

Dual Output Mixed Voltage, DLV Models 13 Amp, 37 Watt, DC/DC Converters Vout Combinations of 3.3/2.5/1.8/1.5/1.2 Volts

Features

- Two independently regulated outputs: 3.3V @ 6A; 2.5/1.8/1.5/1.2V @ 7A
- 13A/37W total output current/power
- Input voltage ranges:
$10-18 \mathrm{~V}, 18-36 \mathrm{~V}$ or $36-75 \mathrm{~V}$
- Standard 2" x 2" package/pinout
- High efficiency (to 85%)
- Stable no-load operation
- Independent Vout trim pins
- Remote on/off control
- Fully isolated (1500Vdc); I/O protected
- Output overvoltage protection
- Thermal shutdown
- UL60950/EN60950 certified
- CE marked

DATEL's new DLV Series, dual-output, low-voltage DC/DC's provide any output combination of 3.3 V (to 6 Amps) and 2.5/1.8/1.5/1.2V (to 7 Amps). Designed with two control loops for two independently regulated outputs (both using synchronous rectification), DLV's are impressively efficient (to 85\%) and able to supply their full 13 Amps of output current (37 W for the $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$ models) up to $+60^{\circ} \mathrm{C}$ ambient with no derating (model dependent).

Housed in standard 2 " x 2 " x 0.5 " plastic packages, DLV's offer a number of functional options (positive or negative polarity on the control pin, addition of second Vout trim pin, etc.) that make them pin compatible with, yet more powerful than, virtually all $2^{\prime \prime} \times 2^{\prime \prime}$ duals from other leading DC/DC manufacturers.

Assembled using fully automated, SMT-on-pcb techniques, DLV's provide stable no-load operation, excellent line/load regulation ($\pm 1 \%$), quick step response ($200 \mu \mathrm{sec}$), and low output ripple/noise ($80 \mathrm{mVp}-\mathrm{p}$). All devices feature full I/O fault protection including: input overvoltage and undervoltage shutdown, output overvoltage protection, current limiting, short-circuit protection, and thermal shutdown.

All DLV models are Qual/HALT/EMI tested and certified to the operational/ functional-insulation requirements of UL60950/EN60950. 48VIN models (75VIN max.) carry the CE mark

Performance Specifications and Ordering Guide ${ }^{(1)}$

	Model	Output						Input			Efficiency		Package (Case, Pinout)
		Vout (Volts)	lout (2) (Amps)	R/N (mVp-p) ${ }^{3}$		Regulation (Max.)		Vin Nom. (Volts)	Range (Volts)	$\begin{aligned} & \ln (5) \\ & (\mathrm{mA}) \end{aligned}$			
				Typ.	Max.	Line	Load (4)				Min.	Typ.	
	DLV-2.5/7-1.8/7-D12	2.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$	12	10-18	TBD	TBD	83\%	C26, P48
		1.8	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-2.5/7-1.8/7-D24	2.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$	24	18-36	TBD	TBD	83\%	C26, P48
		1.8	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-2.5/7-1.8/7-D48	2.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$	48	36-75	TBD	TBD	83\%	C26, P48
		1.8	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
PRELIMINARY	DLV-3.3/6-1.2/7-D12	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	12	10-18	TBD	TBD	83\%	C26, P54
		1.2	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.2/7-D24	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	24	18-36	TBD	TBD	83\%	C26, P54
		1.2	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.2/7-D48	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	48	36-75	TBD	TBD	83\%	C26, P54
		1.2	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.5/7-D12	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	12	10-18	TBD	TBD	85\%	C26, P54
		1.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.5/7-D24	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	24	18-36	TBD	TBD	85\%	C26, P54
		1.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.5/7-D48	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	48	36-75	TBD	TBD	85\%	C26, P54
		1.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.8/7-D12	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	12	10-18	TBD	TBD	83\%	C26, P47
		1.8	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.8/7-D24	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	24	18-36	TBD	TBD	83\%	C26, P47
		1.8	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-1.8/7-D48	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	48	36-75	TBD	TBD	83\%	C26, P47
		1.8	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-2.5/7-D12	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	12	10-18	TBD	TBD	85\%	C26, P40
		2.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-2.5/7-D24	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	24	18-36	TBD	TBD	85\%	C26, P40
		2.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						
	DLV-3.3/6-2.5/7-D48	3.3	6	75	TBD	$\pm 1 \%$	$\pm 1 \%$	48	36-75	TBD	TBD	85\%	C26, P40
		2.5	7	75	TBD	$\pm 1 \%$	$\pm 1 \%$						

(1) Typical at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ under nominal line voltage and "balanced," full-power conditions:
3.3V @ 4.5A/2.5V @ 6A; 3.3V @ 5.2A/1.8V @ 7A; 3.3V @ 5.2A/1.8V @ 7A; 2.5V @ 7A/1.8V @ 7A.
(2) Any combination of rated lout current, not to exceed 35 Watts of output power. (See derating graphs.)

[^0]
MECHANICAL SPECIFICATIONS

See page 5 for Part Number Structure and ordering details.

DLV-3.3/6-2.5/7-D48TN

Dual Low Vol
Mixed-Voltag
V_{1} Nominal Output Voltage
${ }_{11}$ Maximum Output Current
V_{2} Nominal Output Voltage

- 1_{2} Maximum Output Current
* Optional pins

Performance/Functional Specifications

Typical @ $T_{A}=+25^{\circ} \mathrm{C}$ under nominal line voltage, balanced "full-load" conditions, unless noted.

Input	
Input Voltage Range: D12 Models D24 Models D48 Models	10-18 Volts (12V nominal) $18-36$ Volts (24 V nominal) $36-75$ Volts (48V nominal)
Overvoltage Shutdown: D12 Models D24 Models D48 Models	19-23 Volts (21V nominal) 37-42 Volts (40V nominal) 77-81 Volts (79V nominal)
Start-Up Threshold: D12 Models D24 Models D48 Models	9-10 Volts (9.3V nominal) 16.5-18 Volts (17V nominal) 34.5-36 Volts (35 V nominal)
Undervoltage Shutdown: D12 Models D24 Models D48 Models	8.5-9.6 Volts (9.3V nominal) 16-17 Volts (16.5 V nominal) $33-35$ Volts (34 V nominal)
Input Current: Normal Operating Conditions Standby Mode: Off, OV, UV, Thermal Shutdown	See Ordering Guide 10 mA typical
Input Reflected Ripple Current: Source Impedance D12 Models D24 Models D48 Models	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$
Internal Input Filter Type	Pi (0.039 $\mathrm{F}-2.2 \mu \mathrm{H}-\mathrm{TBD})$
Reverse-Polarity Protection: D12 Models D24 Models D48 Models	TBD minute duration, 6A maximum TBD minute duration, 4A maximum TBD minute duration, 2 A maximum
$\begin{aligned} & \text { On/Off Control (Pin 4): ③ (4) © } \\ & \text { D12, D24, D48 Models } \\ & \text { lin = TBD } \mu \mathrm{A} \text { @ TBDV } \\ & \text { Off }=0-0.8 \mathrm{~V}, \mathrm{lin}=\text { TBD @ } 0 \mathrm{~V} \\ & \text { D12N, D24N, D48N Models } \\ & \text { Off }=\text { open or TBD to }+5.5 \mathrm{~V} \\ & \text { lin }=\text { TBD } \mu \mathrm{A} @ \text { TBDV } \end{aligned}$	$\text { On = open or TBD to }+\mathrm{Vin},$ $\mathrm{On}=0-0.8 \mathrm{~V}, \mathrm{IN}=\mathrm{TBD} @ 0 \mathrm{~V}$

Output

Vout Accuracy	
2.5V/1.8V Models	1.5\% / 2\% maximum
$3.3 \mathrm{~V} / 1.5 \mathrm{~V}$ and 3.3V/1.8VModels	1\% / 2% maximum
3.3V/2.5V Models	1\% / 1.5% maximum
Minimum Loading Per Specification	No load
Ripple/Noise (20MHz BW)	See Ordering Guide
Line/Load Regulation	See Ordering Guide
Efficiency	See Ordering Guide/Efficiency Curves
Trim Range 88	$\pm 5 \%$ each output
Isolation Voltage: Input-to-Output	1500 Vdc
Isolation Capacitance	470pF
Isolation Resistance	100M Ω
Current Limit Inception: 2.5/1.8V Models	
2.5V @ 98\%Vout, 1.8V @ TBDA	TBD Amps
1.8V @ 98\%Vout, 2.5V @ TBDA	TBD Amps
3.3/1.5V Models	
3.3V @ 98.5\%Vout, 1.5V @ TBDA	TBD Amps
1.5V @ 98\%Vout, 3.3V @ TBDA	TBD Amps

Output (continued)	
Current Limit Inception: 3.3/1.8V Models 3.3V @ 98.5\%Vout, 1.8V @ TBDA 1.8V @ 98\%Vout, 3.3V @ TBDA 3.3V/2.5V Models 3.3V @ 98.5\%Vout, 2.5V @ TBDA 2.5V @ 98\%Vout, 3.3V @ TBDA	TBD Amps TBD Amps 98.5\%Vout TBD Amps TBD Amps
Short Circuit Current: 3.3V Outputs 2.5V Outputs 1.8 V Outputs 1.5V Outputs	TBD Amps average, continuous TBD Amps average, continuous TBD Amps average, continuous TBD Amps average, continuous
Overvoltage Protection: 2.5/1.8V Models 3.3/1.5V Models 3.3/1.8V Models 3.3/2.5V Models	Comparator, magnetic feedback TBD/TBD TBD/TBD TBD/TBD TBD/TBD
Maximum Capacitive Loading 2.5/1.8V Models 3.3/1.5V Models 3.3/1.8V Models 3.3/2.5V Models	TBD/TBD $\mu \mathrm{F}$ TBD/TBD $\mu \mathrm{F}$ TBD/TBD $\mu \mathrm{F}$ TBD/TBD $\mu \mathrm{F}$
Temperature Coefficient	$\pm 0.02 \%$ per ${ }^{\circ} \mathrm{C}$
Dynamic Characteristics	
Dynamic Load Response: 2.5/1.8V Models 2.5 V ($50-100 \%$ step to $1.5 \% \mathrm{Vout})$ 1.8 V (50-100\% step to 2\%Vout) 3.3/1.5V Models 3.3 V ($50-100 \%$ step to 1% Vout) 1.8 V (50-100\% step to 2\%Vout) 3.3/1.8V Models 3.3V (50-100\% step to 1\%Vout) 1.8 V (50-100\% step to 2% Vout 3.3V/2.5V Models 3.3V (50-100\% step to 1% Vout) 2.5 V ($50-100 \%$ step to 1.5% Vout)	TBD $\mu \mathrm{sec}$ maximum TBD μ sec maximum TBD μ sec maximum TBD μ sec maximum TBD μ sec maximum TBD μ sec maximum TBD μ sec maximum TBD μ sec maximum
Start-Up Time: Vin to Vout On/Off to Vout	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$
Switching Frequency	225 kHz (\pm TBD kHz)
Environmental	
MTBF	
Operating Temperature (Ambient): Without Derating: $2.5 / 1.8 \mathrm{~V}$ Models TBD $3.3 / 1.8 \mathrm{~V}$ Models TBD $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$ Models TBD With Derating $\mathrm{To}+100^{\circ} \mathrm{C}$ (See Derating Curves)	
Case Temperature: Maximum Operational For Thermal Shutdown	$\begin{aligned} & +100^{\circ} \mathrm{C} \\ & \mathrm{TBD} \text { minimum, } \mathrm{TBD} \text { maximum } \end{aligned}$
Storage Temperature	-40 to $+120^{\circ} \mathrm{C}$

Physical	
Dimensions	$2^{\prime \prime} \times 2^{\prime \prime} \times 0.5^{\prime \prime}(50.8 \times 50.8 \times 12.7 \mathrm{~mm})$
Case Material	Diallyl phthalate, UL94V-0 rated
Pin Material	Brass, solder coated
Weight:	TBD
Primary to Secondary Insulation Level	Operational

(1) All models are specified with external TBD ceramic output capacitors.
(2) See Technical Notes/Graphs for details.
(3) Devices may be order with opposite polarity. See Part Number Suffixes and Technical Notes for details.
(4) Applying a voltage to On/Off Control (pin 4) when no input power is applied to the converter may cause permanent damage.
(5) Output noise may be further reduced with the installation of additional external output capacitors. See Technical Notes.
(6) $\mathrm{On} / \mathrm{Off}$ control is designed to be driven with open collector or by appropriate voltage levels. Voltages must be referenced to the -Input (pin 2).
(7) Demonstrated MTBF available on request.
(8) Trim function for the higher of two voltages available with "T" suffix. See Part Number Suffixes and Technical Notes for details.

Absolute Maximum Ratings	
Input Voltage:	
Continuous: D12 Models	23 Volts
D2A Models	42 Volts
D48 Models	81 Volts
Transient (100msec): D12 Models	25 Volts
D24 Models	50 Volts
D48 Models	100 Volts
Input Reverse-Polarity Protection (2)	Input Current must be limited. TBD minute duration. Fusing recommended.
D12A Models	6 Amps
D24A Models	4 Amps
D48A Models	2 Amps
Output Current (2)	Current limited. Devices can withstand an indefinite output short circuit.
On/Off Control (Pin 4) Max. Voltages	
Referenced to -Input (pin 2)	
No Suffix	+VIN
"N" Suffix	+8 Volts
Sync Control (Pin 3) Max. Voltages	
"S" Suffix	+5.7 Volts
Storage Temperature	-40 to $+120^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$+300^{\circ} \mathrm{C}$
These are stress ratings. Exposure of devices to any of these conditions may adversely affect long-term reliability. Proper operation under conditions other than those listed in the Performance/Functional Specifications Table is not implied, nor recommended.	

TECHNICAL NOTES

On/Off Control

The primary-side, remote On/Off Control function (pin 4) can be specified to operate with either positive or negative polarity. Positive polarity devices (no suffix) are enabled when pin 4 is left open or pulled high (+TBDV to + TBDV with respect to -Input). Positive polarity devices are disabled when pin 4 is pulled low ($0-0.8 \mathrm{~V}$ with respect to -Input). Negative polarity devices are off when pin 4 is high/open and on when pin 2 is pulled low.

For applications where power sequencing is critical, the DLV series can be configured such that the On/Off Control pin will enable/disable only the higher of the two output voltages. Contact DATEL for more information.

Trimming Output Voltages

These DLV converters have a trim capability (pins 9 \& 5) that allow users to independently adjust the output voltages $\pm 5 \%$. (Note: pin 5 is an option, see ordering information.) Adjustments to the output voltages can be accomplished via a trim pot, Figure 2, or a single fixed resistor as shown in Figures 3 and 4. A single fixed resistor can increase or decrease the output voltage depending on its connection. Fixed resistors should have absolute TCR's less than $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ to minimize sensitivity to changes in temperature.

A single resistor connected from the Trim pin 9 to + Output (pin 8), see Figure 3, will decrease the lower output voltage. A resistor connected from Trim pin 9 to Output Return (pin 7) will increase the lower output voltage. See Figure 4.
Similarly, the higher output voltage can be adjusted using a single resistor connected from the Trim (pin 5) to +Output (pin 6) or to Output Return (pin 7). See Figures 3 and 4.

Figure 2. Trim Connections Using A Trim Pot

Figure 3. Trim Connections To Decrease Output Voltages Using Fixed Resistors

3.3 Volt Trim Down

$\mathrm{R}_{\mathrm{D}_{\text {Down }}}(\mathrm{k} \Omega)=\left[\frac{3.48(\mathrm{Vo}-1.577)}{3.3-\mathrm{Vo}}\right]-25.5$

2.5 Volt Trim Down

$\mathrm{RT}_{\text {Dowv }}(\mathrm{k} \Omega)=\left[\frac{2.41(\mathrm{Vo}-1.18)}{2.5-\mathrm{Vo}}\right]-17.4$

1.8 Volt Trim Down

$\mathrm{R}_{\mathrm{D}_{\text {Doww }}}(\mathrm{k} \Omega)=\left[\frac{1.73(\mathrm{Vo}-0.86)}{1.8-\mathrm{Vo}}\right]-14.17$

3.3 Volt Trim Up
$\mathrm{RT}_{\mathrm{UP}}(\mathrm{k} \Omega)=\left[\frac{5.88}{\mathrm{Vo}-3.3}\right]-25.5$
2.5 Volt Trim Up
$\mathrm{RT}_{\mathrm{UP}}(\mathrm{k} \Omega)=\left[\frac{2.84}{\mathrm{Vo}-2.5}\right]-17.4$
1.8 Volt Trim Up
$\mathrm{R}_{\mathrm{UP}}(\mathrm{k} \Omega)=\left[\frac{1.49}{\mathrm{Vo}-1.8}\right]-14.17$

Note: Resistor values are in $\mathrm{k} \Omega$. Accuracy of adjustment is subject to tolerances of resistors and fac-tory-adjusted output accuracy. Vo $=$ desired output voltage .

Figure 4. Trim Connections To Increase Output Voltages Using Fixed Resistors

Part number structure

DLV -3.3/6-2.5/7-D48TN

Dual Low Voltage/ Mixed-Voltage Series
V_{1} Nominal Output Voltage
I 1 Maximum Output Current
V2 Nominal Output Voltage

Add T and N suffixes as desired
Input Voltage Range:
D12 $=10-18$ Volts (12 V nominal) D24 $=18-36$ Volts (24 V nominal) D48 $=36-75$ Volts (48 V nominal)

Part Number Suffixes

Standard DLV DC/DC's provide a Trim function (Pin 9) for the lower of the two output voltages. A Trim pin (Pin 5) for the higher voltage can be added by indicating a "T" suffix. An "N" suffix indicates that the On/Off Control function incorporates negative polarity logic.

No Suffix Pins 5 not installed, positive polarity On/Off Control
T Suffix Pin 5 added for higher voltage Trim option
N Suffix Negative polarity On/Off Control

TYPICAL PERFORMANCE CURVES

DLV-3.3/6-2.5/7-D48TN Efficiency vs. Load and Vin

DLV-3.3/6-2.5/7-D48TN Efficiency vs. Line and Load

temperature derating

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356 Internet: www.datel.com Email: sales@datel.com

DATEL (UK) LTD. Tadley, England Tel: (01256)-880444
DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 01-34-60-01-01 DATEL GmbH München, Germany Tel: 89-544334-0
DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-6354-2025

[^0]: 3) Ripple/Noise (R/N) measured over a 20 MHz bandwidth. All models are specicfied with

 TBD ceramic capacitors.
 (4) Tested from no load to 100% load (other output at no load).
 (5) Nominal line voltage, no load/balanced full-power condition.

