2

DUAL TIMER

The NE556 series dual monolithic timing circuits are a highly stable controller capable of producing accurate time delays or oscillation.

The NE556 is a dual NE555. Timing is provided an external resistor and capacitor for each timing function.

The two timers operate independently of each other, sharing only V $_{\odot}$ and ground.

The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200mA.

FEATURES

- Replaces Two NE555 Timers
- Operates in Both Astable And Monostable Modes
- High Output Current
- TTL Compatible
- Timing From Microsecond To Hours
- Adjustable Duty Cycle
- Temperature Stability Of 0.005% Per °C

APPLICATIONS

- Precision Timing
- · Pulse Shaping
- Pulse Width Modulation
- Frequency Division
- Traffic Light Control
- Sequential Timing
- Pulse Generator
- Time Delay Generator
- Touch Tone Encoder
- Tone Burst Generator

14 DIP

ORDERING INFORMATION

Device	Package	Operating Temperature
NE556CN	14 DIP	0~+70°C

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit	
Supply Voltage	V _{cc}	16	٧	
Lead Temperature (soldering 10 sec)	T _{lead}	300	°C	
Power Dissipation	Po	600	mW	
Operating Temperature Range	T _{opr}	0 ~ + 70	°C	
Storage Temperature Range	T _{stg}	~65 ~ + 150	°C	

ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{cc} = 5 to 15V, unless otherwise specified)

Vcc		4.5			
		4.5		16	V
Icc	$V_{CC} = 5V, R_L = \infty$ $V_{CC} = 15V, R_L = \infty$		5 16	12 30	mA mA
MT,	$R_A = 2K\Omega$ to 100KΩ $C = 0.1 \mu F$ $T = 1.1 R_C$		0.75 50 0.1		% ppm/°C %/V
Vc	V _{CC} = 15V	9.0	10.0	11.0	V
	V _{CC} = 5V	2.6	3.33	4.0	V
V _{TH}	V _{cc} =15V	8.8	10.0	11.2	٧
	V _{CC} =5V	2.4	3.33	4.2	V
I _{TH}	i		30	250	nA
V _{TR}	V _{CC} =15V	4.5	5.0	5.6	٧
	V _{CC} =5V	1.1	1.6	2.2	٧
ITR	V ₇ = 0V		0.01	2.0	μA
V _{RE}		0.4	0.6	1.0	V
I _{RE}			0.03	0.6	mA
VoL	V _{CC} = 15V I _{sink} = 10mA I _{sink} = 50mA I _{sink} = 100mA I _{sink} = 200mA V _{CC} = 5V I _{sink} = 8mA		0.1 0.4 2.0 2.5	0.25 0.75 3.2	V V V
	V _C V _{TH} I _{TH} V _{TR} I _{TR} V _{RE} I _{RE}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} MT_1 & R_A = 2K\Omega \ to \ 100K\Omega \\ C = 0.1 \mu F \\ T = 1.1 R_C \\ \\ V_C & V_{CC} = 15V \\ V_{CC} = 5V \\ \hline V_{TH} & V_{CC} = 15V \\ \hline V_{TH} & V_{CC} = 15V \\ \hline V_{CC} = 5V \\ \hline V_{TR} & V_{CC} = 5V \\ \hline V_{CC} = 15V \\ \hline$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ELECTRICAL CHARACTERISTICS

(Ta = 25 °C, V_{CC} = 5 to 15V, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage (high)	V _{он}	V _{CC} =15V I _{source} =200mA I _{source} =100mA	12.75	12.5 13.3	i d	V
		V _{CC} = 5V I _{source} = 100mA	2.75	3.3		v
Rise Time of Output	Tr			100	300	nsec
Fall Time of Output	Tr			100	300	nsec
Discharge Leakage Current	I _D			10	100	nA
*4 Matching Characteristics Initial Accuracy Drift with Temperature Drift with Supply Voltage	Мсн			1.0 10 0.2	2.0	% ppm/°C %/V´
*2 Timing Error (astable) Initial Accuracy Drift with Temperature Drift with Supply Voltage	MT ₂	R_A , $R_B = 1kΩ$ to $100kΩ$ C = 0.1μF $V_{CC} = 15V$		2.25 150 0.3		% ppm/°C %/V

Notes

- *1. Supply current when output is high is typically 1.0mA less at $V_{CC} = 5V$.
- *2. Tested at $V_{CC} = 5V$ and $V_{CC} = 15V$
- *3. This will determine the maximum value of $R_A + R_B$ for 15V operation. The maximum total $R=20M\Omega$, and for 5V operation the maximum total $R=6.6M\Omega$.
- *4. Matching characteristics refer to the difference between performance characteristics of each timer section in the monostable mode.
- *5. As reset voltage lowers, timing is inhibited and then the output goes low.