FEATURES

- Generates 12-output buffers from one input.
- Supports VIA Pro266 DDR chipset.
- Supports up to 2 DDR DIMMS.
- Supports up to 400 MHz DDR, SDRAMS.
- One additional output for feedback.
- 6 differential clock distribution.
- Less than 5 ns delay.
- Skew between any outputs is less than 100 ps.
- 2.5 V Supply range.
- Available in 28-pin SSOP.

BLOCK DIAGRAM

PIN CONFIGURATION

Note: \#: Active Low

DESCRIPTIONS

The PLL103-07 is designed as a 2.5 V buffer to distribute high-speed clocks in PC applications. The device has 12 outputs. These outputs can be configured to support 2 DDR DIMMs. The PLL103-07 can be used in conjunction with the PLL202-04 or similar clock synthesizer for the VIA Pro 266 chipset.

PIN DESCRIPTIONS

Name	Number	Type	Description
FBOUT	1	O	Feedback clock for chipset.
BUF_IN	10	I	Reference input from chipset.
DDRT[0:5]	$3,7,12,19$, 23,27	O	True clocks of differential pair outputs.
DDRC[0:5]	$4,8,13,18$, 22,26	O	Complementary clocks of differential pair outputs.
VDD2.5	$5,9,14$, $17,21,25$	P	2.5V power supply.
GND	$6,11,20,24$	P	Ground.

I2C BUS CONFIGURATION SETTING

| Address Assignment | A6 A5 A4 | |
| :---: | :--- | :--- | :--- | :--- |
| | 1 | Slave |
| Receiver/Transmitter | | | Provides both slave write and readback functionality

I2C CONTROL REGISTERS

1. BYTE 6: Outputs Register ($1=$ Enable, $0=$ Disable)

Bit	Pin\#	Default	Description
Bit 7	-	1	Reserved
Bit 6	-	0	Reserved
Bit 5	-	0	Reserved
Bit 4	-	0	Reserved
Bit 3	-	1	Reserved
Bit 2	27,26	1	DDRT5, DDRC5
Bit 1	23,22	1	DDRT4, DDRC4
Bit 0	19,18	1	DDRT3, DDRC3

2. BYTE 7: Outputs Register (1=Enable, $0=$ Disable)

Bit	Pin\#	Default	Description
Bit 7	-	1	Reserved
Bit 6	-	1	Reserved
Bit 5	-	1	Reserved
Bit 4	12,13	1	DDRT2, DDRC2
Bit 3	-	1	Reserved
Bit 2	7,8	1	DDRT1, DDRC1
Bit 1	-	1	Reserved
Bit 0	3,4	1	DDRT0, DDRC0

ELECTRICAL SPECIFICATIONS

1. Absolute Maximum Ratings

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	VDD	Vss-0.5	7.0	V
Input Voltage, dc	VI	Vss-0.5	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output Voltage, dc	Vo	Vss-0.5	$V_{D D}+0.5$	V
Storage Temperature	Ts	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$
ESD Voltage			2	KV

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

2. Operating Conditions

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	$\mathrm{V}_{\text {DD2.5 }}$	2.375	2.625	V
Input Capacitance	$\mathrm{C}_{\text {IN }}$		5	pF
Output Capacitance	Cout		6	pF

3. Electrical Specifications

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input High Voltage	V_{IH}	All Inputs except I2C	2.0		$V_{\text {DD }}+0.3$	V
Input Low Voltage	VIL	All inputs except I2C	$\mathrm{V}_{\text {ss }} 0.3$		0.8	V
Input High Current	IH	$V_{\text {IN }}=V_{\text {DD }}$			TBM	uA
Input Low Current	IIL	$\mathrm{V}_{\text {IN }}=0$			TBM	uA
Output High Voltage	VOH	$\mathrm{IOL}=-12 \mathrm{~mA}, \quad \mathrm{VDD}=2.375 \mathrm{~V}$	1.7			V
Output Low Voltage	VoL	$10 \mathrm{~L}=12 \mathrm{~mA}, \quad \mathrm{VDD}=2.375 \mathrm{~V}$			0.6	V
Output High Current	Іон	$\mathrm{VDD}=2.375 \mathrm{~V}, \mathrm{VOUT}=1 \mathrm{~V}$	-18	-32		mA
Output Low Current	IoL	$\mathrm{VDD}=2.375 \mathrm{~V}, \mathrm{VOUT}=1.2 \mathrm{~V}$	26	35		mA

Note: TBM: To be measured

3. Electrical Specifications (Continued)

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Current (DDR-only mode)	IDD	Unloaded outputs, 133MHz			TBM	mA
Supply Current (SDRAM mode)	Ido	Unloaded outputs, 133MHz			TBM	mA
Supply Current	Idos	$\mathrm{PD}=0$			TBM	mA
Output Crossing Voltage	Voc		$\begin{gathered} \hline \text { (VDD/2) } \\ -0.1 \end{gathered}$	VDD/2	$\begin{gathered} \hline(\mathrm{VDD} / 2)+ \\ 0.1 \end{gathered}$	V
Output Voltage Swing	Vout		0.7		VDD-0.4	V
Duty Cycle	$\mathrm{D}_{\text {T }}$	Measured @ 1.5V	45	50	55	\%
Max. Operating Frequency			66		170	MHz
Rising Edge Rate	Tor	Measured @ 0.4V ~ 2.4 V	1.0	1.5	2.0	V/ns
Falling Edge Rate	Tof	Measured @ 2.4V ~ 0.4V	1.0	1.5	2.0	V/ns
DDR Rising Edge Rate	Tor	Measured between 20% to 80% of output	0.25	0.6	1.0	V/ns
DDR Falling Edge Rate	Tof	Measured between 20% to 80% of output	0.25	0.6	1.0	V/ns
Clock Skew(pin to pin)	Tskew	All outputs equally loaded			100	ps
Stabilization Time	Tst				0.1	ms

Note: TBM: To be measured

PACKAGE INFORMATION

ORDERING INFORMATION

For part ordering, please contact our Sales Department:
47745 Fremont Blvd., Fremont, CA 94538, USA
Tel: (510) 492-0990 Fax: (510) 492-0991
PART NUMBER
The order number for this device is a combination of the following: Device number, Package type and Operating temperature range

[^0]
[^0]: PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by PhaseLink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

 LIFE SUPPORT POLICY: PhaseLink s products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.

