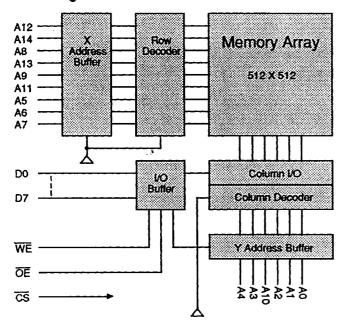
32K x 8 SRAM

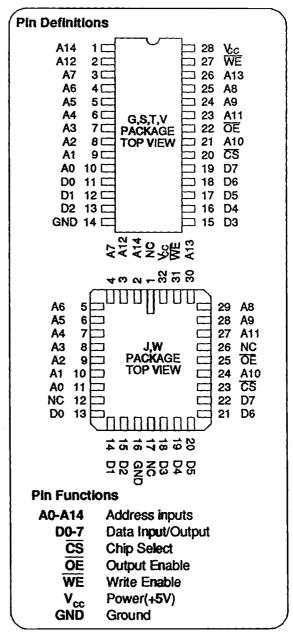
Mosaic

Semiconductor


Inc

32,768 x 8 CMOS High Speed Static RAM

Features


Access Times of 85/100/120/150 ns Standard 28 pin DIL/ 32 pad LCC footprint Available in 28 pin VIL™ and FlatPack packages Low Power Standby - 10 μW (typ) L version Low Power Operation - 40 mW (typ) L version Completely Static Operation Battery back-up capability Directly TTL compatible Common Data Inputs and Outputs May be Screened in accordance with MIL-STD-883C VIL™ is a Trade Mark of Mosaic Semiconductor Inc.

Block Diagram

MSM832-85/10/12/15

Issue 3.0 : August 1990

•	Package Details							
	Pin Count	Description	Package Type	Material	Pin Out			
	28	0.6" Dual-in-Line (DIP)	S	Ceramic	JEDEC			
	28	0.3" Dual-in-Line (DIP)	T	Ceramic	JEDEC			
	28	0.1" Vertical-in-Line (VIL™)	V	Ceramic	JEDEC			
	28	Bottom Brazed FlatPack	G	Ceramic	JEDEC			
	32	Leadless Chip Carrier (LCC)	W	Ceramic	JEDEC			
	32	J-Leaded Chip Carrier (JLCC)	J	Ceramic	JEDEC			
	Package dime	ensions and outlines are displayed on p	ages 6&7.	VIL PAT PENDING				

Absolute Maximum Ratings (1)

Voltage on any pin relative to V _{ss} (2)	V_{τ}	-0.5V to +7	٧
Power Dissipation	P,	1	W
Storage Temperature	T _{ste}	-55 to +150	°C

Notes: (1) Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device

(2) Pulse width: - 3.0V for less than 50ns.

Recommended Operating Conditions

		min	typ	max	
Supply Voltage	V_{cc}	4.5	5.0	5.5	٧
Input High Voltage	V _{IH}	2.2	-	$V_{cc}+0.3$	V
Input Low Voltage	V _{iL}	-0.3	-	0.8	٧
Operating Temperature	T_A	0	-	70	°C
	TAL	-40	-	85	°C (832I)
	TAM	-55		125	°C (832M,832MB)

DC Electrical Characteristics ($V_{CC} = 5.0V \pm 10\%$, $T_A = -55$ °C to +125°C)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	l _u	V _{IN} =0V to V _{cc}	-	-	2	μA
Output Leakage Current	اره	$\overline{\text{CS}}=\text{V}_{\text{IH}}$ or $\overline{\text{OE}}=\text{V}_{\text{IH}}$, $\text{V}_{\text{IN}}=\text{GND}$ to V_{CC}	-	-	2	μΑ
Operating Supply Current		CS=V _{IL} ,I _{LO} =0mA, I/P's Static	-	8	15	mA
Average Supply Current	l _{cc1}	CS=V _{it} ,I _{vo} =0mA, Min. Cycle, Duty=100%	-	50	70	mA
Standby Supply Current	I _{SB}	CS=V _{III} I/P's static	-	0.5	3	mA
	I _{SB1}	CS≥V _{cc} -0.2V, 0.2V≥V _{IN} ≥V _{cc} -0.2V	-	0.04	2	mA
-L Version		As above	-	-	200	μА
Output Voltage	VoL	l _{ot} =2.1mA	-	-	0.4	٧
		I _{OH} =-1.0mA	2.4	-	-	٧

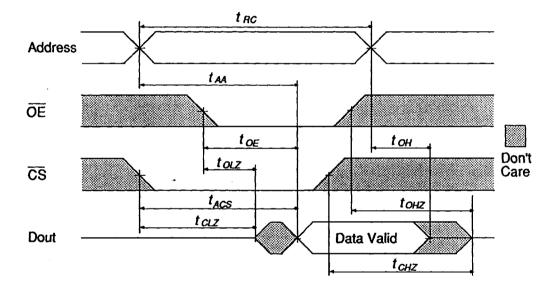
Typical values are at V_{cc}=5.0V,T_A=25°C and specified loading.

Capacitance ($V_{cc}=5V\pm10\%$, $T_{a}=25$ °C)

Parameter	Symbol	Test Condition	typ	max	Unit	
Input Capacitance:	C _{IN}	V _{IN} = 0V	-	6	pF	
I/O Capacitance:	C ^{ivo}	$V_{VO}^{"}=0V$	-	8	pF	

This parameter is sampled and not 100% tested. Note:

AC Test Conditions

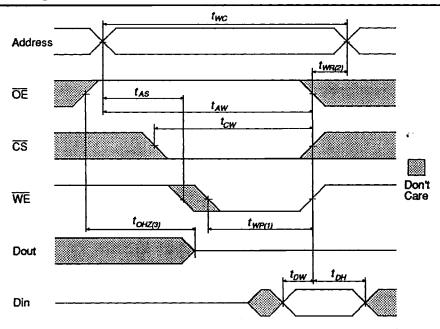

- * Input pulse levels: 0V to 3.0V
- * Input rise and fall times: 5ns
- * Input and Output timing reference levels: 1.5V
- * Output load: 1 TTL gate + 100pF
- * V_c=5V±10%

Electrical Characteristics & Recommended AC Operating Conditions

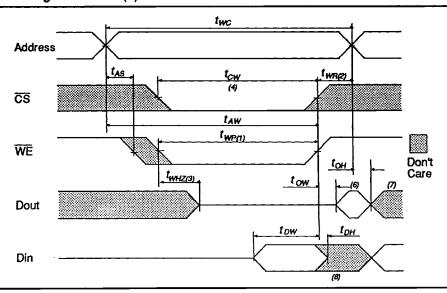
Read Cycle

		-	· <i>85</i>	-	10		12	-	15	
Parameter	Symbol	min	max	min	max	min	max	min	max	Unit
Read Cycle Time	t _{RC}	85	-	100	-	120	_	150	-	ns
Address Access Time	t	-	85	-	100	-	120	-	150	ns
Chip Select Access Time	tACS	-	85	-	100	-	120	-	150	ns
Output Enable to Output Valid	t _{oe}	-	45	-	50	-	60	-	70	ns
Output Hold from Address Change	toH	5	-	10	-	10	-	10	-	ns
Chip Selection to Output in Low Z ⁽³⁾	tciz	10	-	10	-	10	-	10	-	ns
Output Enable to Output in Low Z(3)	tocz	5	-	5	-	5	-	5	-	ns
Chip Deselection to Output in High Z		0	30	0	35	0	40	0	50	ns
Output Disable to Output in High Z(3)		0	30	0	35	0	40	0	50	ns

Read Cycle Timing Waveform (1)


Notes:

- (1) WE is High for Read Cycle.
- (2) Address valid prior to or coincident with $\overline{\text{CS}}$ transition Low.
- (3) t_{CHZ} and t_{CHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. These parameters are sampled and not 100% tested.

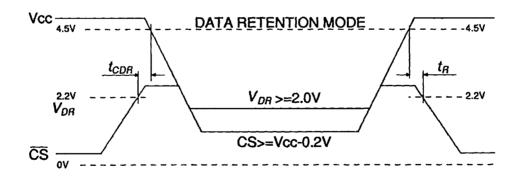

Write Cycle

		-	· <i>85</i>	-	10	-	12	-	15	
Parameter	Symbol	min	max	min	max	min	max	min	max	Unit
Write Cycle Time	t _{wc}	85	-	100	-	120	-	150	-	ns
Chip Selection to End of Write	t _{cw}	75	-	80	-	85	-	100	-	ns
Address Valid to End of Write	t _{AW}	75	-	80	-	85	•	100	-	ns
Address Setup Time	tas	0	-	0	-	0	-	0	-	ns
Write Pulse Width	twp	60	-	60	-	70	-	90	-	ns
Write Recovery Time	t _{wa}	10	-	0	-	0	-	0	-	ns
Write to Output in High Z ⁽⁹⁾	twicz	0	30	0	35	0	40	0	50	ns
Data to Write Time Overlap	t _{DW}	40	-	40	~	50	-	60	-	ns
Data Hold from Write Time	t _{DH}	0	-	0	-	0	-	0	-	ns
Output Disable to Output in High Z(9)		0	30	0	35	0	40	0	50	ns
Output Active from End of Write	tow	5	-	5	-	5	•	5	-	ns

Write Cycle No.1 Timing Waveform

Write Cycle No.2 Timing Waveform (5)

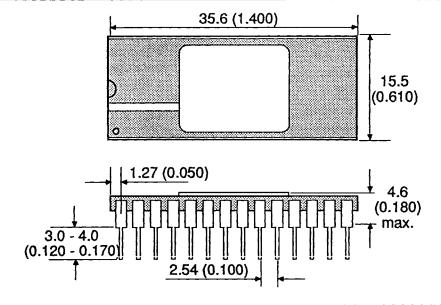
AC Write Characteristics Notes

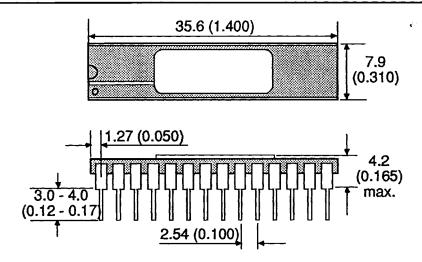

- (1) A write occurs during the overlap (t_{wp}) of a low \overline{CS} and a low \overline{WE} .
- (2) t_{WB} is measured from the earlier of \overline{CS} or \overline{WE} going high to the end of write cycle.
- (3) During this period, I/O pins are in the output state. Input signals out of phase must not be applied.
- (4) If the CS low transition occurs simultaneously with the WE low transition or after the WE low transition, outputs remain0in a high impedance state.
- (5) \overline{OE} is continuously low. ($\overline{OE}=V_n$)
- (6) Dout is in the same phase as written data of this write cycle.
- (7) Dout is the read data of next address.
- (8) If CS is low during this period, I/O pins are in the output state. Input signals out of phase must not be applied to I/O pins.
- (9) t_{WHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. These parameters are sampled and not 100% tested.

Low	V _∝ Data	Retention	Characteris	stics - L	Version Only

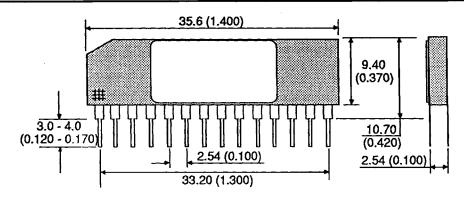
Parameter S	Symbol	Test Condition	min	typ	max	Unit
V _{cc} for Data Retention	V _{DR}	CS≥V _{cc} -0.2V	2.0	-	-	٧
Data Retention Current		V _{cc} =3.0V,CS≥ 2.8V				
	CCDR1	Top=TA	-	8	30	μА
	CCORE	Top=TAI	-	-	50	μΑ
	I _{CCDR3}	Top=TAM	-	-	170	μΑ
Chip Deselect to Data Retention Time		See Retention Waveform	0	-	-	ns
Operation Recovery Time	t _R	See Retention Waveform	t _{RC} ⁽¹⁾	-	-	ns

Notes (1) t_{RC}=Read Cycle Time

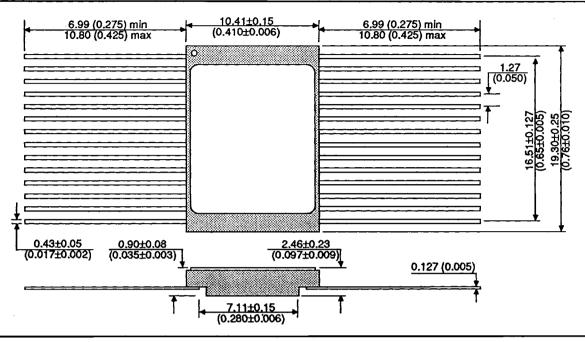

Data Retention Waveform

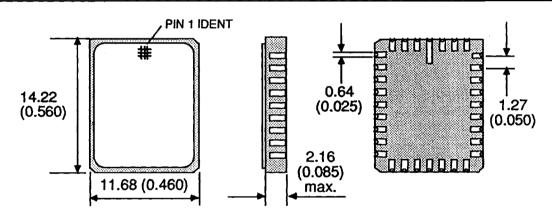

ISSUE 3.0 : AUGUST 1990 MSM832-85/10/12/15

Package Details dimensions in mm (inches)

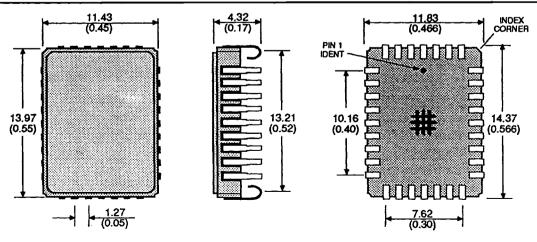

28 pin 0.6" Dual-In-Line (DIL) - 'S' Package

28 pin 0.3" Dual-In-Line (DIL) - 'T' Package


28 pin 0.1" Vertical-in-Line (VIL) - 'V' Package


Tolerance on all dimensions ±0.254 (0.01)

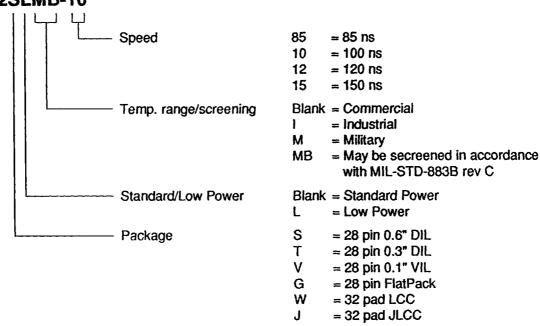
Package Details dimensions in mm (inches)


28 lead Ceramic FlatPack - 'G' Package

32 pad Leadless Chip Carrier (LCC) - 'W' Package

32 pad 'J' Leaded Chip Carrier (JLCC) - 'J' Package

Tolerance on all dimensions ±0.254 (0.01)


Military Screening Procedure

Component Screening Flow for high reliability parts in accordance with Mil-883C method 5004 is shown below:

MB CO	MPONENT SCREENING FLOW									
CREEN TEST METHOD										
Visual and Mechanical										
Internal visual	2010 Condition B or manufacturers equivalent	100%								
Temperature cycle	1010 Condition C (10 Cycles,-65°C to +150°C)	100%								
Constant acceleration	2001 Condition E (Y, only) (30,000g)	100%								
Pre-Burn-in electrical	Per applicable device specifications at T _A =+25°C	100%								
Burn-in	Method 1015, Condition D,T _A =+125°C,160hrs min	100%								
Final Electrical Tests	Per applicable Device Specification									
Static (dc)	a) @ T _A ≈+25°C and power supply extremes	100%								
	b) @ temperature and power supply extremes	100%								
Functional	a) @ T _A =+25°C and power supply extremes	100%								
	b) @ temperature and power supply extremes	100%								
Switching (ac)	a) @ T _A =+25°C and power supply extremes	100%								
	b) @ temperature and power supply extremes	100%								
Percent Defective allowable (PDA)	Calculated at post-burn-in at T _A =+25°C	5%								
Hermeticity	1014									
Fine	Condition A	100%								
Gross	Condition C	100%								
		-								
External Visual	2009 Per vendor or customer specification	100%								

Ordering Information

MSM832SLMB-10

The policy of the company is one of continuous development and while the information presented in this data sheet is believed to be accurate, no liability is assumed for any data contained within. The company reserves the right to make changes without notice at any time.

7420 Carroll Road San Diego, CA 92121 Tel: (619) 271 4565 FAX: (619) 271 6058