

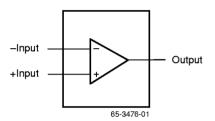
RC5534/RC5534A

High Performance Low Noise Operational Amplifier

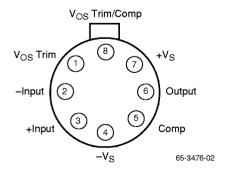
Features

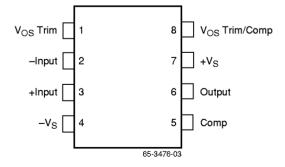
- Small signal bandwidth 10 MHz
- Output drive capability 600Ω , 10 VRMS at $V_S = \pm 18 \text{ V}$
- Input noise voltage 4 nV/√Hz
- DC voltage gain 100,000

- AC voltage gain 6000 at 10 kHz
- Power bandwidth 200 kHz
- Slew rate $-13 \text{ V/}\mu\text{S}$
- Large supply voltage range $-\pm 3V$ to $\pm 20V$


Description

The RC5534 is a high performance, low noise operational amplifier. This amplifier features popular pin-out, superior noise performance, and high output drive capability.


This amplifier also features guaranteed noise performance with substantially higher gain-bandwidth product, power bandwidth, and slew rate which far exceeds that of the 741 type amplifiers. The RC5534 is internally compensated for a gain of three or higher and may be externally compensated for optimizing specific performance requirements of various applications such as unity-gain voltage followers, drivers for capacitive loads or fast settling.


The specially designed low noise input transistors allow the RC5534 to be used in very low noise signal processing applications such as audio preamplifiers and servo error amplifiers.

Block Diagram

Pin Assignments

Absolute Maximum Ratings

(beyond which the device may be damaged)¹

Parameter		Min	Тур	Max	Units
Supply Voltage				±22	V
Input Voltage				±Vs	V
Differential Input Voltage				0.5	V
PDTA < 50°C	PDIP			468	mW
	CerDIP			833]
	SOIC			658]
Junction Temperature	PDIP			125	°C
	CerDIP, TO-99			175	
Storage Temperature		-65		150	°C
Operating Temperature	RM5534/A	-55		125	°C
	RC5534/A	0		70	1
Lead Soldering Temperature (60 sec)				300	°C
Output Short Circuit Duration ²			Indefinite		

Notes:

1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.

2. Short circuit may be to ground only. Rating applies to +125°C case temperature or +175°C junction temperature.

Operating Conditions

Param	eter		Min	Тур	Max	Units
θЈС	Thermal resistance	CerDIP		45		°C/W
		TO-99		50		
θJΑ	Thermal resistance	PDIP		160		°C/W
		CerDIP		150		
		TO-99		190		
For T	> 50°C Derate at	PDIP		6.25		mW/°C
		CerDIP		8.33		1
		TO-99		5.26		

Operating Conditions

 $(RM = -55^{\circ}C \le T_A \le +125^{\circ}C; RC = 0^{\circ}C \le T_A \le +70^{\circ}C, V_S = \pm15V)$

Parameter	Test Conditions	RM5534/A		R	RC5534/A		Units	
Input Offset Voltage	Rs ≤ 1 kΩ			3.0			5.0	mV
Input Offset Current				500			400	nA
Input Bias Current				1500			2000	nA
Large Signal Voltage Gain	R _L ≥ 600Ω, V _{OUT} = ±10V	25			15			V/mV
Output Voltage Swing	R _L ≥ 600Ω	±10			±10			V
Supply Current	Vs = ±15V, RL = ∞			9.0			14	mA

DC Electrical Characteristics

 $(V_S = \pm 15V \text{ and } T_A = +25^{\circ}C \text{ unless otherwise noted})$

		RM5534/A		RC5534/A				
Parameters	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	Rs ≤ 1kΩ		0.5	2.0		0.5	4.0	mV
Input Offset Current			10	200		20	300	nA
Input Bias Current			400	800		500	1500	nA
Input Resistance (Diff. Mode)			100			100		kΩ
Large Signal Voltage Gain	R _L ≥ 600Ω, V _{OUT} = ±10V	50	100		25	100		V/mV
Output Voltage Swing	RL ≥ 600Ω	±12	±13		±12	±13		٧
Input Voltage Range		±12	±13		±12	±13		٧
Common Mode Rejection Ratio	Rs ≤ 1kΩ	80	100		70	100		dB
Power Supply Rejection Ratio	Rs ≤ 1kΩ	86	100		86	100		dB
Supply Current	RL = ∞		4.0	6.5		4.0	8.0	mA
Transient Response Rise Time	$V_{IN} = 50 \text{ mV}, R_L = 600\Omega,$ $C_L = 100 \text{ pF}, C_C = 22 \text{ pF}$		35			35		nS
Overshoot			17			17		%
Slew Rate	CC = 0		13			13		V/µS
Gain Bandwidth Product	Cc = 22 pF, CL = 100 pF		10			10		MHz
Power Bandwidth	Vout = 20V _{p-p} , C _C = 0		200			200		kHz
Input Noise Voltage	F = 20 Hz to 20 kHz		1.0			1.0		μVRMS
Input Noise Current	F = 20 Hz to 20 kHz		25			25		pARMS
Channel Separation	$F = 1 \text{ kHz}, Rs = 5 \text{ k}\Omega$		110			110		dB

AC Electrical Characteristics

(Vs = ± 15 V and Ta = ± 25 °C unless otherwise noted)

Parameters	Test Conditions	RC/RM5534A		RC/RM5534		Units	
Input Noise Voltage Density	Fo = 30 Hz	5.5	7.0		7.0		n <u>V/</u>
	Fo = 1 kHz	3.5	4.5		4.0		√Hz
Input Noise Current Density	Fo = 30 Hz	1.5			2.5		pA/ √Hz
	Fo = 1 kHz	0.4			0.6		√Hz
Broadband Noise Figure	F = 10 Hz - 20 kHz, RS = 5 kΩ	0.9					dB

Typical Performance Characteristics

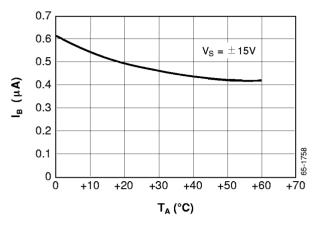


Figure 1. Input Bias Current vs. Temperature

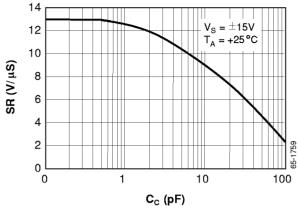


Figure 2. Slew Rate vs. Compensation Capacitor

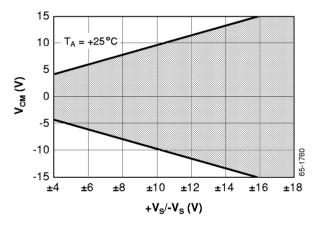


Figure 3. Common Mode Input Range vs. Supply Voltage

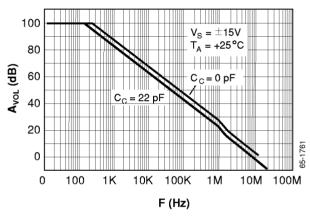


Figure 4. Open Loop Gain vs. Frequency

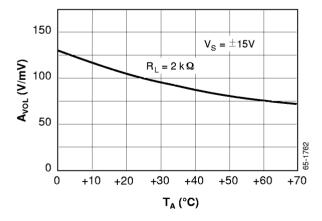


Figure 5. Open Loop Gain vs. Temperature

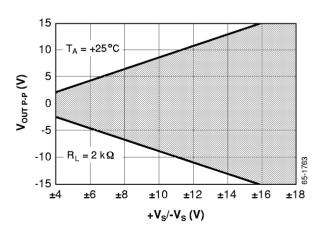


Figure 6. Output Voltage Swing vs. Supply Voltage

Typical Performance Characteristics (continued)

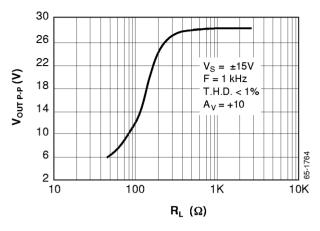


Figure 7. Output Voltage Swing vs. Load Resistance

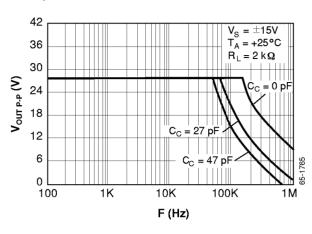


Figure 8. Output Voltage Swing vs. Frequency

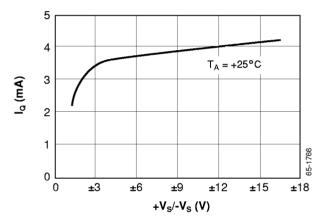


Figure 9. Quiescent Current vs. Supply Voltage

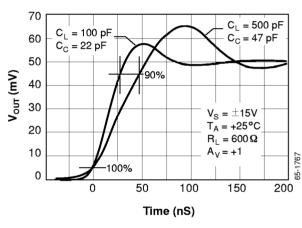


Figure 10. Transient Response Output Voltage vs. Time

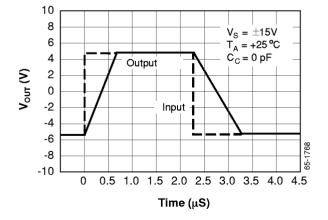


Figure 11. Follower Large Signal Pulse Response Output Voltage vs. Time

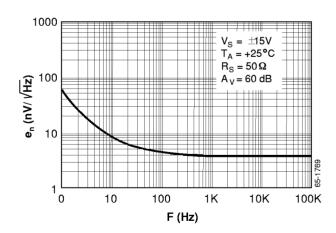
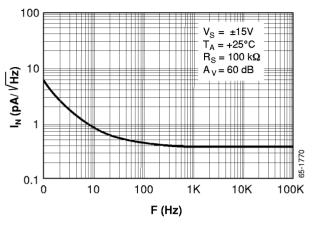



Figure 12. Input Noise Density vs. Frequency

Typical Performance Characteristics (continued)

 $\begin{array}{c} \textbf{40} \\ \hline \textbf{QD} \\ \textbf{V} \\ \textbf{V} \\ \textbf{QD} \\ \textbf{CC} = 0, \ R_F = 10 \ \text{k}\Omega; \ R_E = 100 \ \Omega \\ \hline \textbf{CC} = 0, \ R_F = 9 \ \text{k}\Omega; \ R_E = 1 \ \text{k}\Omega \\ \hline \textbf{CC} = 22 \ \text{pF}, \ R_F = 1 \ \text{k}\Omega; \ R_E = \infty \\ \hline \textbf{QD} \\ \textbf{QD} \\ \textbf{QD} \\ \textbf{DK} \\ \textbf{M} \\ \textbf{M}$

Figure 13. Input Noise Current Density vs. Frequency

Figure 14. Closed Loop Gain vs. Frequency

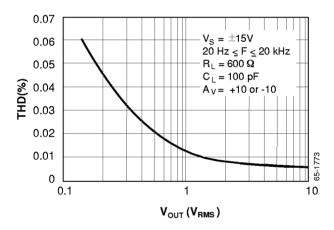


Figure 15. Total Harmonic Distortion vs. Output Voltage

Typical Test Circuits

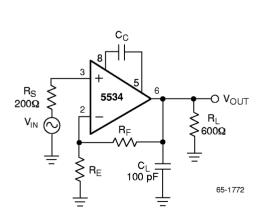


Figure 16. Closed Loop Frequency Response
Test Circuit

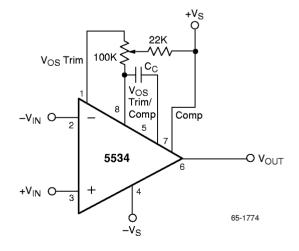
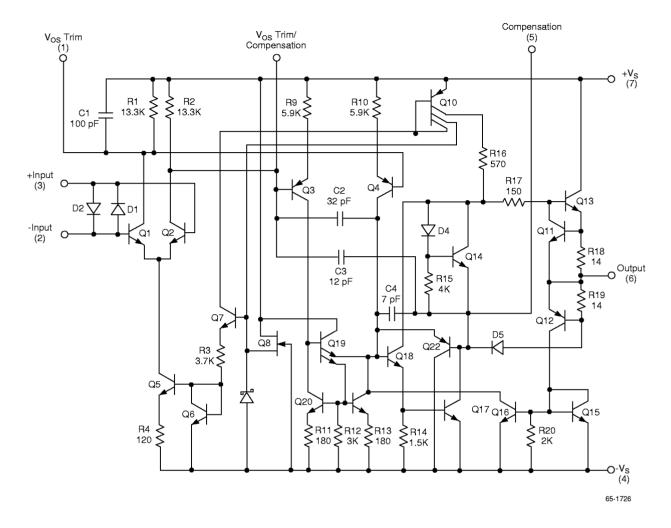
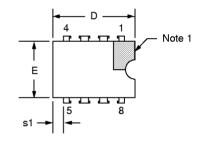



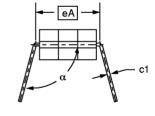
Figure 17. Offset Voltage Trim Circuit


Simplified Schematic Diagram



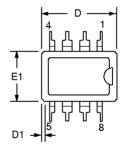
Mechanical Dimensions

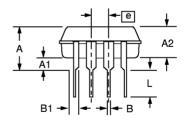
8-Lead Ceramic DIP Package

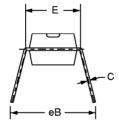

Symbol	Inc	hes	Millim	Notes	
Syllibol	Min.	Max.	Min.	Max.	Notes
Α		.200		5.08	
b1	.014	.023	.36	.58	8
b2	.045	.065	1.14	1.65	2, 8
c1	.008	.015	.20	.38	8
D	_	.405		10.29	4
Е	.220	.310	5.59	7.87	4
е	.100 BSC		2.54	BSC	5, 9
eA	.300	.300 BSC		BSC	7
L	.125	.200	3.18	5.08	
Ø	.015	.060	.38	1.52	3
s1	.005	_	.13	_	6
α	90°	105°	90°	105°	

Notes:

- Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- The minimum limit for dimension "b2" may be .023 (.58mm) for leads number 1, 4, 5 and 8 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within ±.010 (.25mm) of its exact longitudinal position relative to pins 1 and 8.
- 6. Applies to all four corners (leads number 1, 4, 5, and 8).
- 7. "eA" shall be measured at the center of the lead bends or at the centerline of the leads when " α " is 90°.
- 8. All leads Increase maximum limit by .003 (.08mm) measured at the center of the flat, when lead finish applied.
- 9. Six spaces.

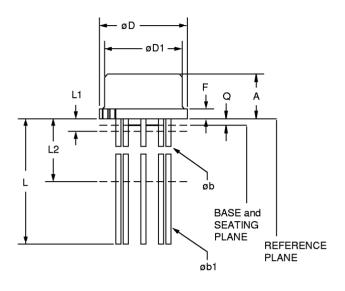

Mechanical Dimensions (continued)

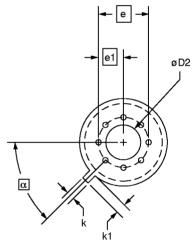

8-Lead Plastic DIP Package


Cumbal	Inches		Millim	Notes	
Symbol	Min.	Max.	Min.	Max.	Notes
Α	_	.210	_	5.33	
A1	.015		.38		
A2	.115	.195	2.93	4.95	
В	.014	.022	.36	.56	
B1	.045	.070	1.14	1.78	
С	.008	.015	.20	.38	4
D	.348	.430	8.84	10.92	2
D1	.005	_	.13	_	
E	.300	.325	7.62	8.26	
E1	.240	.280	6.10	7.11	2
е	.100	BSC	2.54 BSC		
eB	-	.430	-	10.92	
L	.115	.160	2.92	4.06	·
N	8	3°	8	5	

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E1" do not include mold flashing. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. Terminal numbers are for reference only.
- 4. "C" dimension does not include solder finish thickness.
- 5. Symbol "N" is the maximum number of terminals.





Mechanical Dimensions (continued)

8-Lead Metal Can IC Header Package

Cumbal	Inc	hes	Millim	neters	Notes	
Symbol	Min.	Max.	Min.	Max.	Notes	
Α	.165	.185	4.19	4.70		
øb	.016	.019	.41	.48	1, 5	
øb1	.016	.021	.41	.53	1, 5	
øD	.335	.375	8.51	9.52		
øD1	.305	.335	7.75	8.51		
øD2	.110	.160	2.79	4.06		
Ф	.200	BSC	5.08	5.08 BSC		
e1	.100	BSC	2.54	BSC		
F	_	.040	_	1.02		
k	.027	.034	.69	.86		
k1	.027	.045	.69	1.14	2	
Г	.500	.750	12.70	19.05	1	
L1	_	.050	_	1.27	1	
L2	.250		6.35	_	1	
Q	.010	.045	.25	1.14		
α	45°	BSC	45°			

Notes:

- (All leads) øb applies between L1 & L2. øb1 applies between L2 & .500 (12.70mm) from the reference plane. Diameter is uncontrolled in L1 & beyond .500 (12.70mm) from the reference plane.
- 2. Measured from the maximum diameter of the product.
- 3. Leads having a maximum diameter .019 (.48mm) measured in gauging plane, .054 (1.37mm) +.001 (.03mm) -.000 (.00mm) below the reference plane of the product shall be within .007 (.18mm) of their true position relative to a maximum width tab.
- 4. The product may be measured by direct methods or by gauge.
- All leads increase maximum limit by .003 (.08mm) when lead finish is applied.

Ordering Information

Product Number	Temperature Range	Screening	Package
RC5534D/RC5534AD	0°C to +70°C	Commercial	8 Pin Ceramic DIP
RC5534N/RC5534AN	0°C to +70°C	Commercial	8 Pin Plastic DIP
RM5534D/RM5534AD	-55°C to +125°C	Commercial	8 Pin Ceramic DIP
RM5534D/883	-55°C to +125°C	Military	8 Pin Plastic DIP
RM5534AD/883	-55°C to +125°C	Military	8 Pin Plastic DIP
RM5534T/RM5534AT	-55°C to +125°C	Commercial	8 Pin TO-99 Metal Can
RM5534T/883	-55°C to +125°C	Military	8 Pin TO-99 Metal Can
RM5534AT/883	-55°C to +125°C	Military	8 Pin TO-99 Metal Can

Note: /883 denotes MIL-STD-883, Par. 1.2.1 compliant device.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com