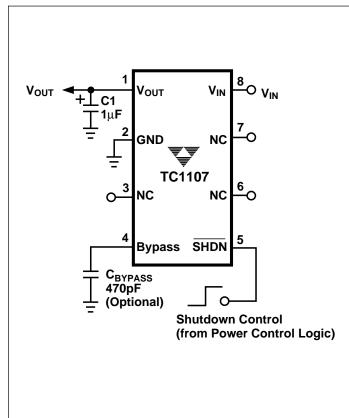


300mA CMOS LDO WITH SHUTDOWN AND VREF BYPASS


FEATURES

- Zero Ground Current for Longer Battery Life!
- Very Low Dropout Voltage
- Guaranteed 300mA Output
- High Output Voltage Accuracy
- Standard or Custom Output Voltages
- Power-Saving Shutdown Mode
- Bypass Input for Ultra-Quiet Operation
- Over-Current and Over-Temperature Protection
- Space-Saving MSOP Package Option

APPLICATIONS

- Battery-Operated Systems
- Portable Computers
- Medical Instruments
- Instrumentation
- Cellular / GSM / PHS Phones
- Linear Post-Regulator for SMPS
- Pagers

TYPICAL APPLICATION

GENERAL DESCRIPTION

The TC1107 is a fixed output, high accuracy (typically $\pm 0.5\%$) CMOS upgrade for older (bipolar) low dropout regulators. Total supply current is typically $50\mu A$ at full load (20 to 60 times lower than in bipolar regulators!).

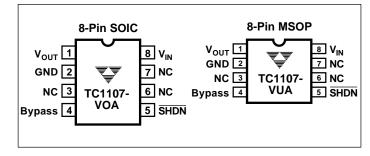
TC1107 key features include ultra low noise operation (plus optional Bypass input); very low dropout voltage (typically 240mV at full load), and fast response to step changes in load. Supply current is reduced to $0.05\mu A$ (typical) and V_{OUT} falls to zero when the shutdown input is low.

The TC1107 incorporates both over-temperature and over-current protection. The TC1107 is stable with an output capacitor of only $1\mu F$ and has a maximum output current of 300mA.

ORDERING INFORMATION

Part Number	Package	Junction Temp. Range
TC1107-xxVOA	8-Pin SOIC	- 40°C to +125°C
TC1107-xxVUA	8-Pin MSOP	- 40°C to +125°C

TC1015EV Evaluation Kit for CMOS LDO Family


Available Output Voltages:

2.5, 2.8, 3.0, 3.3, 5.0

xx indicates output voltages

Other output voltages are available. Please contact TelCom Semiconductor for details.

PIN CONFIGURATIONS

300mA CMOS LDO WITH SHUTDOWN AND VREE BYPASS

TC1107

ABSOLUTE MAXIMUM RATINGS*

Input Voltage	7V
Output Voltage	$(V_{SS} - 0.3)$ to $(V_{IN} + 0.3)$
Power Dissipation	. Internally Limited (Note 6)
Operating Temperature	-40° C $<$ T _J $<$ 125 $^{\circ}$ C
Storage Temperature	– 65°C to +150°C

Maximum Voltage on Any Pin V_{IN} + 0.3V to - 0.3V Lead Temperature (Soldering, 10 Sec.) +300°C

*Absolute Maximum Ratings indicate device operation limits beyond damage may occur. Device operation beyond the limits listed in Electrical Characteristics is not recommended.

ELECTRICAL CHARACTERISTICS: $V_{IN} = V_{OUT} + 1V$, $I_L = 0.1 \mu A$, $C_L = 3.3 \mu F$, SHDN > V_{IH} , $T_A = 25 ^{\circ}C$, Unless Otherwise Noted. **Boldface** type specifications apply for junction temperatures of -40° C to $+125^{\circ}$ C.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
$\overline{V_{IN}}$	Input Operating Voltage		_	_	6.5	V
I _{OUTMAX}	Maximum Output Current		300	_	_	mA
V _{OUT}	Output Voltage	Note 1	_	$V_R \pm 0.5\%$	_	V
			V _R - 2.5%	_	V _R + 2.5%	
$\Delta V_{OUT}/\Delta T$	V _{OUT} Temperature Coefficient	Note 2	_	40	_	ppm/°C
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	$(V_R + 1V) \le V_{IN} \le 6V$	_	0.05	0.35	%
$\Delta V_{OUT}/V_{OUT}$	Load Regulation	$I_L = 0.1 \text{mA to } I_{OUTMAX}$	_	0.5	2.0	%
$\overline{V_{IN} - V_{OUT}}$	Dropout Voltage	$I_L = 0.1 \text{mA}$	_	20	30	mV
		$I_L = 100 \text{mA}$	_	80	160	
		$I_L = 300 \text{mA}$		240	480	
		(Note 4)				
I _{SS1}	Supply Current	SHDN = V _{IH}	_	50	90	μΑ
I _{SS2}	Shutdown Supply Current	SHDN = 0V	_	0.05	0.5	μΑ
PSRR	Power Supply Rejection Ratio	F _{RE} ≤ 1kHz	_	60	_	dB
I _{OUTSC}	Output Short Circuit Current	V _{OUT} = 0V	_	550	650	mA
$\Delta V_{OUT}/\Delta P_{D}$	Thermal Regulation	Note 5	_	0.04	_	%/W
eN	Output Noise	$F = 1Khz$, $C_{OUT} = 1\mu F$,	_	260	_	nV/√ Hz
		$R_{LOAD} = 50\Omega$				
SHDN Input						
V _{IH}	SHDN Input High Threshold		45	_	_	%V _{IN}
$\overline{V_{IL}}$	SHDN Input Low Threshold		_	_	15	%V _{IN}

NOTES: 1. V_R is the regulator output voltage setting.

- 2. $T_C V_{OUT} = (V_{OUT_{MAX}} V_{OUT_{MIN}}) \times 10^{-6}$ V_{OUT} x ∆T
- 3. Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 4. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at a 1V differential.
- 5. Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for T = 10msec.
- 6. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature, and the thermal resistance from junction-to-air (i.e. T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Thermal Considerations section of this data sheet for more details.

TC1107-1 9/14/99

DETAILED DESCRIPTION

The TC1107 is a precision regulator available in fixed voltages. Unlike the bipolar regulators, the TC1107 supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation at very low load currents (an important consideration in RTC and CMOS RAM battery backup applications). TC1107 pin functions are detailed below:

PIN DESCRIPTION

Pin		
No.	Symbol	Description
1	V _{OUT}	Regulated voltage output
2	GND	Ground terminal
3	NC	No connect
4	Bypass	Reference bypass input. Connecting a 470pF to this input further reduces output noise.
5	SHDN	Shutdown control input. The regulator is fully enabled when a logic high is applied to this input. The regulator enters shutdown when a logic low is applied to this input. During shutdown, output voltage falls to zero and supply current is reduced to under 1 microamp (typical).
6	NC	No connect
7	NC	No connect
8	V _{IN}	Unregulated supply input

Figure 1 shows a typical application circuit. The regulator is enabled any time the shutdown input (\overline{SHDN}) is at or above $V_{IH},$ and shutdown (disabled) when \overline{SHDN} is at or below $V_{IL}.$ \overline{SHDN} may be controlled by a CMOS logic gate, or I/O port of a microcontroller. If the \overline{SHDN} input is not required, it should be connected directly to the input supply. While in shutdown, supply current decreases to $0.05\mu A$ (typical), V_{OUT} falls to zero.

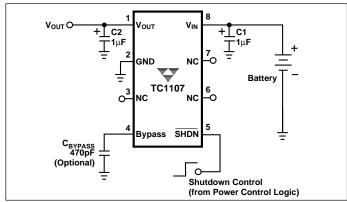


Figure 1. Typical Application Circuit

Bypass Input

A 470pF capacitor connected from the Bypass input to ground reduces noise present on the internal reference, which in turn significantly reduces output noise. If output noise is not a concern, this input may be left unconnected. Larger capacitor values may be used, but results in a longer time period to rated output voltage when power is initially applied.

Output Capacitor

A 1 μ F (min) capacitor from V_{OUT} to ground is recommended. The output capacitor should have an effective series resistance of 5 Ω or less, and a resonant frequency above 1MHz. A 1 μ F capacitor should be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately – 30°C, solid tantalums are recommended for applications operating below – 25°C.) When operating from sources other than batteries, supplynoise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

Thermal Considerations

Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 150°C. The regulator remains off until the die temperature drops to approximately 140°C.

Power Dissipation

3

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst case *actual* power dissipation:

$$P_{D} \approx (V_{INMAX} - V_{OUTMIN}) I_{LOADMAX}$$
 Where:
$$P_{D} = \text{worst case actual power dissipation}$$

$$V_{INMAX} = \text{maximum voltage on } V_{IN}$$

$$V_{OUTMIN} = \text{minimum regulator output voltage}$$

$$I_{LOADMAX} = \text{maximum output (load) current}$$

Equation 1.

The maximum *allowable* power dissipation (Equation 2) is a function of the maximum ambient temperature (T_{AMAX}), the maximum allowable die temperature (125°C), and the thermal resistance from junction-to-air (θ_{JA}). The SOIC-8

300mA CMOS LDO WITH SHUTDOWN AND V_{REF} BYPASS

TC1107

package has a θ_{JA} of approximately **160°C/Watt**, while the MSOP-8 package has a θ_{JA} of approximately **200°C/Watt**; both when mounted on a single layer FR4 dielectric copper clad PC board.

$$P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}$$

Where all terms are previously defined.

Equation 2.

Equation 1 can be used in conjunction with Equation 2 to ensure regulator thermal operation is within limits. For example:

GIVEN:
$$V_{INMAX} = 3.0V \pm 10\%$$

 $V_{OUTMIN} = 2.7V - 2.5\%$
 $I_{LOAD} = 250$ mA
 $T_{AMAX} = 55$ °C
MSOP-8 Package

FIND: 1. Actual power dissipation

2. Maximum allowable dissipation.

Actual power dissipation:

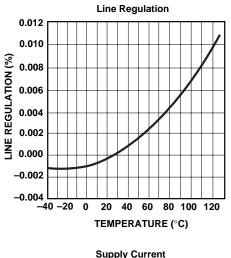
$$P_D \approx (V_{INMAX} - V_{OUTMIN})I_{LOADMAX}$$

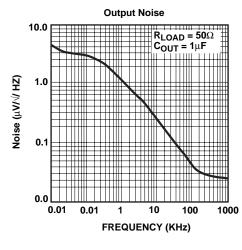
= [(3.0 x 1.1) - (2.7 x .975)]250 x 10⁻³
= 167mW

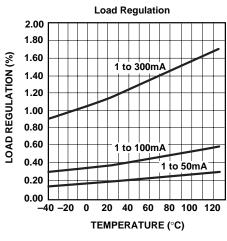
Maximum allowable power dissipation:

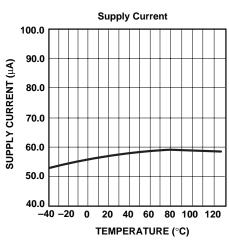
$$P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}$$

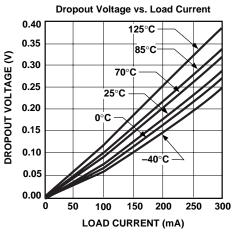
$$= \frac{(125 - 55)}{200}$$

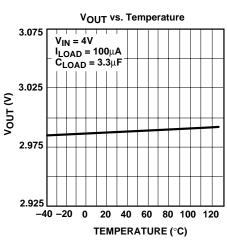

$$= 350 \text{mW}$$

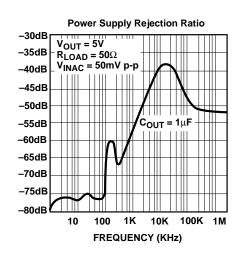

In this example, the TC1107 dissipates a maximum of only 167mW; far below the allowable limit of 350mW. In a similar manner, Equation 1 and Equation 2 can be used to calculate maximum current and/or input voltage limits.

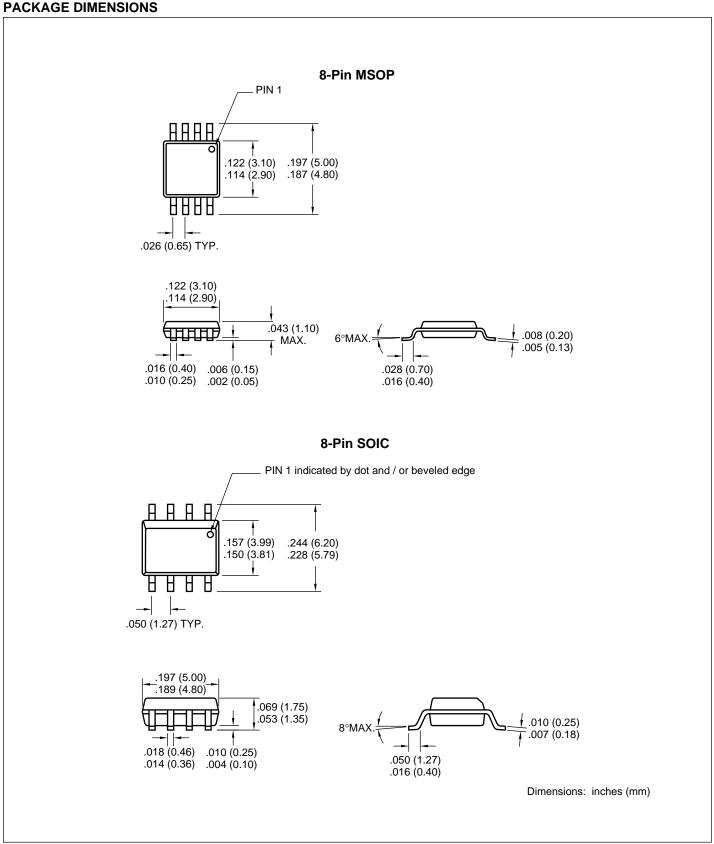

Layout Considerations

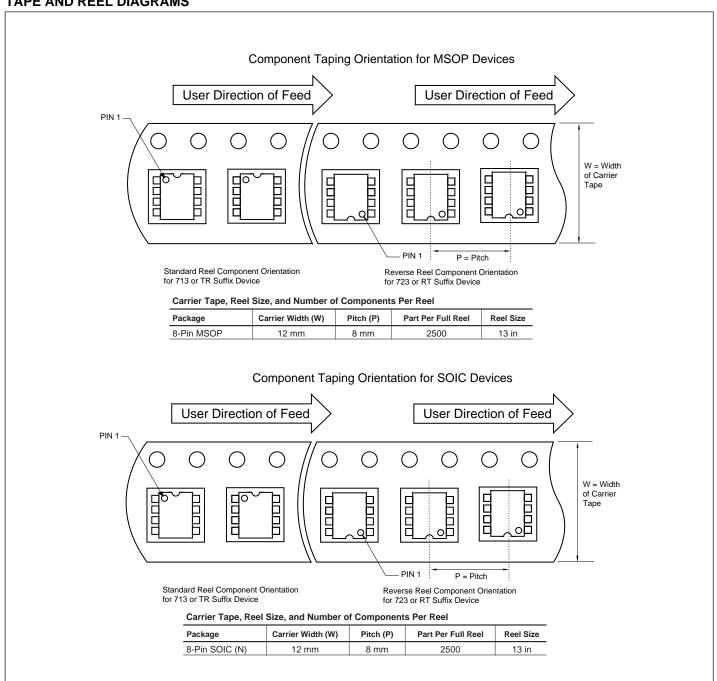

The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads, and wide power supply bus lines combine to lower θ_{JA} and, therefore, increase the maximum allowable power dissipation limit.


TYPICAL CHARACTERISTICS






5


TC1107-1 9/14/99

TC1107

6 TC1107-1 9/14/99

TAPE AND REEL DIAGRAMS

Sales Offices

TelCom Semiconductor, Inc. 1300 Terra Bella Avenue P.O. Box 7267 Mountain View, CA 94039-7267

TEL: 650-968-9241 FAX: 650-967-1590

E-Mail: liter@telcom-semi.com

TelCom Semiconductor, GmbH

Lochhamer Strasse 13 D-82152 Martinsried Germany

TEL: (011) 49 89 895 6500 FAX: (011) 49 89 895 6502 2 **TelCom Semiconductor H.K. Ltd.** 10 Sam Chuk Street, Ground Floor San Po Kong, Kowloon

Hong Kong

TEL: (011) 852-2350-7380 FAX: (011) 852-2354-9957