOUT = -3 mA | | VOL | Output Low Voltage * | | .5 | V | IOUT = 24 mA | **TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued)** #### **FOR OUTPUT:** REFRESH | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|----------------------|-----|-----|------|--------------| | VOL | Output Low Voltage * | | .5 | v | IOUT = 24 mA | TABLE 10-1. DC OPERATING CHARACTERISTICS (Continued) ## 11.0 AC OPERATING CHARACTERISTICS The AC Operating Characteristics are divided into three major categories: Memory Timing, section 11.1, AT Bus Timing, section 11.2 and Processor Timing, section 11.3. This section provides the AC Operating Characteristics for the WD76C10A/LP. The parameters for the WD76C10ALV that differ from these are marked with an * and appear in the appendix. Table 11-1 lists the timing tables and figures, and their section location. | TABLE
NUMBER | FIGURE
NUMBER | TITLE | SECTION | |-----------------|------------------|---|------------------| | 11-3 | | 80286 - Page Mode Memory Timing | 11.1.1 | | | 11-1 | 80286 - Page Mode First Access Read/Write | 11.1.1 | | | ‡
11-6 | 80286 - Page Mode Read Hit Followed By Write Hit | 11.1.1 | | 11-4 | | 80286 - Non-Page Mode 00 Memory Timing | 11.1.2 | | | 11-7 | 80286 - Non-Page Mode 00 1 Wait State Write | 11.1.2 | | | 11-8 | 80286 - Non-Page Mode 00 1 Wait State Read | 11.1.2 | | | 11-9 | 80286 - Non-Page Mode 00 2 Wait States Read After Write | 11.1.2 | | 11-5 | | 80286 - Non-Page Mode 01 Memory Timing | 11.1.3 | | 11 3 | 11-10 | 80286 - Non-Page Mode 01 0 Wait State Write | 11.1.3 | | | 11-11 | 80286 - Non-Page Mode 01 0 Wait State Read | 11.1.3 | | 11-6 | 11-11 | 80386SX - Page Mode Memory Timing | 11.1.4 | | 11-0 | 11-12
‡ | 80386SX - Page Mode, First Access Read/Write | 11.1.4 | | | 11-17 | 80386SX - Page Mode, Write Miss Following A Write | 11.1.4 | | 11-7 | '' '' | 80386SX - Non-Page Mode 00 And Mode 01 | 11.1.5 | | 11-7 | 11-18
‡ | 80386SX - Non-Page Mode 00 1 Wait State Read | 11.1.5 | | | 11-21 | 80386SX - Non-Page Mode 00 1 Wait State Read | 11.1.5 | | 11-8 | 1121 | CPU Initiated AT Bus Cycles | 11.2.1 | | 11-0 | 11-22
1 | AT Bus I/O Or Memory Read: 8-Bit, Default Timing | 11.2.1 | | | 11-31 | AT Bus I/O Or Memory Write: 16-Bit, Default Timing | 11.2.1 | | 11-9 | ', '. | Entering The AT Bus | 11.2.2 | | 11-9 | 11-32 | 80286 CPU - Asysnchronous CPUCLK To SYSCLK,
BREQ Delay = 1/2 Clock | 11.2.2 | | | 1 1 | | | | 11-10 | 11-37 | 80386SX CPU - Synchronous CPUCLK To SYSCLK Exiting The AT Bus | 11.2.2
11.2.3 | | | 11-38 | Synchronous AT Bus Cycle Completion,
AT Bus Clock = 1/2 CPUCLK | 11.2.3 | | | 1 | | | | | 11-41 | Asynchronous AT Bus Cycle Completion, BAK DEL = 0 Or +0.5 AT Bus Cycles | 11.2.3 | | 11-11 | | DMA Entering And Exiting The AT Bus | 11.2.4 | | | 11-42 | Basic DMA Cycle, Default Timing | 11.2.4 | | | 11-43 | DMA Cycle, 8-Bit I/O To On-board Memory | 11.2.4 | | | 11-44 | DMA Cycle, On-board Memory To 8-Bit I/O | 11.2.4 | | 11-12 | '' | AT Bus Master Cycle | 11.2.5 | | 11 12 | 11-45 | AT Bus Master, Bus Acquisition/Release | 11.2.5 | | | 11-46 | AT Bus Master, Write To On-board Memory | 11.2.5 | | | 11-47 | AT Bus Master, Read From On-board Memory | 11.2.5 | | 11-13 | '' | AT Bus Refresh Cycle, Default Timing | 11.2.5 | | 11-13 | 11-48 | AT Bus Refresh Cycle, Default Timing | 11.2.5 | TABLE 11-1. TIMING FIGURE/TABLE NUMBERS 1/2 | TABLE
NUMBER | FIGURE
NUMBER | TITLE | SECTION | |-----------------|------------------|--|---------| | 11-14 | | 80286 CPU TIMING | 11.3 | | | 11-49
↓ | 80286 - CPURES AND NPRST DURING POWER UP | 11.3 | | | 11-54 | 80286 - MISCELLANEOUS TIMING | 11.3 | | 11-15 | | 80386SX CPU TIMING | 11.3 | | | 11-55
‡ | 80386SX - CPURES AND NPRST DURING POWER UP | 11.3 | | | 11-62 | 80386SX - OUTPUT DELAY TIMING | 11.3 | TABLE 11-1. TIMING FIGURE/TABLE NUMBERS (Continued) | SIGNAL | LOAD | SIGNAL | LOAD | SIGNAL | LOAD | |--|--|--|--|--|--| | CPURES W/R SDEN MXCTL2 - 0 LOMEG HOLD BUSYCPU CPUCLK CASL3 - 0 DPL IOR LA20 BALE | 50
pF
50 pF
50 pF
50 pF
50 pF
50 pF
70 pF
75 pF
100 pF
200 pF
200 pF | NPRST ALE DT/R DACKEN SPKR INTRQ EPEREQ SYSCLK D15 - D0 RAS3 - RAS0 MEMW SA0 REFRESH | 50 pF
50 pF
50 pF
50 pF
50 pF
50 pF
50 pF
75 pF
100 pF
150 pF
200 pF
200 pF | BHE DEN1, DEN0 SDT/R CSEN READY NMI A23 - A0 CASH3 - Ō * DPH IOW MEMR AEN RA10 - RA0 * | 50 pF
50 pF
50 pF
50 pF
50 pF
50 pF
60 pF
75 pF
100 pF
200 pF
200 pF | | 5, 1,2,2 | | 1121112011 | 200 pi | I IIAO - IIAO | 350 pF | **TABLE 11-2. SIGNAL LOADING** #### 11.1 MEMORY TIMING Sections 11.1.1 through 11.1.5 present the memory timing for Page Mode and Non-Page Mode, for the 80286 and 80386SX processors. Categories are grouped as follows: 80286 Page Mode Non-Page Mode 00 Non-Page Mode 01 80386SX Page Mode Non-Page Mode 00 and 01 Mnemonics used in the timing diagrams and tables are defined as: TC Command Cycle TW Wait State Cycle Status Cycle TS - Status Cycle WNRDRAM - Write Not Read DRAM (W/R pin 119). ## 11.1.1 80286 Page Mode Timing | SYMBOL | CHARACTERISTIC | MAX
12.5 MHz | MAX
20 MHz | |--------|--|-----------------|---------------| | T220 | Processor address to RAM address valid, Page Hit | 32 | 30 | | T221 | CPUCLK fall to CAS fall, 2.5 CLK CAS | 36 | 34 | | T222 | CPUCLK rise to CAS rise | 29 | 27 | | T223 | CPUCLK rise to CAS fall, 2.0 CLK CAS | 30 | 26 | | T224 | Processor data to parity valid | 25 | 22 | | T225 | CPUCLK fall to RAM address valid, Page Miss | 39 | 36 | | T226 | CPUCLK fall to WNRDRAM rise | 34 | 31 | | T227 | CPUCLK rise to RAS fall, first access | 28 | 26 | | T228 | CPUCLK fall to column address valid | 44 | 41 | | T229 | CPUCLK fall to WNRDRAM fall | 34 | 31 | | T232 | CPUCLK fall to RAS rise, Page Miss | 29 | 27 | | T233 | CPUCLK rise to RAS fall, Page Miss | 28 | 26 | | T234 | CPUCLK rise to READY rise | 24 | 22 | | T235 | CPUCLK rise to READY fall | 24 | 22 | TABLE 11-3. 80286 - PAGE MODE MEMORY TIMING FIGURE 11-1. 80286 - PAGE MODE FIRST ACCESS READ/WRITE FIGURE 11-2. 80286 - PAGE MODE READ CYCLE FOLLOWED BY A PAGE HIT FIGURE 11-3. 80286 - PAGE MODE READ AFTER WRITE FIGURE 11-4. 80286 - PAGE MODE, PAGE MISS READ/WRITE FIGURE 11-5. 80286 - PAGE MODE, WRITE MISS FOLLOWING WRITE **//** FIGURE 11-6. 80286 - PAGE MODE READ HIT FOLLOWED BY A WRITE HIT ## 11.1.2 80286 Non-Page Mode 00 Timing | SYMBOL | CHARACTERISTIC | MAX
12.5 MHz | MAX
20 MHz | |--------------|-------------------------------------|-----------------|---------------| | T234
T235 | See Table 11-3
See Table 11-3 | | | | T252 | CPUCLK fall to CAS rise | 33 | 30 | | T255 | CPUCLK fall to RAS fall | 35 | 32 | | T270 | CPUCLK fall to ROW address | 46 | 42 | | T271 | CPUCLK fall to CAS fall | 37 | 34 | | T273 | CPUCLK fall to WNRDRAM fall | 33 | 31 | | T274 | CPUCLK fall to WNRDRAM rise | 33 | 31 | | T275 | Data holding tristate. ① | 12 | 12 | | T276 | Clock fall to parity valid | 30 | 27 | | T277 | CPUCLK fall to RAS rise | 30 | 28 | | T278 | CPUCLK fall to COLUMN address valid | 41 | 38 | | T279 | Processor address to ROW address | 32 | 30 | TABLE 11-4. 80286 - NON-PAGE MODE 00 MEMORY TIMING FIGURE 11-7. 80286 - NON-PAGE MODE 00, 1 WAIT STATE WRITE (4072H = 0001) FIGURE 11-8. 80286 - NON-PAGE MODE 00, 1 WAIT STATE READ (4072H = 0001) FIGURE 11-9. 80286 - NON-PAGE MODE MODE 00, 2 WAIT STATES READ AFTER WRITE (4072H = 0001) ## 11.1.3 80286 Non-Page Mode 01 Timing | SYMBOL | CHARACTERISTIC | MAX
12.5 MHz | MAX
20 MHz | |--------|-------------------------------------|-----------------|---------------| | T224 | See Table 11-3 | | | | T234 | See Table 11-3 | | | | T235 | See Table 11-3 | | | | T252 | See Table 11-4 | | | | T253 | CPUCLK fall to WNRDRAM fall | 34 | 31 | | T254 | CPUCLK fall to WNRDRAM rise | 34 | 31 | | T255 | See Table 11-4 | | | | T257 | CPUCLK rise to RAS rise | 35 | 32 | | T258 | CPUCLK rise to COLUMN address valid | 44 | 40 | | T276 | See Table 11-4 | | | TABLE 11-5. 80286 - NON-PAGE MODE 01 MEMORY TIMING FIGURE 11-10. 80286 - NON-PAGE MODE 01, 0 WAIT STATE WRITE (4072H = 3560H) FIGURE 11-11. 80286 - NON-PAGE MODE 01, 0 WAIT STATE READ (4072H = 3560H) ## 11.1.4 80386SX Page Mode Timing | SYMBOL | OL CHARACTERISTIC | | MAX
20 MHz | MAX
25 MHz | |--------|--|-----------------------------|---------------|---------------| | T200 | Processor ADDRESS to RAM address valid, Page Hit | | 34 | 27 | | T201 | CPUCLK rise to CAS fall, 2.5 CLK CAS | | 31 | 25 | | T202 | CPUCLK fall to CAS rise | | 24 | 21 | | T203 | CPUCLK fall to CAS fall, 2.0 CLK CAS | | 27 | 22 | | T204 | Processor data to parity valid | | 25 | 20 | | T205 | CPUCLK rise to RAM address valid, Page Miss | | | | | T206 | CPUCLK rise to WNRDRAM rise | se to WNRDRAM rise | | 28 | | T207 | CPUCLK fall to RAS fall, first access | I to RAS fall, first access | | 21 | | T208 | CPUCLK rise to COLUMN address valid | | 49 | 33 | | T209 | CPUCLK rise to WNRDRAM fall | | 31 | 28 | | T212 | CPUCLK rise to RAS rise, Page Miss | | 27 | 24 | | T213 | CPUCLK fall to RAS fall, Page Miss | | | 24 | | T214 | CPUCLK rise to READY fall * | | | 18 | | T215 | CPUCLK rise to READY rise * | | 19 | 18 | | | | | | | TABLE 11-6. 80386SX - PAGE MODE MEMORY TIMING FIGURE 11-12. 80386SX - PAGE MODE, FIRST ACCESS READ/WRITE FIGURE 11-13. 80386SX - PAGE MODE, PAGE MISS READ/WRITE FIGURE 11-14. 80386SX - PAGE MODE, READ CYCLE FOLLOWED BY A PAGE HIT FIGURE 11-15. 80386SX - PAGE MODE, READ AFTER WRITE FIGURE 11-16. 80386SX - PAGE MODE, READ HIT FOLLOWED BY A WRITE HIT FIGURE 11-17. 80386SX - PAGE MODE, WRITE MISS CYCLE FOLLOWING A WRITE CYCLE 3/19/92 # 11.1.5 80386SX Non-Page Mode 00 And Mode 01 Timing | SYMBOL | CHARACTERISTIC | MAX
12.5 MHz | MAX
20 MHz | MAX
25 MHz | |--|--|-----------------|--|--| | T204 | See Table 11-6 | | | | | T214
T215 | See Table 11-6
See Table 11-6 | | | | | T240
T241
T242
T243
T244
T245
T246
T247
T248
T249 | CPUCLK rise to ROW address valid CPUCLK fall to CAS fall CPUCLK rise to CAS rise CPUCLK rise to WNRDRAM fall CPUCLK rise to WNRDRAM rise CPUCLK rise to RAS fall CPUCLK rise to RAS rise CPUCLK fall to RAS rise CPUCLK fall to COLUMN address valid CPUCLK rise to CAS fall | | 42
27
28
28
28
25
25
29
44
29 | 42
27
24
28
28
23
23
29
44
29 | | T260 | CPUCLK rise to COLUMN address | | 43 | 41 | TABLE 11-7. 80386SX - NON-PAGE MODE 00 AND MODE 01 MEMORY TIMING FIGURE 11-18. 80386SX - NON-PAGE MODE 00, 1 WAIT STATE READ (PIPELINE) (4072H = 0001) FIGURE 11-19. 80386SX - NON-PAGE MODE 00, 1 WAIT STATE WRITE (PIPELINE) (4072H = 0001) FIGURE 11-20. 80386SX - NON-PAGE MODE 01, 0 WAIT STATE READ (PIPELINE) (4072H = 3560H) FIGURE 11-21. 80386SX - NON-PAGE MODE 01, 0 WAIT STATE READ (PIPELINE) (4072H = 3560H) 5-122 3/19/92 #### 11.2 AT BUS TIMING The AT Bus timing is divided into six major categories: - 1. CPU initiated AT Bus cycles. - 2. Entering the AT Bus. - 3. Exiting the AT Bus. - 4. DMA cycles. - 5. AT Bus Master cycles. - 6. AT Bus refresh cycle Some figures in this section are included only to show the sequence of the signals during certain operations. In these figures, no timing parameters are provided. ## 11.2.1 CPU Initiated AT Bus Cycles | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|--------------------------------------|-----|-----|-------|---| | T00 | SYSCLK Cycle Time | 100 | | ns | | | T01 | SYSCLK fall to BALE rise | | 12 | ns | | | T02 | SYSCLK rise to BALE fall | | 9 | ns | | | T03 | SYSCLK fall to MEMR fall | | 9 | ns | 8-bit cycle | | T04 | SYSCLK rise to MEMR rise | | 6 | ns | - | | T05 | SYSCLK fall to IOR fall | | 10 | ns | | | T06 | SYSCLK rise to IOR rise | | 7 | ns | | | T07 | SYSCLK rise to DEN0 fall | | 7 | ns | Read Cycle | | T08 | SYSCLK rise to DEN0 rise | | 11 | ns | Read Cycle | | T09 | SYSCLK rise to DEN1 fall | | 7 | ns | Read Cycle | | T10 | SYSCLK rise to DEN1 rise | | 9 | ns | Read Cycle | | T11 | SYSCLK fall to DTR fall | | 19 | ns | Delay is number given plus (T00 × 0.25) | | T12 | SYSCLK rise to DTR rise | | 14 | ns | Delay is number given plus (T00 × 0.25) | | T13 | SYSCLK fall to SDEN fall | - | 10 | ns | | | T14 | SYSCLK rise to SDEN rise | | 8 | ns | | | T15 | SYSCLK fall to SDTR rise | | 14 | ns | Delay is number given plus (T00 × 0.25) | | T16 | SYSCLK rise to SDTR fall | | 11 | ns | Delay is number given plus (T00 × 0.25) | | T17 | MEMCS16 setup time to SYSCLK rise | 25 | | ns | | | T18 | MEMCS16 hold time from SYSCLK rise | 0 | | ns | | | T19 | IOCS16 setup time to
SYSCLK fall | 23 | | ns | | | T20 | IOCS16 hold time from
SYSCLK fall | 0 | | ns | 8-bit cycle | TABLE 11-8. CPU INITIATED AT BUS CYCLES **//** 3/19/92 | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|---|-----|-----|-------|--| | T21 | IOCHRDY setup time to
SYSCLK rise | 22 | | ns | | | T22 | IOCHRDY hold time from
SYSCLK rise | 0 | | ns | | | T23 | ZEROWS setup time to
SYSCLK fall | 24 | | ns | | | T24 | ZEROWS hold time from SYSCLK fall | 0 | | ns | | | T25 | AT Bus data setup time to
SYSCLK rise | 22 | | ns | Total setup time is number given plus delay through AT Bus data buffers. | | T26 | AT Bus data hold time from
SYSCLK rise | 0 | | ns | | | T27
| SYSCLK fall to MEMW fall | | 9 | ns | | | T28 | SYSCLK rise to MEMW rise | | 5 | ns | | | T29 | SYSCLK fall to IOW fall | | 10 | ns | | | T30 | SYSCLK rise to IOW rise | | 8 | ns | | | T31 | SYSCLK fall to DEN0 fall | | 10 | ns | Write cycle | | T32 | SYSCLK fall to DEN0 rise | | 9 | ns | Write cycle | | T33 | SYSCLK fall to DEN1 fall | | 10 | ns | Write cycle | | T34 | SYSCLK fall to DEN1 rise | | 9 | ns | Write cycle | | T35 | SYSCLK fall to SDEN rise | | 11 | ns | | | T36 | SYSCLK fall to SA0 rise | | 16 | ns | Word to byte conversion cycle | | T37 | SYSCLK rise to MEMR fall | | 6 | ns | 16-bit cycle | | T38 | IOCS16 hold time from
SYSCLK rise | 0 | | ns | 16-bit cycle | | T39 | SYSCLK high time | -4 | 0 | ns | (T00 ÷ 2) plus number given | TABLE 11-8. CPU INITIATED BUS CYCLES (Continued) FIGURE 11-22. AT BUS I/O OR MEMORY READ: 8-BIT, DEFAULT TIMING 3/19/92 FIGURE 11-23. AT BUS I/O OR MEMORY READ: 8-BIT, ZEROWS ASSERTED FIGURE 11-24. AT BUS I/O OR MEMORY READ: 8-BIT, EXTRA WAIT STATE ADDED 3/19/92 FIGURE 11-25. AT BUS I/O OR MEMORY WRITE: 8-BIT, EVEN BYTE, DEFAULT TIMING FIGURE 11-26. AT BUS I/O OR MEMORY WRITE: 8-BIT, ODD BYTE, DEFAULT TIMING FIGURE 11-27. AT BUS I/O OR MEMORY READ: 8-BIT, WORD TO BYTE CONVERSION, DEFAULT TIMING **%** FIGURE 11-28. AT BUS I/O OR MEMORY WRITE: 8-BIT, WORD TO BYTE CONVERSION, DEFAULT TIMING 3/19/92 FIGURE 11-29. AT BUS I/O OR MEMORY READ: 16-BIT, DEFAULT TIMING 7 FIGURE 11-30. AT BUS I/O OR MEMORY READ: 16-BIT, 0WS ASSERTED AND EXTRA WAIT STATE ADDED FIGURE 11-31. AT BUS I/O OR MEMORY WRITE: 16-BIT, DEFAULT TIMING 1/2 #### 11.2.2 Entering The AT Bus The timing in this section is presented in the following sequence: #### 80286 CPU Asysnchronous CPUCLK to SYSCLK Synchronous CPUCLK to SYSCLK ### 80386SX CPU Asysnchronous CPUCLK to SYSCLK Synchronous CPUCLK to SYSCLK | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------------|--|-----|-----|-------|--| | T40 | CPUCLK fall to SYSCLK fall
80286 CPU mode.
CPUCLK rise to SYSCLK fall
80386SX CPU mode. | 4 | | ns | Register 1872H: BRQ_DEL = 01
BUS_MOD = 0X
Delay is number given
plus (T00 × 0.25) | | T41 | CPUCLK fall to SYSCLK fall
80286 CPU mode.
CPUCLK rise to SYSCLK fall
80386SX CPU mode. | 9 | | ns | Register 1872H: BRQ_DEL = 00
BUS_MOD = 0X
Delay is number given
plus (T00 × 0.5) | | T42 | CPUCLK fall to SYSCLK fall 80386SX CPU mode. | | 29 | ns | Register 1872H: BRQ_DEL = 10
BUS_MOD = 11 | | T43 | CPUCLK rise to SYSCLK fall 80386SX CPU mode. | | 35 | ns | Register 1872H: BRQ_DEL = 10
BUS_MOD = 10 | | T44 | CPUCLK rise to SYSCLK fall 80286 CPU mode. | | 29 | ns | Register 1872H: BRQ_DEL = 10
BUS_MOD = 11 | | T45 | CPUCLK fall to SYSCLK fall 80286 CPU mode. | | 36 | ns | Register 1872H: BRQ_DEL = 10
BUS_MOD = 10 | | T140 | CPUCLK fall to ALE rise
80286 CPU mode.
CPUCLK rise to ALE rise
80386SX CPU mode. | | 20 | ns | | | T141 | CPUCLK fall to ALE fall
80286 CPU mode.
CPUCLK rise to ALE fall
80386SX CPU mode. | | 20 | ns | | | T214 | See TABLE 11-6 | | | | | | T215 | See TABLE 11-6 | | | | | | T234
T235 | See TABLE 11-3
See TABLE 11-3 | | | | | TABLE 11-9. ENTERING THE AT BUS FIGURE 11-32. 80286 CPU - ASYNCHRONOUS CPUCLK TO SYSCLK, BREQ DELAY = 1/2 CLOCK FIGURE 11-33. 80286 CPU - ASYNCHRONOUS CPUCLK TO SYSCLK, BREQ DELAY = 1 CLOCK FIGURE 11-34. 80286 CPU - SYCNHRONOUS CPUCLK TO SYSCLK FIGURE 11-35. 80386SX CPU - ASYNCHRONOUS CPUCLK TO SYSCLK, BREQ DELAY = 1/2 CLOCK FIGURE 11-36. 80386SX CPU - ASYNCHRONOUS CPUCLK TO SYSCLK, BREQ DELAY = 1 CLOCK FIGURE 11-37. 80386SX CPU - SYCNHRONOUS CPUCLK TO SYSCLK ### 11.2.3 Exiting The AT Bus Exiting a synchronous AT bus is covered first, followed by the asynchronous bus. | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|---|-----|-----|-------|--| | T46 | SYSCLK fall to CPUCLK | -5 | | ns | Register 1872H: BAK_DEL = 10
BUS_MOD = 0X | | T47 | SYSCLK fall to CPUCLK | -15 | | ns | Register 1872H: BAK_DEL = 01
BUS_MOD = 0X
Delay is number given
plus (T00 × 0.25) | | T48 | SYSCLK rise to CPUCLK | -10 | | ns | Register 1872H: BAK_DEL = 00
BUS_MOD = 0X | | T49 | SYSCLK rise to CPUCLK | -15 | | ns | Register 1872H: BAK_DEL = 11
BUS_MOD = 0X
Delay is number given
plus (T00 × 0.25) | | T144 | CPUCLK fall to READY fall,
80286 CPU mode. | | 24 | ns | Register 1872H: BUS_MOD = 11
AT cycles only | | T145 | CPUCLK fall to READY rise,
80286 CPU mode. | | 26 | ns | Register 1872H: BUS_MOD = 11
AT cycles only | | T214 | See TABLE 11-6 | | | | | | T215 | See TABLE 11-6 | | | | | | T234 | See TABLE 11-3 | | | | | | T235 | See TABLE 11-3 | | | | | TABLE 11-10. EXITING THE AT BUS FIGURE 11-38. SYNCHRONOUS AT BUS CYCLE COMPLETION, AT BUS CLOCK = CPUCLK ÷ 2 FIGURE 11-39. SYNCHRONOUS AT BUS CYCLE COMPLETION, AT BUS CLOCK = CPUCLK ÷ 1 FIGURE 11-40. ASYNCHRONOUS AT BUS CYCLE COMPLETION, BAK_DEL = -1 OR -0.5 AT BUS CLOCKS FIGURE 11-41. ASYNCHRONOUS AT BUS CYCLE COMPLETION, BAK_DEL = 0 OR +0.5 AT BUS CLOCKS # 11.2.4 DMA Cycles Basic default timing is covered first, followed by 8-bit I/O to onboard memory, then onboard memory to 8-bit I/O. | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|--------------------------------|-----|-----|-------|--------------------| | T50 | SYSCLK rise to ALE valid high | | 15 | ns | | | T51 | SYSCLK rise to BALE valid high | | 15 | ns | | | T52 | SYSCLK rise to AEN valid high | | 15 | ns | | | T53 | SYSCLK rise to Address driven | 0 | | ns | | | T54 | SYSCLK rise to Address valid | | 60 | ns | | | T55 | Address hold from SYSCLK rise | 0 | | ns | | | T56 | SYSCLK rise to LA20 valid | | 49 | ns | | | T57 | LA20 hold from SYSCLK rise | 0 | | ns | | | T58 | SYSCLK rise to SA0 valid | | 40 | ns | | | T59 | SA0 hold from SYSCLK rise | 0 | | ns | | | T60 | SYSCLK rise to BHE driven | 0 | | ns | | | T61 | SYSCLK rise to BHE valid | | 36 | ns | | | T62 | BHE hold from SYSCLK rise | 0 | | ns | | | T63 | SYSCLK fall to MXCTL valid | | 2 | ns | | | T64 | SYSCLK rise to DACKEN rise | | 28 | ns | | | T65 | SYSCLK rise to DACKEN fall | | 31 | ns | | | T66 | SYSCLK rise to CSEN fall | | 32 | ns | | | T67 | SYSCLK rise to CSEN rise | | 33 | ns | | | T68 | IOCHRDY setup to SYSCLK rise | 12 | | ns | | | T69 | IOCHRDY hold from SYSCLK rise | 0 | į | ns | | | T70 | SYSCLK rise to IOR fall | | 28 | ns | | | T71 | SYSCLK rise to IOR rise | | 35 | ns | | | T72 | SYSCLK rise to MEMW fall | | 47 | ns | | | T73 | SYSCLK rise to MEMW rise | | 35 | ns | | | T74 | SYSCLK rise to DEN1 fall | | 32 | ns | I/O to memory | | T75 | SYSCLK rise to DEN1 rise | | 42 | ns | I/O to memory | | T76 | SYSCLK rise to DEN0 fall | | 32 | ns | I/O to memory | | T77 | SYSCLK rise to DEN0 rise | | 42 | ns | I/O to memory | | T78 | SYSCLK rise to SDEN fall | | 21 | ns | | | T79 | SYSCLK rise to SDEN rise | | 37 | ns | I/O to memory | TABLE 11-11. DMA CYCLES **//**// | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|-------------------------------------|-----|-----|-------|--------------------| | T80 | SYSCLK rise to SDTR rise | İ | 30 | ns | | | T81 | SYSCLK rise to SDTR fall | | 20 | ns | | | T82 | SYSCLK rise to IOW fall | | 53 | ns | | | T83 | SYSCLK rise to IOW rise | | 37 | ns | | | T84 | SYSCLK rise to MEMR fall | | 17 | ns | | | T85 | SYSCLK rise to MEMR rise | | 38 | ns | | | T86 | SYSCLK rise to DEN1 fall | | 22 | ns | Memory to I/O | | T87 | SYSCLK rise to DEN1 rise | | 116 | ns | Memory to I/O | | T88 | SYSCLK rise to DEN0 fall | | 22 | ns | Memory to I/O | | T89 | SYSCLK rise to DEN0 rise | İ | 116 | ns | Memory to I/O | | T90 | SYSCLK rise to SDEN rise | | 116 | ns | Memory to I/O | | T91 | SYSCLK rise to DTR rise | | 31 | ns | • | | T92 | SYSCLK rise to DTR fall | | 22 | ns | | | T100 | MEMW fall to RASn fall | | 27 | ns | | | T101 | MEMW rise to RASn rise | | 29 | ns | | | T102 | MEMW fall to CASn fall | | 108 | ns | | | T103 | MEMW rise to CASn rise | | 30 | ns | | | T105 | MEMW fall to RA10 - RA0 valid | | 100 | ns | | | T107 | MEMW fall to W/R high | | 29 | ns | | | T108 | MEMW rise to W/R low | 10 | | ns | | | T120 | MEMR fall to RASn fall | | 28 | ns | | | T121 | MEMR rise to RAS rise | | 29 | ns | | | T122 | MEMR fall to CASn fall | | 110 | ns | | | T123 | MEMR rise to CAS rise | | 31 | ns | | | T125 | MEMR fall to RA10 - RA0 valid | | 100 | ns | | | T126 | MEMR fall to DPH, DPL float | | 25 | | | | T127 | MEMR rise to DPH, DPL driven | 35 | | | | | T303 | D15 - D0 valid to DPH, DPL
valid | | 27 | ns | | | T305 | D15 - D0 setup to MEMR rise | 18 | | ns | | | T306 | DPH, DPL setup to MEMR rise | 10 | | ns | | TABLE 11-11. DMA CYCLES (Continued) FIGURE 11-42. BASIC DMA CYCLE, DEFAULT TIMING FIGURE 11-43. DMA CYCLE, 8-BIT I/O TO ON-BOARD MEMORY FIGURE 11-44. DMA CYCLE, ON-BOARD MEMORY TO 8-BIT I/O # 11.2.5 AT Bus Master The AT bus master timing is covered in the following sequence: - · Bus acquisition and release - Writing to the onboard memory - Reading from the onboard memory | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|--|-----|-----|-------|--------------------| | T50 | SYSCLK rise to ALE valid high | | 15 | ns | | | T51 | SYSCLK rise to BALE valid high | | 15 | ns | | | T52 | SYSCLK rise to AEN valid high | | 15 | ns | | | T53 | SYSCLK rise to Address driven | 0 | | ns | | | T55 | Address hold from SYSCLK rise | 0 | | ns | | | T60 | SYSCLK rise to BHE driven | 0 | | ns | | | T61 | SYSCLK rise to BHE valid | | 36 | ns | | | T62 | BHE hold from SYSCLK rise | 0 | | ns | | | T63 | SYSCLK fall to MXCTL valid |
| 2 | ns | | | T64 | SYSCLK rise to DACKEN rise | | 28 | ns | | | T65 | SYSCLK rise to DACKEN fall | | 31 | ns | | | T150 | MASTER fall to AEN fall | | 30 | ns | | | T151 | MASTER rise to AEN rise | | 30 | ns | | | T152 | MASTER fall to A23 - A21,
A19 - A1 float | | 30 | ns | | | T153 | MASTER rise to A23 - A21,
A19 - A1 driven | 15 | | ns | | | T154 | MASTER fall to LA20 float | | 23 | ns | | | T155 | MASTER rise to LA20 driven | 10 | | ns | | | T156 | MASTER fall to SA0 float | | 24 | ns | | | T157 | MASTER rise to SA0 driven | 10 | | ns | | | T158 | MASTER fall to BHE float | | 30 | ns | | | T159 | MASTER rise to BHE driven | 10 | | ns | | | T160 | MASTER fall to CSEN fall | | 32 | ns | | | T161 | MASTER rise to CSEN rise | | 35 | ns | | | T162 | MASTER fall to MEMR float | | 24 | ns | | | T163 | MASTER rise to MEMR driven | 10 | | ns | | | T164 | MASTER fall to MEMW, IOR, IOW, float | | 23 | ns | | | T165 | MASTER rise to MEMW, IOR, IOW driven | 10 | | ns | | **TABLE 11-12. AT BUS MASTER CYCLE** | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|--|-----|-----|-------|--------------------| | T166 | A2 <u>3 - A21, A19 - A</u> 1 setup
to MEMR, MEMW | 45 | | ns | | | T167 | LA20 setup to MEMR, MEMW | 50 | | ns | | | T168 | BHE setup to MEMR, MEMW | 0 | | ns | | | T169 | SA0 setup to MEMR, MEMW | 0 | | ns | | | T170 | A23 - A21, A19 - A1 hold from MEMR, MEMW | 15 | | ns | | | T171 | LA20 hold from MEMR, MEMW | 15 | | ns | | | T172 | BHE hold from MEMR, MEMW | 15 | | ns | | | T173 | SA0 hold from MEMR, MEMW | 15 | | ns | | | T174 | SA0 in to A0 out delay | | 45 | ns | | | T175 | MEMW fall to DEN1 fall | | 30 | ns | | | T176 | MEMW fall to DEN0 fall | | 30 | ns | | | T177 | MEMW rise to DEN1 rise | | 83 | ns | | | T178 | MEMW rise to DEN0 rise | | 83 | ns | | | T179 | MEMR fall to DEN1 fall | | 85 | ns | | | T180 | MEMR fall to DEN0 fall | | 85 | ns | | | T181 | MEMR rise to DEN1 rise | | 32 | ns | | | T182 | MEMR rise to DEN0 rise | | 32 | ns | | | T183 | MEMR fall to DTR rise | | 29 | ns | | | T184 | MEMR rise to DTR fall | | 82 | ns | | | T190 | MEMR, MEMW fall to RASn fall | | 83 | ns | | | T191 | MEMR, MEMW rise to RASn rise | | 33 | ns | | | T192 | MEMR, MEMW fall to CASn fall | | 126 | ns | | | T193 | MEMR, MEMW rise to CASn rise | | 33 | ns | | | T194 | MEMR, MEMW fall to
RA10 - RA0 column address
valid | | 120 | ns | | | T196 | MEMR, MEMW fall to
RA10 - RA0 row address valid | | 42 | ns | | | T197 | RA10 - RA0 column address hold from MEMR, MEMW rise | 5 | | ns | | TABLE 11-12. AT BUS MASTER CYCLE (Continued) | SYMBOL | OL CHARACTERISTIC | | MAX | UNITS | TEST
CONDITIONS | |--------|----------------------------------|----|-----|-------|--------------------| | T300 | MEMW fall to W/R rise | | 33 | ns | | | T301 | MEMW rise to W/R fall | 10 | | ns | | | T302 | MEMW fall to DPH, DPL valid | | 32 | ns | | | T303 | D15 - D0 valid to DPH, DPL valid | | 27 | ns | | | T304 | DPH, DPL hold from MEMW rise | 5 | | ns | | | T305 | D15 - D0 setup to MEMR rise | 18 | | ns | | | T306 | DPH, DPL setup to MEMR rise | 10 | | ns | | | T307 | MEMR fall to DPH, DPL float | | 35 | ns | | | T308 | MEMR rise to DPH, DPL driven | 58 | | ns | | TABLE 11-12. AT BUS MASTER CYCLE cont. FIGURE 11-45. AT BUS MASTER, BUS ACQUISITION/RELEASE 1/2 3/19/92 FIGURE 11-46. AT BUS MASTER, WRITE TO ON-BOARD MEMORY FIGURE 11-47. AT BUS MASTER, READ FROM ON-BOARD MEMORY # 11.2.6 AT Bus Refresh | SYMBOL | CHARACTERISTIC | MIN | MAX | UNITS | TEST
CONDITIONS | |--------|--|-----|-----|-------|---| | T320 | REFRESH low before SYSCLK rise | | : | ns | REFRESH setup is number given plus (T00 × 0.25) | | T321 | SYSCLK fall to REFRESH rise | 1 | 16 | ns | | | T325 | SYSCLK rise to A23 - A21,
A19 - A16 and A7 - A1 valid | | 35 | ns | | | T326 | SYSCLK fall to A23 - A21,
A19 - A16 and A7 - A1 invalid | 2 | | ns | | | T327 | SYSCLK rise to A20, A15 - A8 valid | | 45 | ns | | | T328 | SYSCLK fall to A20, A15 - A8 invalid | 2 | | ns | | | T329 | SYSCLK rise to LA20 valid | | 30 | ns | | | T330 | SYSCLK fall to LA20 invalid | 2 | | ns | | | T331 | SYSCLK rise to SA0 valid | | 30 | ns | | | T332 | SYSCLK fall to SA0 invalid | 2 | | ns | | | T333 | SYSCLK rise to MEMR low | | 8 | ns | | | T334 | SYSCLK rise to MEMR high | | 7 | ns | | | T335 | IOCHRDY setup to SYSCLK rise | 23 | | ns | | | T336 | IOCHRDY hold time from
SYSCLK rise | 0 | | ns | | TABLE 11-13. AT BUS REFRESH CYCLE, DEFAULT TIMING FIGURE 11-48. AT BUS REFRESH CYCLE, DEFAULT TIMING # 11.3 PROCESSOR TIMING This section covers the 80286 CPU timing, followed by the 80386SX. | SYMBOL | CHARACTERISTIC | MIN | мах | UNITS | TEST
CONDITIONS | |--------|--|-----|-----|-------|--------------------| | T140 | See Table 11-9 | | | | | | T141 | See Table 11-9 | | | | | | T143 | See Table 11-9 | | | | | | T401 | CPUCLK fall to CPURES rise delay | | 14 | ns | | | T402 | CPUCLK fall to CPURES fall delay | | 13 | ns | | | T403 | CPUCLK fall to NPRST rise delay | | 14 | ns | | | T404 | CPUCLK fall to NPRST fall delay | | 13 | ns | | | T405 | CPUCLK fall to BUSYCPU fall delay | | 35 | ns | 1 | | T406 | NPBUSY rise to BUSYCPU rise delay | | 35 | ns | ① | | T408 | SO, S1 setup time to CPUCLK | 9 | | ns | · | | T409 | SO, S1 setup time to CPUCLK | 1 | | ns | | | T410 | M/IO setup time to CPUCLK | 26 | | ns | | | T411 | M/IO hold time to CPUCLK | 1 | | ns | | | T412 | Address setup time to CPUCLK | 1 | | ns | | | T413 | Address hold time to CPUCLK | 1 | | ns | | | T414 | PEACK setup time to CPUCLK | 7 | | ns | | | T415 | PEACK hold time to CPUCLK | 1 | | ns | | | T416 | DPH, DPL setup time to
CPUCLK fall | 5 | | ns | | | T417 | DPH, DPL hold time from CPUCLK fall | 19 | | ns | | | T418 | D15 - D0 setup time to
CPUCLK fall | 5 | | ns | | | T419 | D15 - D0 hold time from
CPUCLK fall | 19 | | ns | | ① T405 and T406 are for reference only since BUSYCPU is an asynchronous signal to the 80286. These two parameters are guaranteed by design and will not be tested. **TABLE 11-14. 80286 CPU TIMING** NOTE 2: W/R# [S1] is sampled 32 CPUCLKs after RSTIN is de-asserted to determine the processor type. NOTE 3: If, by sampling W/R# [S1], the processor type detected is an 80386SX, BUSYCPU is asserted for a minimum of 10 CPUCLKs before and after the trailing edge of CPURES to perform 80386SX self test. # FIGURE 11-49. 80286 - CPURES AND NPRST DURING POWER UP FIGURE 11-50. 80286 - COPROCESSOR RESET (NPRST) **INITIATED BY IOW TO PORT F1** // 3/19/92 FIGURE 11-51. 80286 - PROCESSOR RESET (CPURES) INITIATED BY SOURCES OTHER THAN POWER UP RESET **//** FIGURE 11-52. 80286 - BUSYCPU ASSERTED DURING COPROCESSOR ACCESS FIGURE 11-53. 80286 - LATCHING BUSYCPU WHEN AN ERROR OCCURS AND CLEARING IT WITH A WRITE TO PORT FO FIGURE 11-54. 80286 - MISCELLANEOUS TIMING | SYMBOL | CHARACTERISTIC | 20 MHz | | 25 MHz | | UNITS | |--------------|------------------------------------|--------|-----|--------|------|-------| | SYMBOL | CHARACTERISTIC | MIN | MAX | MIN | MAX | UNITS | | T140 | See Table 11-9 | | | | | | | T141 | See Table 11-9 | | | | | | | T204 | See Table 11-6 | | | | | | | T214 | See Table 11-6 | | | ŀ | | | | T215 | See Table 11-6 | | | | | | | T451 | CPUCLK rise to CPURES rise delay | | 14 | | 10 | ns | | T452 | CPUCLK rise to CPURES fall delay | | 13 | | 10 | ns | | T453 | CPUCLK rise to NPRST rise delay | | 14 | | . 10 | ns | | T454 | CPUCLK rise to NPRST fall delay | | 13 | | 10 | ns | | T455 | CPUCLK rise to BUSYCPU fall delay | | 35 | | 35 | ns | | T456 | CPUCLK rise to BUSYCPU rise delay | | 35 | | 30 | ns | | T4 57 | NPBUSY fall to BUSYCPU fall delay | | 30 | | 30 | ns | | T458 | NPBUSY rise to BUSYCPU rise delay | | 35 | | 35 | ns | | T460 | NPERR fall to EPEREQ rise delay | | 30 | 1 | 30 | ns | | T462 | ADS# setup time to CPUCLK rise * | 14 | | 10 | | ns | | T463 | ADS# hold time from CPUCLK rise | 5 | | 4 | | ns | | T464 | W/R# setup time to CPUCLK rise * | 14 | | 8 | | ns | | T465 | W/R# hold time from
CPUCLK rise | 5 | | 4 | | ns | | T466 | D/C# setup time to CPUCLK rise * | 14 | | 6 | | ns | | T467 | D/C# hold time from
CPUCLK rise | 5 | | 4 | | ns | | T468 | M/IO setup time to CPUCLK rise * | 17 | | 15 | | ns | | T469 | M/IO hold time from
CPUCLK rise | 5 | | 4 | | ns | | T470 | BHE setup time to CPUCLK rise | 17 | | 15 | | ns | | T471 | BHE hold time from CPUCLK rise | 3 | | 4 | | ns | **TABLE 11-15. 80386SX CPU TIMING** | CVMPO | CHARACTERISTIC | 20 MHz | | 25 MHz | | UNITS | |--|--|--------|-------|--------|-----|-------| | SYMBOL | CHARACTERISTIC | MIN | MAX | MIN | MAX | | | T472 HLDA setup time to CPUCLK rise * | | 10 | | 6 | | ns | | T473 | HLDA hold time from CPUCLK rise | 3 | | 4 | | ns | | T474 | HOLD valid delay from CPUCLK rise * | | 26 20 | | ns | | | T475 | DPH setup time to CPUCLK rise | 5 | | 5 | | ns | | T476 | DPH hold time from CPUCLK rise | 19 | | 19 | | ns | | T477 | D15-D0 setup time to CPUCLK rise | 5 | | 5 | | ns | | T478 | D15-D0 hold time from CPUCLK rise | 19 | | 19 | | ns | | T479 | A23-A1, BLE# setup time to CPUCLK rise * | 40 38 | | ns | | | | T480 A23-A1, BLE# hold time from CPUCLK rise | | 3 | | 4 | | ns | TABLE 11-15. 80386SX CPU TIMING (Continued) FIGURE 11-55. 80386SX - CPURES AND NPRST DURING POWER UP FIGURE 11-56. 80386SX - COPROCESSOR RESET (NPRST) INITIATED BY IOW TO PORT F1 3/19/92 Z FIGURE 11-57. 80386SX - PROCESSOR RESET (CPURES) INITIATED BY SOURCES OTHER THAN POWER UP RESET FIGURE 11-58. 80386SX - BUSYCPU ASSERTION DURING COPROCESSOR ACCESS FIGURE 11-59. 80386SX - LATCHING BUSYCPU WHEN AN ERROR OCCURS AND CLEARING IT WITH A WRITE TO PORT F0 FIGURE 11-60. 80386SX - MISCELLANEOUS TIMING FIGURE 11-61. 80386SX - INPUT
SETUP AND HOLD TIMING FIGURE 11-62. 80386SX - OUTPUT DELAY TIMING 5-170 3/19/92 # 12.0 PIN STATES DURING CHIP RESET | PIN
NUMBER | SIGNAL NA | ME | RESET
STATE | POWE | PROCESSOR
POWER DOWN
Input Output | | POWER
DWN
Output | |---------------|-----------|----|----------------|------|---|-----|------------------------| | | | · | AT BUS | | | | | | 40 | ĪŌŔ | 3 | High ① | ı | 0 | IH | Z | | 39 | ĪŌW | 3 | High ① | 1 | 0 | IH | Z | | 38 | MEMR | 3 | High ① | 1 | 0 | IH | Z | | 37 | MEMW | 3 | High ① | I | 0 | IH | Z | | 36 | LOMEG | | High | | 0 | | Z | | 28 | AEN | | Low | | 0 | | Z | | 79 | BALE | | Low | | 0 | | Z | | 77 | SYSCLK | | Low | | 0 | | Z | | 25 | LA20 | | High ① ② | I | 0 | IH | Z | | 24 | SA0 | | Low ① ② | ŀ | 0 | IH | Z | | 32 | REFRESH | 3 | Low | ı | 0 | IH | 0 | | 26 | MASTER | 3 | Input | I | | IH | | | 83 | IOCK | 3 | Input | 1 | | IH | | | 21 | IOCS16 | 3 | Input | I | | IH | | | 22 | MEMCS16 | 3 | Input | I | | IH | | | 20 | ZEROWS | 3 | Input | 1 | | IH. | | | 19 | IOCHRDY | 3 | Input | 1 | | IH | | | 116 | DACKEN | | High | | 0 | | 0 | | 114 | MXCTL2 | | High | | 0 | | 0 | | 113 | MXCTL1 | | Low | | 0 | | 0 | | 112 | MXCTL0 | | Low | | 0 | | 0 | | 18 | DRQIN | | Input | 1 | | IL | | | 110 | IRQSET1 | | Input | 1 | | IH | | | 111 | IRQSET0 | | Input | I | | IH | | | 23 | SPKR | | Low | | 0 | | 0 | | 27 | ALE | | High | | 0 | | Z | | 115 | CSEN | | Low | | 0 | | 0 | If MASTER is asserted, the outputs are tristated and the pins become inputs. **TABLE 12-1. PIN STATES DURING CHIP RESET** **//**/ ② – Assumes processor address = FFFFF0 during reset. ^{3 –} Internal 50 Kohm pullup, disabled in power-down mode. IH - Input internally forced high in power-down mode. IL - Input internally forced low in power-down mode. Z — Output tristated in power-down mode. | PIN
NUMBER | SIGNAL NAM | E | RESET
STATE | POWEF | PROCESSOR
POWER DOWN
Input Output | | OWER
WN
Output | |---------------|--|-----|-----------------|-------|---|-----|----------------------| | ** | ************************************** | | AT BUS (Contin | ued) | | | | | 74 | DT/R | | High | | 0 | | Z | | 76 | DEN0 | | High | | 0 | | Z | | 75 | DEN1 | | High | | 0 | | Z | | 29 | SDEN | | High | | 0 | | Z | | 30 | SDT/R [486] | (5) | Input ® | ı | 0 | IL | Z | | | | | 286/386SX PROCI | ESSOR | | | | | 52 | CPUCLK | | Same as BCLK2 | IL | Z | IL | Z | | 47 | READY | 3 | Low | | Z | | Z | | 51 | RDYIN/CKA/PE | 3 | Input | 1 | | ΙH | | | 78 | CPURES | | High | | Z | | Z | | 49 | HOLD | | Low | | Z | | Z | | 55 | INTRQ | | Low | | Z | | Z | | 54 | NMI | | Low | | Z | | Z | | 45 | SO(ADS#) | 3 | Input | iH | | IH | | | 46 | S1(W/R#) | 3 | Input | IH | | ΙΗ | | | 41 | BHE | 3 | Input | IH | Z | IH | Z | | 43 | PEACK(D/C#) | 3 | Input | IH | | IH. | | | 44 | M/IO | 3 | Input | IL | | IL | | | 48 | HLDA | 3 | Low | IL | | IL | | | 53 | BUSYCPU | | High | | Z | | Z | | 80 | A23 | 8 | Input | IL | Z | IL | Z | | 81 | A22 | 8 | Input | IL | Z | IL | Z | | 82 | A21 | 8 | Input | IL | Z | IL | Z | | 88 | A20 | 8 | Input | IL | Z | IL | Z | | 89 | A19 | 8 | Input | IL | Z | IL | Z | | 90 | A18 | 8 | Input | IL | Z | IL | Z | - 3 Internal 50 Kohm pullup, disabled in power-down mode. - ⑤ Internal 80 Kohm pullup, disabled in processor power-down mode and in full power-down mode. - Returns to output when RSTIN is de-asserted - IH Input internally forced high in power-down mode. - IL Input internally forced low in power-down mode. - Z Output tristated in power-down mode. 5-172 **TABLE 12-1. PIN STATES DURING CHIP RESET (Continued)** 3/19/92 in the second | PIN
NUMBER | SIGNAL NA | AME | RESET
STATE | | ESSOR
R DOWN
Output | FULL P
DO
Input | | |---------------|-----------|-----|----------------|-------------|---------------------------|-----------------------|---| | | | 286 | 386SX PROCESS | OR Continue | d | | | | 91 | A17 | 8 | Input | IL | Z | IL | Z | | 92 | A16 | 8 | Input | IL | Z | IL | Z | | 93 | A15 | 8 | Input | IL | Z | IL | Z | | 94 | A14 | 8 | Input | IL | Z | IL | Z | | 95 | A13 | 8 | Input | IL | Z | IL | Z | | 96 | A12 | 8 | Input | IL | Z | 1L | Z | | 97 | A11 | 8 | Input | 1L | Z | IL | Z | | 100 | A10 | 8 | Input | IL | Z | IL | Z | | 102 | A9 | 8 | Input | IL | Z | IL | Z | | 103 | A8 | 8 | Input | IL | Z | IL | Z | | 104 | A7 | 8 | Input | IL | Z | IL | Z | | 105 | A6 | 8 | Input | IL | Z | IL | Z | | 106 | A5 | 8 | Input | IL | Z | IL | Z | | 107 | A4 | 8 | Input | IL | Z | IL | Z | | 108 | A3 | 8 | Input | IL | Z | IL | Z | | 109 | A2 | 8 | Input | IL | Z | IL | Z | | 87 | A1 | 8 | Input | IL | Z | IL | Z | | 86 | A0[BLE#] | 8 | Input | IL | Z | IL | Z | | | | | DRAM CON | TROL | | | | | 126 | RA10[CS2] | | High ② | | 0 | - | 0 | | 127 | RA9[CS1] | | High ② | | 0 | | 0 | | 128 | RA8[CS0] | | High ② | | 0 | | 0 | | 130 | RA7/ED7 | | High @ | 19 | 0 | ī | 0 | | 131 | RA6/ED6 | | High ② | 19 | 0 | 1 | 0 | | 1 | RA5/ED5 | | High ② | I ⑨ | 0 | ı | 0 | | 3 | RA4/ED4 | | High ② | 19 | 0 | ł | 0 | | 4 | RA3/ED3 | | High ② | 1 9 | 0 | ı | 0 | ② – Assumes processor address = FFFFF0 during reset. TABLE 12-1. PIN STATES DURING CHIP RESET (Continued) // ^{8 – 100} Kohm pulldown resistors are turned on when the processor is in power down or suspend mode to prevent the data bus or address bus from floating. In normal operation these pull down resistors are turned off. Bidirectional buffer. IH - Input internally forced high in power-down mode. IL - Input internally forced low in power-down mode. Z – Output tristated in power-down mode. | PIN
NUMBER | SIGNAL NA | AME | RESET
STATE | | ESSOR
R DOWN
Output | FULL F
DO
Input | POWER
WN
Output | |---------------|-----------|-----|----------------|-----------|---------------------------|-----------------------|-----------------------| | | | | DRAM CONTROL | Continued | | | | | 6 | RA2/ED2 | - | Low ② | 19 | 0 | 1 | 0 | | 7 | RA1/ED1 | | Low ② | 19 | 0 | 1 | 0 | | 8 | RA0/ED0 | | Low ② | 19 | 0 | ı | 0 | | 14 | RAS3 | 4 | High | | 0 | | 0 | | 11 | RAS2 | 4 | High | | 0 | | 0 | | 125 | RAS1 | 4 | High | | 0 | | 0 | | 122 | RAS0 | 4 | High | | 0 | | 0 | | 12 | CASH3 | ⑤ | Input ⑦ | ı | | IH | Z | | 9 | CASH2 | 4 | High | | 0 | | 0 | | 123 | CASH1 | 4 | High | | 0 | | 0 | | 120 | CASH0 | 4 | High | | 0 | | 0 | | 13 | CASL3 | (5) | Input ⑦ | 1 | | ΙΗ | Z | | 10 | CASL2 | 5 | Input ⑦ | I | | ΙH | Z | | 124 | CASL1 | 4 | High | | 0 | | 0 | | 121 | CASL0 | 4 | High | | 0 | | 0 | | 119 | W/R | | Low | | 0 | | 0 | | | | | DATA BU | 'S | | | | | 15 | DPH[CS4] | 4 | Low | I | 0 | l | 0 | | 16 | DPL[CS3] | 4 | Low | 1 | 0 | i | 0 | | 73 | D15 | 8 | Input | IL | Z | 1L | Z | | 72 | D14 | 8 | Input | IL | Z | 1L | Z | | 71 | D13 | 8 | Input | IL | Z | IL | Z | - ② Assumes processor address = FFFFF0 during reset. - 4 Internal 50 Kohm pullup, disabled in processor power-down mode and in full power-down mode. - Internal 80 Kohm pullup, disabled in processor power-down mode and in full power-down mode. In 80486 mode (CASH3 low at trailing edge of RSTIN) this remains an input after RSTIN is - de-asserted. In 80286/80386 mode (CASH3 high at trailing edge of RSTIN) it switches to output after RSTIN - in 80286/80386 mode (CASH3 nigh at trailing edge of HSTIN) it switches to output after HSTIN is de-asserted. - Too Kohm pulldown resistors are turned on when the processor is in power down or suspend mode to prevent the data bus or address bus from floating. In normal operation these pull down resistors are turned off. - Bidirectional buffer. - IH Input internally forced high in power-down mode. - IL Input internally forced low in power-down mode. - Z Output tristated in power-down mode. TABLE 12-1. PIN STATES DURING CHIP RESET (Continued) | PIN
NUMBER | SIGNAL NAI | ME | RESET
STATE | | ESSOR
R DOWN
Output | | POWER
WN
Output | |---------------|------------|-----|-----------------|-----------|---------------------------|----------|-----------------------| | | | | DATA BUS Coi | ntinued | | | | | 70 | D12 | 8 | Input | IL | Z | IL | Z | | 68 | D11 | 8 | Input | IL | Z | IL | Z | | 66 | D10 | 8 | Input | IL | Z | IL | Z | | 65 | D9 | 8 | Input | IL | Z | IL | Z | | 64 | D8 | 8 | Input | IL | Z | IL | Z | | 63 | D7 | 8 | Input | IL | Z | ΪL | Z | | 62 | D6 | 8 | Input | 1L | Z | 1L | Z | | 61 | D5 | 8 | Input | IL | Z | IL | Z | | 60 | D4 | 8 | Input | IL | Z | IL | Z | | 59 | D3 | 8 | Input | IL | Z | IL | Z | | 58 | D2 | 8 | Input | IL | Z | IL | Z | | 57 | D1 | 8 | Input | IL | Z | IL | Z | | 56 | D0 | 8 | Input | IL | Z | IL | Z | | | | NUN | MERIC PROCESS | OR CONTRO | DL | | | | 34 | EPEREQ | | Low | | Z | | Z | | 35 | NPRST | | High | | Z | | Z | | 42 | NPERR | 3 | Input | IH | | IH | | | 85 | NPBUSY | 3 | Input | IH | | lH | | | | | INI | TIALIZATION ANI | CLOCKING | ; | | | | 17 | RSTIN | | Input | I | | | | | 50 | BCLK2 | | Input | ı | | IL | | | 84 | CLK14 | | Input | 1 | | Ī | | | | | POV | NER MANAGEME | NT CONTRO | DL. | | 1 | | 118 | PMCIN | 3 | Input | ı | | | | | 117 | PDREF | 3 | Input | i | | <u> </u> | - | - 3 Internal 50 Kohm pullup, disabled in power-down mode. - IH Input internally forced high in power-down mode. - IL Input internally forced low in power-down mode. - Z Output tristated in power-down mode. TABLE 12-1. PIN STATES DURING CHIP RESET (Continued) | POWER AND GROUND | | | | | | |------------------|-------------|--|--|--|--| | Pin Number | Signal Name | | | | | | 5 | VSS1 | | | | | | 33 | VSS2 | | | | | | 67 | VSS4 | | | | | | 98 | VSS5 | | | | | | 99 | VSS6 | | | | | | 129 | VSS7 | | | | | | 132 | VSS8 | | | | | | 2 | VCC1 | | | | | | 31 | VCC2 | | | | | | 69 | VCC3 | | | | | | 101 | VCC4 | | | | | # 13.0 PACKAGE DIMENSIONS Figure 13-1 Illustrates the 132-Pin PQFP package showing the dimensions in inches. FIGURE 13-1. 132-PIN PQFP PACKAGE # **APPENDIX - A - WD76C10ALV Low Voltage** # A.0 DC
ELECTRICAL SPECIFICATIONS This section provides the DC Operating Characteristics for the WD76C10ALV. The parameters that differ from the WD76C10A/LP are marked with an *. ## A.1 MAXIMUM RATINGS | Supply Voltage (Vcc) wi | espect to Vss (ground) Vcc - Vss ≤ 7.0 Volts | | |-------------------------|--|---------------------| | Voltage on any pin with | pect to Vss (ground) Vss -0.3 Volts to Vd | t +0.3 Volts | | Operating Temperature | | 158 ^o F) | | Storage Temperature | | °C (257°F) | | Power Dissipation . | 300 mW * | | ## NOTE Maximum limits indicate where permanent device damage occurs. Continuous operation at these limits is not intended and should be limited to those conditions specified in the DC Operating Characteristics. #### A.2 DC OPERATING CHARACTERISTICS TA = 0° C (32°F) to 70° C (158°F) Vcc = +3.3V ±.0.3V for WD76C10ALV * | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|---|-------------|------------|----------|--| | IIL | Input Leakage | | ± 10 | μА | Vin = .4 to Vcc | | IOZ | Tristate And Open Drain
Output Leakage | | ± 10 | μА | Vout = .4 to Vcc | | VIH | Input High Voltage | 2.0 | | V | | | VIL | Input Low Voltage | | .8 | v | | | VIHC | CPUCLK Input High * | VCC
-0.8 | | v | | | VIL | CPUCLK Input Low | | .6 | v | | | ICC | Supply Current * | | 120
150 | mA
mA | Inputs at 2.0V
Inputs at 5.0V
Outputs Open,
CPUCLK = 32 MHz | **TABLE A-1. DC OPERATING CHARACTERISTICS** #### FOR PINS WITH INTERNAL PULLUPS: MASTER, IOCK, IOCS16, MEMCS16, ZEROWS, IOCHRDY, RDYIN, PDREF | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|-----|------|-----------------------------| | IIL | Input Pullup Current * | -27 | -40 | μА | Not suspend and resume mode | **TABLE A-1. DC OPERATING CHARACTERISTICS (Continued)** M/IO. PEACK, NPERR, NPBUSY, SO, S1, NPRST, CPURES, DPH, DPL | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|-----|------|------------------------------------| | IIL | Input Pullup Current * | -27 | -90 | μА | Not processor down or suspend mode | TABLE A-1. DC OPERATING CHARACTERISTICS (Continued) PMCIN, IOCHRDY, ZEROWS, IOCS16, MEMCS16, MASTER, PDREF, REFRESH, BHE, IOR, IOW, MEMR, MEMW | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|-----|------|------------------| | IIL | Input Pullup Current * | -27 | -90 | μА | Not suspend mode | TABLE A-1. DC OPERATING CHARACTERISTICS (Continued) CASL3, CASL2, CASH3, SDT/R | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|------------------------|-----|-----|------|--------------| | IIL | Input Pullup Current * | -27 | -90 | μА | RESET IN = 0 | TABLE A-1. DC OPERATING CHARACTERISTICS (Continued) # FOR PINS WITH INTERNAL PULLDOWNS: A23-A0, D15-D0 | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|--------------------------|-----|-----|------|---| | IIL | Input Pulldown Current * | -27 | -90 | μА | Processor power down or
suspend mode | TABLE A-1. DC OPERATING CHARACTERISTICS (Continued) #### **FOR OUTPUTS:** DACK2-0, DACKEN, D15-D0, READY, CPURES, HOLD, INTRQ, A23-A0, NMI, DPH, DPL, RA10-RA8, RA7/ED7-RA0/ED0, BHE, RAS3-RAS0, CASL3-CSL0, CASH3-CASH0, W/R, DT/R, DEN1, DEN0, SDT/R, SDEN, CSEN, LOMEG | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|-----------------------|----------|-----|------|----------------| | VOH | Output High Voltage * | Vcc -0.2 | | v | IOUT = -100 μA | | VOH | Output High Voltage * | 2.4 | | V | IOUT = -1 mA | | VOL | Output Low Voltage * | | .4 | V | IOUT = 1.5 mA | TABLE A-1. DC OPERATING CHARACTERISTICS (Continued) ## **FOR OUTPUTS:** MXCTL2-0 | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|-----------------------|------|-----|------|----------------| | voн | Output High Voltage | Vcc8 | | V | IOUT = -200 μA | | VOH | Output High Voltage * | 2.4 | | V | IOUT = -3 mA | | VOL | Output Low Voltage * | | .4 | V | IOUT = 3 mA | | | | | | 1 | | ## TABLE A-1. DC OPERATING CHARACTERISTICS (Continued) ## FOR OUTPUTS: IOR, IOW, MEMR, MEMW, AEN, SYSCLK, BALE, LA20, SA0 | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |------------|--|-----|-----|------|------------------------------| | VOH
VOL | Output High Voltage Output Low Voltage * | 2.4 | .5 | V | IOUT = -3 mA
IOUT = 12 mA | **TABLE A-1. DC OPERATING CHARACTERISTICS (Continued)** ## **FOR OUTPUT:** REFRESH | SYMBOL | CHARACTERISTIC | MIN | MAX | UNIT | CONDITIONS | |--------|----------------------|-----|-----|---------------|--------------| | VOL | Output Low Voltage * | | .4 | `
V | IOUT = 12 mA | TABLE A-1. DC OPERATING CHARACTERISTICS (Continued) #### A.3 AC OPERATING CHARACTERISTICS This section provides the WD76C10ALV AC Operating Characteristics for the 80386SX Page Mode and 80386SX CPU Mode. The parameters that differ from the WD76C10A/LP are marked with an *. | SIGNAL | LOAD | SIGNAL | LOAD | SIGNAL | LOAD | |--|--|---|--|--|---| | CPURES W/R SDEN MXCTL2 - 0 LOMEG HOLD BUSYCPU CPUCLK | 50 pF
50 pF
50 pF
50 pF
50 pF
50 pF
50 pF
70 pF | NPRST
ALE
DT/R
DACKEN
SPKR
INTRQ
EPEREQ
SYSCLK | 50 pF
50 pF
50 pF
50 pF
50 pF
50 pF
50 pF
75 pF | BHE DEN1, DEN0 SDT/R CSEN READY NMI A23 - A0 CASH3 - 0 * | 50 pF
50 pF
50 pF
50 pF
50 pF
60 pF
50 pF | | CASL3 - 0
DPL
IOR
LA20
BALE | 75 pF
100 pF
200 pF
200 pF
200 pF | D15 - D0
RAS3 - RAS0
MEMW
SA0
REFRESH | 100 pF
150 pF
200 pF
200 pF
200 pF | DPH
IOW
MEMR
AEN
RA10 - RA0 * | 100 pF
200 pF
200 pF
200 pF
200 pF
220 pF | **TABLE A-2. SIGNAL LOADING** #### A.4 80386SX PAGE MODE TIMING | SYMBOL | CHARACTERISTIC | MAX
12.5 MHz | MAX
20 MHz | MAX
25 MHz | |--------|--|-----------------|---------------|---------------| | T200 | Processor ADDRESS to RAM address valid, Page Hit | | 34 | 27 | | T201 | CPUCLK rise to CAS fall, 2.5 CLK CAS | | 31 | 25 | | T202 | CPUCLK fall to CAS rise | | 24 | 21 | | T203 | CPUCLK fall to CAS fall, 2.0 CLK CAS | | 27 | 22 | | T204 | Processor data to parity valid | | 25 | 20 | | T205 | CPUCLK rise to RAM address valid, Page Miss | | 48 | 43 | | T206 | CPUCLK rise to WNRDRAM rise | | 31 | 28 | | T207 | CPUCLK fall to RAS fall, first access | | 27 | 21 | | T208 | CPUCLK rise to COLUMN address valid | | 49 | 33 | | T209 | CPUCLK rise to WNRDRAM fall | | 31 | 28 | | T212 | CPUCLK rise to RAS rise, Page Miss | | 27 | 24 | | T213 | CPUCLK fall to RAS fall, Page Miss | | 27 | 24 | | T214 | CPUCLK rise to READY fall * | | 25 | 25 | | T215 | CPUCLK rise to READY rise * | | 25 | 25 | | | | | | | TABLE A-3. 80386SX - PAGE MODE MEMORY TIMING | SYMBOL CHARACTERISTIC | | 20 MHz | | 25 MHz | | | |-----------------------|------------------------------------|--------|-----|--------|-----|-------| | SYMBOL | CHARACTERISTIC | MIN | MAX | MIN | MAX | UNITS | | T140 | See Table 11-9 | | | | | | | T141 | See Table 11-9 | | | | | | | T204 | See Table 11-6 | | | | 1 | | | T214 | See Table 11-6 | | | | | | | T215 | See Table 11-6 | | | | | | | T451 | CPUCLK rise to CPURES rise delay | | 14 | | 12 | ns | | T452 | CPUCLK rise to CPURES fall delay | | 13 | | 12 | ns | | T453 | CPUCLK rise to NPRST rise delay | | 14 | | 10 | ns | | T454 | CPUCLK rise to NPRST fall delay | | 13 | | 10 | ns | | T455 | CPUCLK rise to BUSYCPU fall delay | | 35 | | 35 | ns | | T456 | CPUCLK rise to BUSYCPU rise delay | | 35 | | 30 | ns | | T457 | NPBUSY fall to BUSYCPU fall delay | | 30 | | 30 | ns | | T458 | NPBUSY rise to BUSYCPU rise delay | | 35 | | 35 | ns | | T460 | NPERR fall to EPEREQ rise delay | | 30 | | 30 | ns | | T462 | ADS# setup time to CPUCLK rise * | 14 | | 14 | | ns | | T463 | ADS# hold time from CPUCLK rise | 5 | | 4 | | ns | | T464 | W/R# setup time to CPUCLK rise * | 14 | | 12 | | ns | | T465 | W/R# hold time from
CPUCLK rise | 5 | | 4 | | ns | | T466 | D/C# setup time to CPUCLK rise * | 14 | | 10 | | ns | | T467 | D/C# hold time from
CPUCLK rise | 5 | | 4 | | ns | | T468 | M/IO setup time to CPUCLK rise * | 17 | | 19 | | ns | | T469 | M/IO hold time from CPUCLK rise | 5 | | 4 | | ns | | T470 | BHE setup time to CPUCLK rise | 17 | | 15 | | ns | | T471 | BHE hold time from CPUCLK rise | 3 | | 4 | | ns | TABLE A-4. 80386SX CPU TIMING | OUADA OTERIOTIC | 20 N | AHz | 25 N | MHz | UNITS | |--|---|---
--|--|---| | CHARACTERISTIC | MIN | MAX | MIN | MAX | UNITS | | HLDA setup time to CPUCLK rise * | 10 | | 10 | | ns | | HLDA hold time from
CPUCLK rise | 3 | | 4 | | ns | | HOLD valid delay from CPUCLK rise * | | 26 | | 26 | ns | | DPH setup time to CPUCLK rise | 5 | | 5 | | ns | | DPH hold time from
CPUCLK rise | 19 | | 19 | | ns | | D15-D0 setup time to CPUCLK rise | 5 | | 5 | | ns | | D15-D0 hold time from
CPUCLK rise | 19 | | 19 | | ns | | A23-A1, BLE# setup time to CPUCLK rise * | 42 | | 42 | | ns | | A23-A1, BLE# hold time from CPUCLK rise | 3 | | 4 | | ns | | | rise * HLDA hold time from CPUCLK rise HOLD valid delay from CPUCLK rise * DPH setup time to CPUCLK rise DPH hold time from CPUCLK rise D15-D0 setup time to CPUCLK rise D15-D0 hold time from CPUCLK rise A23-A1, BLE# setup time to CPUCLK rise A23-A1, BLE# hold time from | HLDA setup time to CPUCLK rise * HLDA hold time from CPUCLK rise HOLD valid delay from CPUCLK rise * DPH setup time to CPUCLK rise DPH hold time from CPUCLK rise DPH hold time from CPUCLK rise D15-D0 setup time to CPUCLK rise D15-D0 hold time from CPUCLK rise D15-D15-D15-D16-D16-D16-D16-D16-D16-D16-D16-D16-D16 | HLDA setup time to CPUCLK rise * HLDA hold time from CPUCLK rise HOLD valid delay from CPUCLK rise * DPH setup time to CPUCLK rise DPH hold time from 19 CPUCLK rise D15-D0 setup time to CPUCLK rise D15-D0 hold time from 19 CPUCLK rise A23-A1, BLE# setup time to CPUCLK rise A23-A1, BLE# setup time to CPUCLK rise * A23-A1, BLE# hold time from 3 | HLDA setup time to CPUCLK rise * HLDA hold time from CPUCLK rise * HOLD valid delay from CPUCLK rise * DPH setup time to CPUCLK rise DPH hold time from 19 19 19 CPUCLK rise D15-D0 setup time to CPUCLK 5 5 5 5 CPUCLK rise D15-D0 hold time from 19 19 19 CPUCLK rise D15-D0 hold time from 19 19 19 CPUCLK rise D15-D15-D16 hold time from 19 19 19 CPUCLK rise A23-A1, BLE# setup time to CPUCLK rise * A23-A1, BLE# setup time to CPUCLK rise * A23-A1, BLE# hold time from 3 4 | HLDA setup time to CPUCLK rise * HLDA hold time from CPUCLK rise * HOLD valid delay from CPUCLK rise * DPH setup time to CPUCLK rise DPH hold time from CPUCLK rise DPH hold time from CPUCLK rise DT5-D0 setup time to CPUCLK rise D15-D0 hold time from CPUCLK rise D15-D0 hold time from CPUCLK rise D15-D15-D16-D16-D16-D16-D16-D16-D16-D16-D16-D16 | TABLE A-4. 80386SX CPU TIMING (Continued) # APPENDIX - B - REVISION HISTORY REVISION HISTORY - 1 Revision History 1 identifies the changes made from the document dated 3/4/91 to the document dated 4/10/91. | SECTION | CHANGE | |---|---| | 1.2 Features | Second feature modified. | | 1.3.1 WD75C10 | Two way interleave deleted. | | 1.3.2 WD76C10 | Third paragraph deleted. | | 1.3.3 WD76C10LP | Automatic processor clock speed switching, 1 mA changed to 20 mA. | | Figure 1-1 | VGA block, RAMDAC block and BIOS EPROM modified. | | 2.0 Architecture | (WD76C10LP only) added. | | 2.1 Initialization And Clocking | First paragraph modified. | | 2.3 Main Processor Control | Last paragraph deleted. | | 2.6 Memory And EMS
Control | Two way and four way interleave deleted. | | Table 3-2 | Pin 84, 14.3 changed to 14.318. Pin 114, RESCPU added. Pin 111, RESCPU added. Pin 43, 80387SX changed to 80386SX and WD75C10 deleted. | | 4.2.3 Processor Clock
(CPUCLK) | Fourth, fifth and sixth paragraphs modified. | | 4.2.4 CPU Clock (CPUCLK)
Control Register | CLK_SPD default modified, SCHH and SCH bit positions reversed. | | 5.1.2 Data Request DRQIN | Second paragraph modified. | | 5.3.1 Numeric Processor
Busy, Bus Timing, And
Power Down Register | Bit 14 - PRO_PD, first and third paragraphs modified. | | 6.1 DRAM Address And
Data Bus | Last paragraph modified. | | 6.2.1 Memory Control | Bit 11 - PG, modified.
Bits 10-08 - ILV, modified. | | 6.2.2 Memory Bank 3
Through Bank 0
Starting Address | Second paragraph modified. | | 6.2.4 RAM Shadow And
Write Protect | Bits 09, 08 - SHD, third paragraph modified.
Bits 01, 00 - BL_MOU, first paragraph and NOTE modified. | ## **SECTION** ### CHANGE | 6.3.1 Non-page Mode
DRAM Memory Timing | Table 6-1A, 60 ns changed to 53 ns.
Table 6-1B, MODE-01 modified. | |---|--| | 6.4.1 EMS Control And
Lower EMS Boundary | Bits 11, 10 - EMS_EN, states 01, 10 and 11 modified. | | 6.4.2 EMS Page Register
Pointer | Bits 05-00 - description modified.
Table 6-6 and Table 6-7, (decimal) added. | | 6.4.3 EMS Page Register | Bit 15 - EN, last sentence modified. Bit 10 - PAR, 27B changed to 27F. Bit 08 - PAR_L, PAR_L=0 description modified. Bit 04 - SER_AL, SER_AL=0 description modified. Bit 00 - SER_BL, SER_BL=0 description modified. | | 7.2 RTC, PVGA, 80287
Timing, Disk Chip Selects | Featured only in WD76C10 and WD76C10LP deleted. Bit 15 - RTC_L, RTC_L = 1 modified. Bits 10-08 - L_MSK, states 010 and 100 modified. Bit 06 - HS_HD, NOTE modified. | | Table 7-1 cont. | 27B changed to 27F. | | 8.2 PMC Timers | First paragraph modified. | | 9.1 Diagnostic Register | Bits 15-13 - VER, modified.
Bit 10 - AUT_A20, third paragraph modified. | | 11.1 Memory Timing | WCF and WCS deleted, WNRDRAM modified. | | Table 11-3 | Modified. | | Table 11-4 | Modified. | | Table 11-5 | Modified. | | Table 11-6 | Modified. | | Table 11-7 | Modified. | | 11.2 AT Bus Timing | Line 4. modified. | | Table 11-8 | Modified. | | Table 11-8 cont. | Modified. | | Figure 11-30 | Note 1 modified. | | Table 11-9 | Modified. | | Figure 11-32 | T235 and T234 was T142 and T143. | | Figure 11-33 | T235 and T234 was T142 and T143. | | Figure 11-34 | T235 and T234 was T142 and T143. | | Table 11-10 | Modified. | | Figure 11-38 | T235 was T142. | 5-186 3/19/92 | SECTION | CHANGE | |----------------------|--| | Figure 11-39 | End Of AT Bus Cycle corrected. | | Figure 11-40 | T235 was T142. | | Figure 11-41 | T235 was T142. | | Table 11-11 | Modified. | | Table 11-11 cont. | Modified. | | Figure 11-44 | D15-D0 changed to DPH, DPL. | | 11.2.5 AT Bus Master | AT Bus refresh deleted. | | Table 11-12 | Modified. | | Table 11-12 cont. | Modified. | | Table 11-12 cont. | Modified. | | Figure 11-45 | SYSCLK added. | | Table 11-13 | Modified. | | Table 11-14 | Modified. | | Figure 11-49 | Note 2 modified. | | Figure 11-50 | Phase numbers corrected. | | Figure 11-51 | Phase numbers corrected. | | Figure 11-52 | Phase numbers corrected. | | Figure 11-53 | Phase numbers corrected, Note 2 modified. | | Figure 11-54 | T414 corrected. | | Table 11-15 | Modified. | | Table 11-15 cont. | Modified. | | Figure 11-55 | Phase numbers corrected, Note 2 modified. | | Figure 11-56 | Phase numbers corrected. | | Figure 11-57 | Phase numbers corrected, reference to Note1 changed to Note 2. | | Figure 11-59 | Notes 2 and 3 modified. | | Figure 11-61 | Phase numbers corrected. | | Figure 11-62 | Phase numbers corrected. | Revision History 2 identifies the changes made from the document dated 4/10/91 to the document dated 7/1/91. The major change made to the document was the elimination of all references to the WD75C10 device and the addition of A to the WD76C10(A) and WD76C10(A)LP. These changes resulted in the renumbering of some sections. | SECTION | CHANGE | |----------------------------------|--| | 1.1 Document Scope | WD75C10 deleted, "A" added to WD76C10A and WD76C10ALP. | | 1.2 Features | WD75C10 deleted, "A" added to WD76C10A and WD76C10ALP. 4 Mbit added to third feature. 4 Mbit DRAM deleted from fifth feature. EGA changed to VGA in tenth feature. 1.25 changed to 0.9 in thirteenth feature. (PQFP) added to fourteenth feature. System Activity Monitor (SAM) added. Four features deleted. | | 1.3 General Description | WD75C10 deleted, "A" added to WD76C10A and WD76C10ALP. | | 1.3.1 WD75C10 | Changed to describe the WD76C10A. | | 1.3.2 WD76C10 | Changed to describe the WD76C10ALP. | | 1.3.3 WD76C10LP | Deleted. | | Figure 1-1 | WD75C10 deleted, "A" added to WD76C10A and WD76C10ALP. | | 2.0 Architecture | "A" added to WD76C10ALP. | | 2.3 Main Processor Control | "A" added to WD76C10ALP. | | 2.4
Numeric Processor
Control | Modified to reflect only WD76C10A and WD76C10ALP. | | 2.6 Memory And EMS
Control | Modified to reflect only WD76C10A and WD76C10ALP. | | 2.7 Power Management | "A" added to WD76C10ALP. | | Figure 2-1 | WD75C10 deleted, "A" added to WD76C10A and WD76C10ALP. SDT/R changed to SDT/ \overline{R} [486]. | | Table 2-1 | A872, B072, D472, D872, DC72 and E472 added. | | Table 3-1 | Signals [WIRQ], [CASIN], [PE] and [486] added to pins 10, 12, 13 and 30 respectively. WD75C10 removed from pin 117. | #### **SECTION** CHANGE Table 3-2 Pin 30, modified to describe [486] 80486 mode. Pin 12, modified to describe [CASIN]. Pin 13, modified to describe [PE]. Pin 10, modified to describe [WIRQ]. 4.1 Power Up Reset Modified. 4.2.1 Internal Clock 14.318 was 14.3. (CLK14) Figure 4-1 14.318 was 14.3. Port E472 added. 4.2.4 CPU Clock "A" added to WD76C10ALP. (CPUCLK) Control Statement added to Bit 15 Default Value. Register 5.2 Power Management WD75C10 deleted, "A" added to WD76C10A and Control PMCIN WD76C10ALP. 5.3.1 Numeric Processor "A" added to WD76C10ALP. Busy, Bus Timing, And Bit 13 - FPD, RSTIN changed to BUS RST. Power Down Register 6.1 DRAM Address And "A" added to WD76C10A and WD76C10ALP. Data Bus 6.2.1 Memory Control WD75C10 deleted, "A" added to WD76C10A and WD76C10ALP. Bits 13, 12 - CA, configuration 1 1 added. 6.2.4 RAM Shadow And "A" added to WD76C10ALP. Write Protect Bit 07 - X_MEM including figures 6-2 and 6-3 added. Table 6-4 First entry changed from ALL to A11. Table 6-5 First two entries changed from ALL, A11 to A11, A10. 6.4.2 EMS Page Register Bits 15-06 - DLT added. Pointer 7.0 Port Chip Select And "A" added to WD76C10ALP. Refresh Control 7.1 Refresh Control. "A" added to WD76C10ALP. Serial And Parallel Chip Selects Table 7-1 "IDE Mode Only" statement deleted. Floppy Chip Select (CS # 18, 19) added. 8.0 Power Management WD75C10 deleted, "A" added to WD76C10A and Control WD76C10ALP. Second paragraph modified. Fourth paragraph, 74HC273 was 74HCT373. **//** | SECTION | CHANGE | |---|--| | Figure 8-1 | "A" added to WD76C10ALP. | | 8.2 PMC Timers | "A" added to WD76C10ALP. | | 8.3 PMC Inputs | WD75C10 deleted, "A" added to WD76C10ALP. Bits 07-00 - IN7-IN0, first paragraph added. | | 8.4 PMC Interrupt Enable | "A" added to WD76C10ALP. | | 8.5 NMI Status | "A" added to WD76C10ALP. | | 8.6 Serial/Parallel
Shadow Register | Was just Shadow Register. | | 8.7 Interrupt Controller
Shadow Register | All new. | | 8.8 Port 70 Shadow
Register | All new. | | 8.9 Activity Monitor Control
Register | All new. | | 8.10 Activity Monitor
Mask Register | All new. | | 8.11 Save And Resume | Was section 8.7, "A" added to WD76C10ALP. | | 9.1 Diagnostic | Bits 15, 14, 13 - VER, modified.
Table 9-1 added. | | Table 9-2 | Was table 9-1. | | 9.3 Test Enable Register | All new. | | 9.4 Test Status Register | All new. | | 10.1 Maximum Ratings | Supply voltage and storage temperature added. | | 10.2 DC Operating
Characteristics | WD75C10 deleted, "A" added to WD76C10A and WD76C10ALP. | | Table 10-1 | Expanded for four additional IIL conditions. | | Table 11-2 | CPURES and NPRST changed to 50 pF. | | Table 11-3 | Modified. | | Table 11-4 | Modified. | | Figure 11-8 | WD75C10 deleted, "A" added to WD76C10A. | | Figure 11-9 | WD75C10 deleted, "A" added to WD76C10A. | | Table 11-5 | Modified. | | Table 11-6 | Modified. | | Table 11-7 | Modified. | | | | 5-190 3/19/92 🐇 | SECTION | CHANGE | |-------------------|---| | Table 11-9 | MAX column modified. | | Table 11-10 | Characteristic column modified. | | Table 11-11 cont. | T09 and T10 deleted, T126 and T127 added. | | Figure 11-43 | DPH, DPL modified. | | Figure 11-44 | DPH, DPL modified. | | Table 11-12 cont. | T167, T191 and T308 modified. | | Table 11-13 | T326, T327, T328, T330, T332, T333 and T334 modified. | | Figure 11-48 | T326, T328, T330, T332 and Note 3 modified. | | Table 11-15 | 25 MHz added. | Revision History 3 identifies the changes made from the document dated 7/1/91 to the document dated 7/23/91. | SECTION | CHANGE | |--|--| | 1.3 General Description | notebook/ added to laptop. | | 1.3.1 WD76C10A | 16 Mbytes was 6 Mbytes. | | 1.3.2 WD76C10ALP | 8 mA was 20 mA. | | 2.8 Register File | Third paragraph, modified. | | Figure 2-1 | Memory control and register file modified. | | Table 2-1 | Modified. | | Table 3-2 | Pin 84 description modified.
Pin 121, WIRQ description modified. | | Figure 4-1 | BCLK2 and CLK14 pin numbers corrected. | | Table 5-4 | 080-09F added. | | 5.5.3.2 OCW2 - Operation
Control Word 2 | Bits 2-0 - INT_LEV, statement added. | | 6.2.1 Memory Control | Bit 11 - PG, PG = 0 modified.
Bits 10-08 - ILV, first paragraph modified.
Note following bits 01, 00 modified. | | Figure 6-3 | Modified. | | Table 6-2 | Statement regarding first access added. | | | | // 3/19/92 #### **CHANGE SECTION** Bits 15-06 - DLT, second paragraph added. 6.4.2 EMS Page Register Pointer Bits 10, 09, 08 - L MSK, modified. 7.2 RTC, PVGA, 80287 Timing, Disk Chip Selects All but first paragraph moved to section 8.2. 8.0 Power Management Control New. 8.1 System Activity Monitor (SAM) All from section 8.0 starting at second paragraph. 8.2 Processor Power Down Mode PMC Output Control 15:08 port address 7872 bits 07-00 8.3 PMC Output Control changed to Read and Write. Registers Bits 10 through 00 modified. 8.9 Interrupt Controller Shadow Register Last sentence third paragraph modified. 8.10 Port 70 Shadow Bit 12 modified. Register Bits 11-08 modified. Bits 07-00 modified. Bits 10 and 09 changed to "Read only". 8.11 Activity Monitor Opening statement added. Control Register Bit 15. modified. Bit 14, For factory use only added. Bit 12 and 11, writing a 1 to these bits added. Bit 11 note modified. Bit 10 statement added. Bit 09 statement added, ACTBEF = 1 modified. Bits 07-04 states 0100, 1101 and 1110 modified. 8.12 Activity Monitor Mask First three paragraphs modified. Bit 08 modified. Register Bits 07, 06 modified. Bits 05-03 Statement regarding Activity Monitor Control Register added. 8.13 Save And Resume Opening statement modified. WD77C10 changed to WD7710. Table 9-1 Bits 01 and 00 Read and Write. 9.3 Test Enable Register Opening statement modified. Bit 00 - EN_LVL modified. "For factory use only" statement added. 9.4 Test Status Register Bits 14, 13 modified. Bits 12-06 modified. Bits 05-01 modified. Bit 00 modified. | SECTION | CHANGE | |--------------|----------------------------| | Table 11-3 | Max 25 MHz column removed. | | Table 11-4 | Max 25 MHz column removed. | | Table 11-5 | Max 25 MHz column removed. | | Table 11-7 | Max 25 MHz column added. | | Table 11-13 | A0 deleted from T328. | | Figure 11-48 | Valid time extended. | Revision History 4 identifies the changes made from the document dated 7/23/91 to the document dated 8/15/91. For clarity H has been added to all hexadecimal addresses. | SECTION | CHANGE | |---|---| | 1.2 Features | 80 ns was 70 ns in fourth feature. "Slow" added to next to last feature. | | 1.3.2 WD76C10ALP | "notebook/" added to laptop.
5 mA was 8 mA. | | 2.6 Memory And EMS
Control | DRAM was RAM. | | 2.7 Power Management
Control | "notebook/" added to laptop. | | 2.8 Register File | Fourth paragraph, FC72H was F872. | | 2.8.1 Lock Status Register | Bit 03 - P, reference to section 4.3 was 6.2.5. | | Table 2-1 | "Hex" added to Port Address heading.
FC72 Lock Status changed from no to yes. | | 3.0 Signal Description | Was titled Pin Description. | | Table 3-1 | "Signal/" added to table title. | | Table 3-2 | Table title changed to Signal Description. Pin 115 description, 28 was 24 and "Refer to Table 7-1" added. Pin 34 description, SX added to 80386. | | 4.2.3 Processor Clock
(CPUCLK) | First paragraph, 50 MHz was 40 MHz. | | 4.2.4 CPU Clock
(CPUCLK) Control
Register | Bits 03-02, changed to "must" be set to zero. Bit 01, first paragraph, type of processors modified. Bit 00, first paragraph, type of processors modified. | **%** 3/19/92 5-193 | SECTION | CHANGE | |--|--| | 5.1.1 Data Acknowledge
DAC7-5, 3-0 | Modified. | | 5.1.2 Data Request
DRQIN | Modified. | | 5.5.2.1 ICW1 - Initialization
Command Word 1 | Bit 3 - L_T, modified. | | 7.2 RTC, PVGA, 80287
Timing, And Disk Chip
Selects | Bit 14 - FST_VGA, WD90C30 added. Bit 06 - HS_HD, WD-AC160 and WD-AC2120 added to Note. | | 8.2 Processor Power
Down Mode | Third paragraph, 74HCT273 was 74HC273. | | 9.3 Test Enable Register | Bit 00 - EN_LVL = 1 modified. | | 10.1 Maximum Ratings | Voltage on any pin with respect to Vss and Power Dissipation added. | Revision History 5 identifies the changes made from the document dated 8/15/91 to the document dated 8/28/91. | SECTION | CHANGE | |---|--| | 1.2 Features | 70 ns was 80 ns in fourth feature. | | 1.3.2 WD76C10ALP | First paragraph modified. | | 4.2.3 Processor Clock
(CPUCLK) | First paragraph modified. | | 4.2.4 CPU Clock
(CPUCLK) Control
Register | Bit 11 - AUT_FST, Name expanded. | | 5.5.2 Setup - Initialization
Command Words (ICW) | Bit 3 - L_T = 1 modified. | | 5.5.3.3 OCW3 | Bits 1-0 - IRR_ISR, name expanded. | | 8.1 System Activity
Monitor (SAM) | Modified. | | 8.12 Activity Monitor
Mask
Register | Bit 15 - PCSM, WD76C10A deleted. | | 9.3 Test Enable Register | Bit 00 - EN_LVL = 0 and EN_LVL = 1 modified. | | Figure 11-56 | Note 3 modified.
Note 4 added. | | | | V. #### 5 ## **REVISION HISTORY - 6** Revision History 6 identifies the changes made from the document dated 8/28/91 to the document dated 11/25/91. The major change to the document was the addition of the WD76C10ALV low voltage device. | SECTION | CHANGE | |---|------------------------------------| | 1.1 Document Scope | WD76C10ALV added. | | 1.2 Features | WD76C10ALV added. | | 1.3 General Description | WD76C10ALV added. | | 1.3.3 WD76C10ALV | New. | | Figure 1-1 | WD76C10ALV added. | | 2.0 Architecture | WD76C10ALV added. | | 2.3 Main Processor Control | WD76C10ALV added. | | 2.4 Numeric Processor
Control | Modified. | | 2.6 Memory And EMS
Control | Modified. | | 2.7 Power Management
Control | WD76C10ALV added. | | Figure 2-1 | WD76C10ALV added. | | Table 3-1 | Pin 117, WD76C10ALV added. | | 4.2.3 Processor Clock
(CPUCLK) | Third paragraph, WD76C10ALV added. | | 4.2.4 CPU Clock
(CPUCLK) | WD76C10ALV added. | | 5.2 Power Management
Control PMCIN | WD76C10ALV added. | | 5.3.1 Numeric Processor
Busy, Bus Timing, And
Power Down Register | WD76C10ALV added. | | 6.1 DRAM Address And
Data Bus | Last paragraph modified. | | 6.2.1 Memory Control | Bits 07 through 00 modified. | | 6.2.4 RAM Shadow And
Write Protect | WD76C10ALV added. | | 7.0 Port Chip Select And
WD76C10ALP/LV | WD76C10ALV added. | 3/19/92 5-196 | SECTION | CHANGE | |--|----------------------------------| | 7.1 Refresh Control, Serial
And Parallel Chip Selects | WD76C10ALV added. | | 8.0 Power Management
Control | WD76C10ALV added. | | 8.1 System Activity
Monitor (SAM) | WD76C10ALV added. | | 8.2 Processor Power
Down Mode | WD76C10ALV added. | | Figure 8-1 | WD76C10ALV added. | | 8.3 PMC Output Control
Registers | WD76C10ALV added. | | 8.4 PMC Timers | WD76C10ALV added. | | 8.5 PMC Inputs | WD76C10ALV added. | | 8.6 PMC Interrupt Enable | WD76C10ALV added. | | 8.7 NMI Status | WD76C10ALV added. | | 8.9 Interrupt Controller
Shadow Register | WD76C10ALV added. | | 8.12 Activity Monitor Mask
Register | Bit 15 - PCSM, WD76C10ALV added. | | 8.13 Save And Resume | WD76C10ALV added. | | 9.4 Test Status Register | WD76C10ALV added. | | 10.0 DC Electrical
Specifications | Statement added. | | 11.0 AC Operating
Characteristics | Last paragraph added. | | Figure 11-8 | WD76C10A/LP/LV added. | | Figure 11-9 | WD76C10A/LP/LV added. | | Appendix - A | All new, covers WD76C10ALV. | ### **REVISION HISTORY - 7** Revision History 7 identifies the changes made from the document dated 11/25/91 to the document dated 3/19/92. The changes incorporated in the document dated 3/19/92 consist of the addition of Table 12-1 Pin States During Reset, and Appendix - B the Revision History. 3/19/92.