2 ### **DUAL TIMER** The NE556 series dual monolithic timing circuits are a highly stable controller capable of producing accurate time delays or oscillation. The NE556 is a dual NE555. Timing is provided an external resistor and capacitor for each timing function. The two timers operate independently of each other, sharing only V $_{\odot}$ and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200mA. ### **FEATURES** - Replaces Two NE555 Timers - Operates in Both Astable And Monostable Modes - High Output Current - TTL Compatible - Timing From Microsecond To Hours - Adjustable Duty Cycle - Temperature Stability Of 0.005% Per °C ### **APPLICATIONS** - Precision Timing - · Pulse Shaping - Pulse Width Modulation - Frequency Division - Traffic Light Control - Sequential Timing - Pulse Generator - Time Delay Generator - Touch Tone Encoder - Tone Burst Generator #### 14 DIP ### **ORDERING INFORMATION** | Device | Package | Operating Temperature | |---------|---------|-----------------------| | NE556CN | 14 DIP | 0~+70°C | ### **BLOCK DIAGRAM** # ABSOLUTE MAXIMUM RATINGS (Ta = 25°C) | Characteristic | Symbol | Value | Unit | | |-------------------------------------|-------------------|-------------|------|--| | Supply Voltage | V _{cc} | 16 | ٧ | | | Lead Temperature (soldering 10 sec) | T _{lead} | 300 | °C | | | Power Dissipation | Po | 600 | mW | | | Operating Temperature Range | T _{opr} | 0 ~ + 70 | °C | | | Storage Temperature Range | T _{stg} | ~65 ~ + 150 | °C | | ## **ELECTRICAL CHARACTERISTICS** (Ta = 25°C, V_{cc} = 5 to 15V, unless otherwise specified) | Vcc | | 4.5 | | | | |-----------------|--|--|---|---|---| | | | 4.5 | | 16 | V | | Icc | $V_{CC} = 5V, R_L = \infty$
$V_{CC} = 15V, R_L = \infty$ | | 5
16 | 12
30 | mA
mA | | MT, | $R_A = 2K\Omega$ to 100KΩ
$C = 0.1 \mu F$
$T = 1.1 R_C$ | | 0.75
50
0.1 | | %
ppm/°C
%/V | | Vc | V _{CC} = 15V | 9.0 | 10.0 | 11.0 | V | | | V _{CC} = 5V | 2.6 | 3.33 | 4.0 | V | | V _{TH} | V _{cc} =15V | 8.8 | 10.0 | 11.2 | ٧ | | | V _{CC} =5V | 2.4 | 3.33 | 4.2 | V | | I _{TH} | i | | 30 | 250 | nA | | V _{TR} | V _{CC} =15V | 4.5 | 5.0 | 5.6 | ٧ | | | V _{CC} =5V | 1.1 | 1.6 | 2.2 | ٧ | | ITR | V ₇ = 0V | | 0.01 | 2.0 | μA | | V _{RE} | | 0.4 | 0.6 | 1.0 | V | | I _{RE} | | | 0.03 | 0.6 | mA | | VoL | V _{CC} = 15V I _{sink} = 10mA I _{sink} = 50mA I _{sink} = 100mA I _{sink} = 200mA V _{CC} = 5V I _{sink} = 8mA | | 0.1
0.4
2.0
2.5 | 0.25
0.75
3.2 | V
V
V | | | V _C V _{TH} I _{TH} V _{TR} I _{TR} V _{RE} I _{RE} | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c} MT_1 & R_A = 2K\Omega \ to \ 100K\Omega \\ C = 0.1 \mu F \\ T = 1.1 R_C \\ \\ V_C & V_{CC} = 15V \\ V_{CC} = 5V \\ \hline V_{TH} & V_{CC} = 15V \\ \hline V_{TH} & V_{CC} = 15V \\ \hline V_{CC} = 5V \\ \hline V_{TR} & V_{CC} = 5V \\ \hline 15V \hline$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ### **ELECTRICAL CHARACTERISTICS** (Ta = 25 °C, V_{CC} = 5 to 15V, unless otherwise specified) | Characteristic | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-----------------|--|-------|--------------------|-----|---------------------| | Output Voltage (high) | V _{он} | V _{CC} =15V
I _{source} =200mA
I _{source} =100mA | 12.75 | 12.5
13.3 | i d | V | | | | V _{CC} = 5V
I _{source} = 100mA | 2.75 | 3.3 | | v | | Rise Time of Output | Tr | | | 100 | 300 | nsec | | Fall Time of Output | Tr | | | 100 | 300 | nsec | | Discharge Leakage Current | I _D | | | 10 | 100 | nA | | *4 Matching Characteristics
Initial Accuracy
Drift with Temperature
Drift with Supply Voltage | Мсн | | | 1.0
10
0.2 | 2.0 | %
ppm/°C
%/V´ | | *2 Timing Error (astable)
Initial Accuracy
Drift with Temperature
Drift with Supply Voltage | MT ₂ | R_A , $R_B = 1kΩ$ to $100kΩ$
C = 0.1μF
$V_{CC} = 15V$ | | 2.25
150
0.3 | | %
ppm/°C
%/V | #### Notes - *1. Supply current when output is high is typically 1.0mA less at $V_{CC} = 5V$. - *2. Tested at $V_{CC} = 5V$ and $V_{CC} = 15V$ - *3. This will determine the maximum value of $R_A + R_B$ for 15V operation. The maximum total $R=20M\Omega$, and for 5V operation the maximum total $R=6.6M\Omega$. - *4. Matching characteristics refer to the difference between performance characteristics of each timer section in the monostable mode. - *5. As reset voltage lowers, timing is inhibited and then the output goes low.