SPANSION[™] Flash Memory

Data Sheet

September 2003

This document specifies SPANSION[™] memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a SPANSION[™] product. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

AMD and Fujitsu continue to support existing part numbers beginning with "Am" and "MBM". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about SPANSION[™] memory solutions.

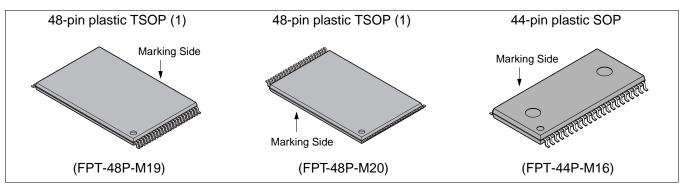
FLASH MEMORY

CMOS

2M (256K imes 8/128K imes 16) BIT

MBM29F200TC-55/-70/-90/MBM29F200BC-55/-70/-90

■ GENERAL DESCRIPTION


The MBM29F200TC/BC is a 2M-bit, 5.0 V-only Flash memory organized as 256K bytes of 8 bits each or 128K words of 16 bits each. The MBM29F200TC/BC is offered in a 48-pin TSOP (1) and 44-pin SOP packages. This device is designed to be programmed in-system with the standard system 5.0 V V_{CC} supply. 12.0 V V_{PP} is not required for write or erase operations. The devices can also be reprogrammed in standard EPROM programmers. The standard MBM29F200TC/BC offers access times 55 ns and 90 ns allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the device has separate chip enable (\overline{CE}), write enable (\overline{WE}), and output enable (\overline{OE}) controls.

(Continued)

■ PRODUCT LINE-UP

Par	t No.	MBN	129F200TC/MBM29F20	OBC
Ordering Part No.	Vcc = 5.0 V ± 5%	-55	—	—
	Vcc = 5.0 V ± 10%	—	-70	-90
Max Address Acces	Max Address Access Time (ns)		70	90
Max CE Access Tim	ax CE Access Time (ns)		70	90
Max OE Access Tim	ne (ns)	30	30	35

PACKAGES

(Continued)

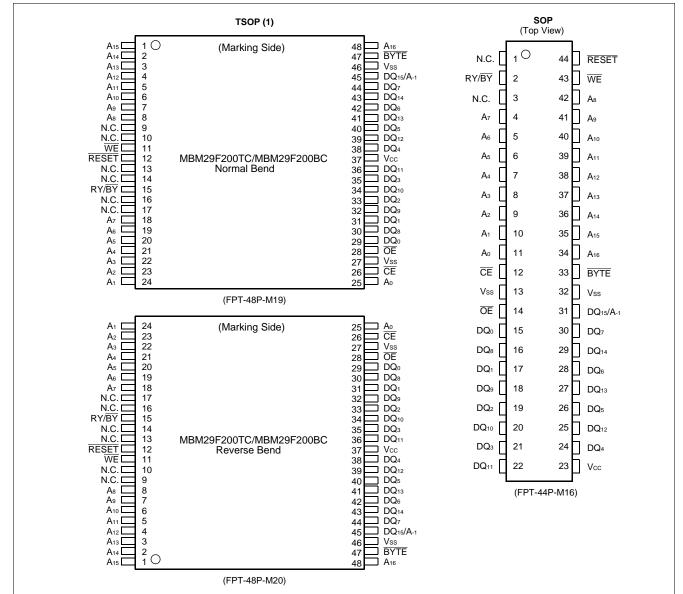
The MBM29F200TC/BC is pin and command set compatible with JEDEC standard. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the devices is similar to reading from12.0 V Flash or EPROM devices.

The MBM29F200TC/BC is programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in less than 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.

A sector is typically erased and verified in 1.0 second (if already completely preprogrammed.).

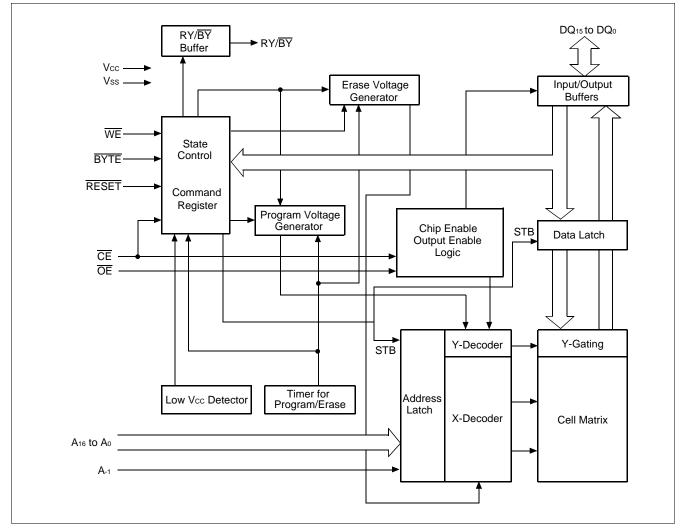
The devices also features a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29F200TC/BC is erased when shipped from the factory.

The devices features single 5.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low V_{CC} detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ₇, by the Toggle Bit feature on DQ₆, or the RY/BY output pin. Once the end of a program or erase cycle has been completed, the device internally resets to the read mode.

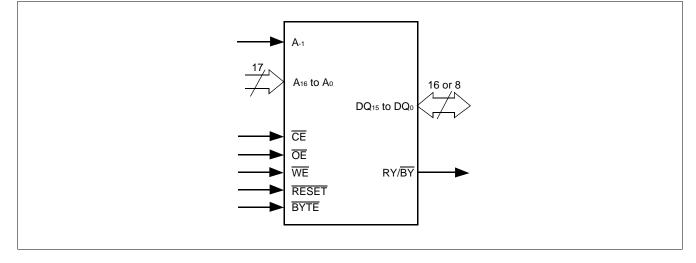

Fujitsu's Flash technology combines years of EPROM and E²PROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MBM29F200TC/BC memory electrically erase the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

■ FEATURES

- Single 5.0 V read, write, and erase Minimizes system level power requirements
- Compatible with JEDEC-standard commands Uses same software commands as E²PROMs
- Compatible with JEDEC-standard world-wide pinouts 48-pin TSOP (1) (Package suffix: PFTN – Normal Bend Type, PFTR – Reversed Bend Type) 44-pin SOP (Package suffix: PF)
- Minimum 100,000 write/erase cycles
- High performance 55 ns maximum access time
- Sector erase architecture One 16K byte, two 8K bytes, one 32K byte, and three 64K bytes. Any combination of sectors can be concurrently erased. Also supports full chip erase.
- Boot Code Sector Architecture
 - T = Top sector
 - B = Bottom sector
- Embedded Erase[™]* Algorithms Automatically pre-programs and erases the chip or any sector
- Embedded Program[™]* Algorithms Automatically writes and verifies data at specified address
- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/Busy output (RY/BY) Hardware method for detection of program or erase cycle completion
- Low Vcc write inhibit \leq 3.2 V
- Erase Suspend/Resume Suspends the erase operation to allow a read in another sector within the same device
- Hardware RESET pin
 Resets internal state machine to the read mode
- Sector protection Hardware method disables any combination of sectors from write or erase operations
- Temporary sector unprotection Hardware method temporarily enables any combination of sectors from write on erase operations.


* : Embedded Erase™ and Embedded Program™ are trademarks of Advanced Micro Devices, Inc.

PIN ASSIGNMENTS



Pin name	Function
A16 to A0, A-1	Address Inputs
DQ15 to DQ0	Data Inputs/Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
RY/BY	Ready-Busy Output
RESET	Hardware Reset Pin/Temporary Sector Unprotection
BYTE	Selects 8-bit or 16-bit mode
N.C.	No Internal Connection
Vss	Device Ground

BLOCK DIAGRAM

■ LOGIC SYMBOL

MBM29F200TC/BC User Bus Operation Table (BYTE = V⊮)											
Operation	CE	ŌĒ	WE	Ao	A 1	A ₆	A۹	DQ ₁₅ to DQ ₀	RESET		
Auto-Select Manufacturer Code *1	L	L	Н	L	L	L	Vid	Code	Н		
Auto-Select Device Code *1	L	L	Н	Н	L	L	Vid	Code	Н		
Read *3	L	L	Н	Ao	A1	A ₆	A ₉	Dout	Н		
Standby	Н	Х	Х	Х	Х	Х	Х	High-Z	Н		
Output Disable	L	Н	Н	Х	Х	Х	Х	High-Z	Н		
Write	L	Н	L	Ao	A1	A ₆	A ₉	DIN	Н		
Enable Sector Protection *2	L	Vid	T	L	Н	L	Vid	Х	Н		
Verify Sector Protection *2	L	L	Н	L	Н	L	Vid	Code	Н		
Temporary Sector Unprotection	Х	Х	Х	Х	Х	Х	Х	Х	Vid		
Reset (Hardware)/Standby	Х	Х	Х	Х	Х	Х	Х	High-Z	L		

■ FLEXIBLE SECTOR-ERASE ARCHITECTURE

MBM29F200TC/BC User Bus Operation Table (BYTE = VIII)

Legend: $L = V_{IL}$, $H = V_{IH}$, $X = V_{IL}$ or V_{IH} , $\neg _ _ =$ Pulse input. See DC Characteristics for voltage levels.

- *1 : Manufacturer and device codes may also be accessed via a command register write sequence. Refer to "MBM29F200TC/BC Command Definitions Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE".
- *2 : Refer to the section on Sector Protection.
- *3 : \overline{WE} can be $V_{\mathbb{L}}$ if \overline{OE} is $V_{\mathbb{L}}$, \overline{OE} at $V_{\mathbb{H}}$ initiates the write operations.

MIDM/29F2001C/BC OSer Bus Operation Table (BTTE = VL)												
Operation	CE	ŌĒ	WE	DQ15 /A-1	A ₀	A 1	A ₆	A۹	DQ7 to DQ0	RESET		
Auto-Select Manufacturer Code *1	L	L	Н	L	L	L	L	Vid	Code	Н		
Auto-Select Device Code *1	L	L	Н	L	Н	L	L	Vid	Code	Н		
Read *3	L	L	Н	A -1	Ao	A1	A ₆	A9	Dout	Н		
Standby	Н	Х	Х	Х	Х	Х	Х	Х	High-Z	Н		
Output Disable	L	Н	Н	Х	Х	Х	Х	Х	High-Z	Н		
Write	L	Н	L	A -1	Ao	A ₁	A ₆	A9	DIN	Н		
Enable Sector Protection *2	L	Vid		L	L	Н	L	VID	Х	Н		
Verify Sector Protection *2	L	L	Н	L	L	Н	L	Vid	Code	Н		
Temporary Sector Unprotection	Х	Х	Х	Х	Х	Х	Х	Х	Х	Vid		
Reset (Hardware)/Standby	Х	Х	Х	Х	Х	Х	Х	Х	High-Z	L		

MBM29F200TC/BC User Bus Operation Table (BYTE = VIL)

Legend: $L = V_{IL}$, $H = V_{IH}$, $X = V_{IL}$ or V_{IH} , $\neg _ =$ Pulse input. See DC Characteristics for voltage levels.

*1 : Manufacturer and device codes may also be accessed via a command register write sequence. Refer to "MBM29F200TC/BC Command Definitions Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE".

*2 : Refer to the section on Sector Protection.

*3 : \overline{WE} can be V_L if \overline{OE} is V_L, \overline{OE} at V_H initiates the write operations.

	Command Bus Sequence Cycles Ben'd		First Write		Seco Bu Write	IS	Third Bus Write CycleFourth Bus Read/Write CycleFifth Bus Write Cycle			Sixth Bus Write Cycle				
-		Req'd	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read/Reset*1	Word	1	XXXh	F0h						_				
iteau/iteset	Byte	•	777711	1 011										
Read/Reset*1	Word	3	555h	AAh	2AAh	55h	555h	F0h	RA*2	RD*2				
Reau/Reset	Byte	5	AAAh	AAh AAh 555h Son AAAh Fon RA^{2} RD^{2} — — — —										
Autoselect	Word	3	555h	AAh	2AAh	55h	555h	90h	IA*2	ID*2				
Autoselect	Byte	3	AAAh	AAAh 555h AAAh 90h						1D -				
Program	Word	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD				
Flogram	Byte	4	AAAh	AAII	555h	5511	AAAh	AUII	FA	FD				
	Word	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h
Chip Erase	Byte	0	AAAh	AAII	555h	551	AAAh	0011	AAAh	AAU	555h	550	AAAh	1011
Sector Erase	Word	6	555h <u>AAh</u> 2AAh <u>55h</u> 555h <u>80h</u> 555h <u>AAh</u> 2AAh <u>55h</u> SA 30h											
Seciol Elase	Byte	Byte AAAh AAA 555h AAAh AAAh AAAh 555h 55h 5												
Sector Erase S	Suspen	d	Erase	can be	susper	nded d	uring se	ctor er	ase with	n Addr	("H" or '	"L"). Da	ata (B0ł	ı)
Sector Erase Resume Erase can be resumed after suspend with Addr ("H" or "L"). Data (30h)														

MBM29F200TC/BC Command Definitions Table

*1 : Either of the two reset command will reset the device.

*2 : The fourth bus cycle is only for read.

- Notes : Address bits A₁₆ to A₁₁ = X = "H" or "L" for all address commands except or Program Address (PA) and Sector Address (SA).
 - Bus operations are defined in "MBM29F200TC/BC User Bus Operation Table (BYTE = VIH)" and "MBM29F200TC/BC User Bus Operation Table (BYTE = VIL)" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE".
 - RA = Address of the memory location to be read.
 - $IA = Autoselect \ read \ address \ that \ set \ A_6, \ A_1, \ A_0, \ \ (A_{-1}) \ .$
 - PA = Address of the memory location to be programmed. Addresses are latched on the falling edge of the WE pulse.
 - SA = Address of the sector to be erased. The combination of A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂ will uniquely select any sector.
 - RD = Data read from location RA during read operation.
 - ID = Device code/manufacture code for the address located by IA.
 - PD = Data to be programmed at location PA. Data is latched on the falling edge of \overline{WE} .
 - The system should generate the following address patterns: Word Mode: 555h or 2AAh to addresses A₁₀ to A₀ Byte Mode: AAAh or 555h to addresses A₁₀ to A₋₁
 - Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.
 - The command conbinations not described in "MBM29F200TC/BC Command Definitions Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE" are illegal.

7

		10/00	0001011101		y Autoscie			
	Туре		A16 to A12	A ₆	A 1	Ao	A -1 ^{*1}	Code (HEX)
Manufacturer's	Code		Х	VIL	VIL	VIL	VIL	04h
	MRM20E200TC	Byte	х	VIL	VIL	Vін	VIL	51h
Davias Cada	MBM29F200TC Word			V IL	VIL	VIH	Х	2251h
Device Code	MEMOOFOODO	Byte	×	Ma	Ma	Max	VIL	57h
	MBM29F200BC Word		X	VIL	Vı∟	Vін	Х	2257h
Sector Protecti	rotection		Sector Addresses	VIL	Vін	VIL	VIL	01h*2

MBM29F200TC/BC Sector Protection Verify Autoselect Codes Table

*1 : A-1 is for Byte mode.

*2 : Outputs 01h at protected sector addresses and outputs 00h at unprotected sector addresses.

			C 7	ctena	eu A	ulose	elect	Code		e								
Туре		Code	DQ 15	DQ 14	DQ 13	DQ ₁₂	DQ 11	DQ 10	DQ9	DQ8	DQ7	DQ ₆	DQ₅	DQ₄	DQ₃	DQ2	DQ ₁	DQ ₀
cturer's Code		04h	A-1/0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	(B)	51h	A -1	HI-Z	HI-Z	HI-Z	HI-Z	HI-Z	HI-Z	HI-Z	0	1	0	1	0	0	0	1
IVIDIVIZ9F2001C	(W)	2251h	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1
	(B)	57h	A -1	HI-Z	HI-Z	HI-Z	HI-Z	HI-Z	HI-Z	HI-Z	0	1	0	1	0	1	1	1
	(W)	2257h	0	0	1	0	0	0	1	0	0	1	0	1	0	1	1	1
Protection		01h	A-1/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	cturer's Code MBM29F200TC MBM29F200BC	cturer's Code MBM29F200TC (B) (W) MBM29F200BC (B) (W)	cturer's Code 04h MBM29F200TC (B) 51h (W) 2251h MBM29F200BC (B) 57h (W) 2257h	Type Code DQ15 cturer's Code 04h A.1/0 MBM29F200TC (B) 51h A.1 (W) 2251h 0 MBM29F200BC (B) 57h A.1 (W) 2257h 0	Type Code DQ15 DQ14 cturer's Code 04h A-1/0 0 MBM29F200TC (B) 51h A-1 HI-Z (W) 2251h 0 0 MBM29F200BC (B) 57h A-1 HI-Z (W) 2257h 0 0	Type Code DQ15 DQ14 DQ13 cturer's Code 04h A-1/0 0 0 MBM29F200TC (B) 51h A-1 HI-Z HI-Z (W) 2251h 0 0 1 MBM29F200BC (B) 57h A-1 HI-Z HI-Z (W) 2251h 0 0 1 (W) 2257h 0 0 1	Type Code DQ15 DQ14 DQ13 DQ12 cturer's Code 04h A-1/0 0 0 0 MBM29F200TC (B) 51h A-1 HI-Z HI-Z HI-Z (W) 2251h 0 0 1 0 MBM29F200BC (B) 57h A-1 HI-Z HI-Z (W) 2251h 0 0 1 0 MBM29F200BC (B) 57h A-1 HI-Z HI-Z (W) 2257h 0 0 1 0	Type Code DQ15 DQ14 DQ13 DQ12 DQ111 cturer's Code 04h A-1/0 0 0 0 0 MBM29F200TC (B) 51h A-1 HI-Z HI-Z HI-Z HI-Z (W) 2251h 0 0 1 0 0 MBM29F200BC (B) 57h A-1 HI-Z HI-Z HI-Z (W) 2257h 0 0 1 0 0	Type Code DQ15 DQ14 DQ13 DQ12 DQ11 DQ10 cturer's Code 04h A-1/0 0 0 0 0 0 0 MBM29F200TC (B) 51h A-1 HI-Z HI-Z	Type Code DQ15 DQ14 DQ13 DQ12 DQ11 DQ10 DQ30 cturer's Code 04h A-1/0 0<	cturer's Code 04h A-1/0 0	Type Code DQ15 DQ14 DQ13 DQ12 DQ11 DQ10 DQ3 DQ3 DQ43 DQ14 DQ10 DQ10 DQ3 DQ3 DQ43 DQ12 DQ11 DQ10 DQ3 DQ3 DQ43 DQ43 DQ11 DQ10 DQ3 DQ43 DQ43 DQ11 DQ10 DQ3 DQ3	Type Code DQ15 DQ14 DQ13 DQ12 DQ11 DQ30 DQ39 DQ88 DQ7 DQ66 cturer's Code 04h A-1/0 0	Type Code DQ15 DQ14 DQ12 DQ11 DQ16 DQ9 DQ8 DQ7 DQ6 DQ5 cturer's Code 04h A-1/0 0 <t< td=""><td>Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ3 DQ3 DQ4 DQ45 DQ45 DQ46 DQ45 DQ45 DQ41 DQ10 DQ30 DQ3 DQ3 DQ45 DQ45</td><td>Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ8 DQ8 DQ6 DQ6 DQ4 DQ40 DQ3 cturer's Code 04h A-1/0 0</td><td>Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ8 DQ8 DQ6 DQ6 DQ4 DQ3 DQ2 cturer's Code 04h A-1/0 0</td><td>Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ9 DQ8 DQ7 DQ5 DQ4 DQ3 DQ2 DQ11 cturer's Code 04h $A.1/0$ 0 <td< td=""></td<></td></t<>	Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ3 DQ3 DQ4 DQ45 DQ45 DQ46 DQ45 DQ45 DQ41 DQ10 DQ30 DQ3 DQ3 DQ45 DQ45	Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ8 DQ8 DQ6 DQ6 DQ4 DQ40 DQ3 cturer's Code 04h A-1/0 0	Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ8 DQ8 DQ6 DQ6 DQ4 DQ3 DQ2 cturer's Code 04h A-1/0 0	Type Code DQ15 DQ14 DQ12 DQ11 DQ10 DQ9 DQ8 DQ7 DQ5 DQ4 DQ3 DQ2 DQ11 cturer's Code 04h $A.1/0$ 0 0 <td< td=""></td<>

Extended Autoselect Code Table

(B): Byte mode

(W): Word mode

Sector Address	A 16	A 15	A 14	A 13	A 12	Address Range					
SA0	0	0	Х	Х	Х	00000h to 0FFFFh					
SA1	0	1	Х	Х	Х	10000h to 1FFFFh					
SA2	1	0	Х	Х	Х	20000h to 2FFFFh					
SA3	1	1	0	Х	Х	30000h to 37FFFh					
SA4	1	1	1	0	0	38000h to 39FFFh					
SA5	1	1	1	0	1	3A000h to 3BFFFh					
SA6	1	1	1	1	Х	3C000h to 3FFFFh					

Sector Address Table (MBM29F200TC)

Sector Address Table (MBM29F200BC)

Sector Address	A 16	A 15	A 14	A 13	A 12	Address Range
SA0	0	0	0	0	Х	00000h to 03FFFh
SA1	0	0	0	1	0	04000h to 05FFFh
SA2	0	0	0	1	1	06000h to 07FFFh
SA3	0	0	1	Х	Х	08000h to 0FFFFh
SA4	0	1	Х	Х	Х	10000h to 1FFFFh
SA5	1	0	Х	Х	Х	20000h to 2FFFFh
SA6	1	1	Х	Х	Х	30000h to 3FFFFh

Sector Architecture

- One 16K byte, two 8K bytes, one 32K byte, and three 64K bytes
- · Individual-sector, multiple-sector, or bulk-erase capability
- Individual or multiple-sector protection is user definable.

64K byte1FFFFh0FFFFh8K byte05FFFh02FFFh64K byte0FFFFh07FFFh16K byte03FFFh01FFFh	16K byte 8K byte 8K byte 32K byte	(×8) 3FFFFh 3BFFFh 39FFFh 37FFFh 255555	(×16) 1FFFFh 1DFFFh 1CFFFh 1BFFFh 175555	64K byte 64K byte 64K byte 32K byte	(×8) 3FFFFh 2FFFFh 1FFFFh 0FFFFh	(×16) 1FFFFh 17FFFh 0FFFFh 07FFFh
64K byte0FFFFh07FFFh8K byte03FFFh01FFFh64K byte03FFFh01FFFh16K byte03FFFh01FFFh		2FFFFh	17FFFh		07FFFh	03FFFh
00000h 00000h 00000h 00000h		0FFFFh	07FFFh	8K byte 16K byte	03FFFh	01FFFh

MBM29F200TC Sector Architecture

MBM29F200BC Sector Architecture

FUNCTIONAL DESCRIPTION

Read Mode

The MBM29F200TC/BC has two control functions which must be satisfied in order to obtain data at the outputs. \overline{CE} is the power control and should be used for a device selection. \overline{OE} is the output control and should be used to gate data to the output pins if a device is selected.

Address access time (t_{ACC}) is equal to the delay from stable addresses to valid output data. The chip enable access time (t_{CE}) is the delay from stable addresses and stable \overline{CE} to valid data at the output pins. The output enable access time is the delay from the falling edge of \overline{OE} to valid data at the output pins (Assuming the addresses have been stable for at least t_{ACC} - t_{CE} time).

Standby Mode

There are two ways to implement the standby mode on the MBM29F200TC/BC devices, one using both the \overline{CE} and \overline{RESET} pins; the other via the \overline{RESET} pin only.

When using both pins, a CMOS standby mode is achieved with \overline{CE} and \overline{RESET} inputs both held at $V_{Cc} \pm 0.3$ V. Under this condition the current consumed is less than 5 μ A max. A TTL standby mode is achieved with \overline{CE} and \overline{RESET} pins held at V_{IH}. Under this condition the current is reduced to approximately 1mA. During Embedded Algorithm operation, V_{CC} Active current (I_{CC2}) is required even $\overline{CE} = V_{IH}$. The device can be read with standard access time (t_{CE}) from either of these standby modes.

When using the RESET pin only, a CMOS standby mode is achieved with RESET input held at Vss \pm 0.3 V (\overline{CE} = "H" or "L"). Under this condition the current is consumed is less than 5 μ A max. A TTL standby mode is achieved with RESET pin held at VIL, (\overline{CE} = "H" or "L"). Under this condition the current required is reduced to approximately 1mA. Once the RESET pin is taken high, the device requires tRH of wake up time before outputs are valid for read access.

In the standby mode the outputs are in the high impedance state, independent of the \overline{OE} input.

Output Disable

With the \overline{OE} input at a logic high level (V_{IH}), output from the device is disabled. This will cause the output pins to be in a high impedance state.

Autoselect

The autoselect mode allows the reading out of a binary code from the device and will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the devices to be programmed with its corresponding programming algorithm. This mode is functional over the entire temperature range of the device.

To activate this mode, the programming equipment must force V_{ID} (11.5 V to 12.5 V) on address pin A₉. Two identifier bytes may then be sequenced from the devices outputs by toggling address A₀ from V_{IL} to V_{IH}. All addresses are don't cares except A₀, A₁ and A₆ (A₋₁) (See "MBM29F200TC/BC Sector Protection Verify Autoselect Code Table" in "**I** FLEXIBLE SECTOR-ERASE ARCHITECTURE").

The manufacturer and device codes may also be read via the command register, for instances when the MBM29F200TC/BC is erased or programmed in a system without access to high voltage on the A₉ pin. The command sequence is illustrated in "MBM29F200TC/BC Command Definitions Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE" (refer to Autoselect Command section).

A₀ = V_{IL} represents the manufacturer's code (Fujitsu = 04h) and A₀ = V_{IH} the device identifier code (MBM29F200TC =51h and MBM29F200BC = 57h for ×8 mode; MBM29F200TC = 2251h and MBM29F200 BC = 2257h for ×16 mode). These two bytes/words are given in the "MBM29F200TC/BC Sector Protection Verify Autoselect Code Table" and "Extended Autoselect Code Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE". All identifiers for manufacturer and device will exhibit odd parity with DQ₇ defined as the parity bit. In order to read the proper device codes when executing the autoselect, A₁ must be V_{IL} (See "MBM29F200TC/BC Sector Protection Verify Autoselect Code Table" and "Extended Autoselect Code Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE").

Write

Device erasure and programming are accomplished via the command register. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device.

The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The command register is written by bringing \overline{WE} to V_{IL}, while \overline{CE} is at V_{IL} and \overline{OE} is at V_{IH}. Addresses are latched on the falling edge of \overline{WE} or \overline{CE} , whichever happens later; while data is latched on the rising edge of \overline{WE} or \overline{CE} , whichever happens first. Standard microprocessor write timings are used.

Refer to AC Write Characteristics and the Erase/Programming Waveforms for specific timing parameters.

Sector Protection

The MBM29F200TC/BC features hardware sector protection. This feature will disable both program and erase operations in any number of sectors (0 through 6). The sector protection feature is enabled using programming equipment at the user's site. The device is shipped with all sectors unprotected.

To activate this mode, the programming equipment must force V_{ID} on address pin A₉ and control pin \overline{OE} , (suggest V_{ID} = 11.5V), $\overline{CE} = V_{IL}$, and A₆ = V_{IL}. The sector addresses (A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂) should be set to the sector to be protected. "Sector Address Table (MBM29F200TC)" and "Sector Address Table (MBM29F200BC)" in "**I** FLEXIBLE SECTOR-ERASE ARCHITECTURE" define the sector address for each of the seven (7) individual sectors. Programming of the protection circuitry begins on the falling edge of the WE pulse and is terminated with the rising edge of the same. Sector addresses must be held constant during the WE pulse. Refer to "AC Waveforms for Sector Protection Timing Diagram" in "**I** TIMING DIAGRAM" and "Sector Protection Algorithm" in "**I** FLOW CHART" for sector protection waveforms and algorithm.

To verify programming of the protection circuitry, the programming equipment must force V_{ID} on address pin A₉ with \overline{CE} and \overline{OE} at V_{IL} and \overline{WE} at V_{IH} . Scanning the sector addresses (A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂) while (A₆, A₁, A₀) = (0, 1, 0) will produce a logical "1" code at device output DQ₀ for a protected sector. Otherwise the devices will produce 00h for unprotected sector. In this mode, the lower order addresses, except for A₀, A₁, and A₆ are don't care. Address locations with A₁ = V_{IL} are reserved for Autoselect manufacturer and device codes. A₋₁ requires to apply to V_{IL} on byte mode.

It is also possible to determine if a sector is protected in the system by writing an Autoselect command. Performing a read operation at the address location XX02h, where the higher order addresses (A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂) are the desired sector address will produce a logical "1" at DQ₀ for a protected sector. See "MBM29F200TC/BC Sector Protection Verify Autoselect Code Table" and "Extended Autoselect Code Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE" for Autoselect codes.

Temporary Sector Unprotection

This feature allows temporary unprotection of previously protected sectors of the MBM29F200TC/BC device in order to change data. The Sector Unprotection mode is activated by setting the RESET pin to high voltage (12 V). During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once the 12 V is taken away from the RESET pin, all the previously protected sectors will be protected again. Refer to "Temporary Sector Unprotection Timing Diagram" in "■ TIMING DIAGRAM" and "Temporary Sector Unprotection Algorithm" in "■ FLOW CHART".

Command Definitions

Device operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in the improper sequence will reset the device to the read mode. "MBM29F200TC/BC Command Definitions Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE" defines the valid register command sequences. Note that the Erase Suspend (B0h) and Erase Resume (30h) commands are valid only while the Sector Erase operation is in progress. Moreover both Read/Reset commands are functionally equivalent, resetting the device to the read mode. Please note that commands are always written at DQ₇ to DQ₀ and DQ₁₅ to DQ₈ bits are ignored.

Read/Reset Command

The read or eset operation is initiated by writing the read/reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The devices remain enabled for reads until the command register contents are altered.

The device will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Characteristics and Waveforms for the specific timing parameters.

Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacture and device codes must be accessible while the devices reside in the target system. PROM programmers typically access the signature codes by raising A₉ to a high voltage. However, multiplexing high voltage onto the address lines is not generally desired system design practice.

The device contains an autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the autoselect command sequence into the command register. Following the command write, a read cycle from address XX00h retrieves the manufacture code of 04h. A read cycle from address XX01h for ×16 (XX02h for ×8) returns the device code (MBM29F200TC = 51h and MBM29F200BC = 57h for ×8 mode; MBM29F200TC = 2251h and MBM29F200BC = 2257h for ×16 mode). (See "MBM29F200TC/BC Sector Protection Verify Autoselect Code Table" and "Extended Autoselect Code Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE".)

All manufacturer and device codes will exhibit odd parity with DQ₇ defined as the parity bit. Scanning the sector addresses (A₁₆, A₁₅, A₁₄, A₁₃, and A₁₂) while (A₆, A₁, A₀) = (0, 1, 0) will produce a logical "1" at device output DQ₀ for a protected sector. The programming verification should be perform margin mode on the protected sector (See "MBM29F200TC/BC User Bus Operation Table ($\overline{BYTE} = V_{IH}$)" and "MBM29F200TC/BC User Bus Operation Table ($\overline{BYTE} = V_{IH}$)" and "MBM29F200TC/BC User Bus Operation Table ($\overline{BYTE} = V_{IH}$)" and "MBM29F200TC/BC User Bus Operation Table ($\overline{BYTE} = V_{IL}$)" in " \blacksquare FLEXIBLE SECTOR-ERASE ARCHITECTURE").

To terminate the operation, it is necessary to write the read/reset command sequence into the register and also to write the autoselect command during the operation, execute it after writing read/reset command sequence.

Byte/Word Programming

The device is programmed on a byte-by-byte (or word-by-word) basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of \overline{CE} or \overline{WE} , whichever happens later and the data is latched on the rising edge of \overline{CE} or \overline{WE} , whichever happens first. The rising edge of \overline{CE} or \overline{WE} (whichever happens first) begins programming. Upon executing the Embedded Program^M Algorithm command sequence the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin.

The automatic programming operation is completed when the data on DQ₇ is equivalent to data written to this bit at which time the devices return to the read mode and addresses are no longer latched (see "Hardware Sequence Flags Table" in "■ FUNCTIONAL DESCRIPTION", Hardware Sequence Flags) Therefore, the devices require that a valid address to the devices be supplied by the system at this particular instance of time. Hence, Data Polling must be performed at the memory location which is being programmed.

Any commands written to the chip during this period will be ignored. If hardware reset occurs during the programming operation, it is impossible to guarantee the data are being written.

Programming is allowed in any sequence and across sector boundaries. Beware that a data "0" cannot be programmed back to a "1". Attempting to do so may either hang up the device or result in an apparent success according to the data polling algorithm but a read from read/reset mode will show that the data is still "0". Only erase operations can convert "0"s to "1"s.

"Data Polling algorithm" in "■ FLOW CHART" illustrates the Embedded Programming Algorithm using typical command strings and bus operations.

Chip Erase

Chip erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.

Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase[™] Algorithm command sequence the device will automatically program and verify the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations.

The automatic erase begins on the rising edge of the last \overline{WE} pulse in the command sequence and terminates when the data on DQ₇ is "1" (see Write Operation Status section) at which time the device returns to read the mode.

"Toggle Bit algorithm" in "■ FLOW CHART" illustrates the Embedded Erase Algorithm using typical command strings and bus operations.

Sector Erase

Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the sector erase command. The sector address (any address location within the desired sector) is latched on the falling edge of \overline{WE} , while the command (Data = 30h) is latched on the rising edge of \overline{WE} . After time-out of 50 µs from the rising edge of the last sector erase command, the sector erase operation will begin.

Multiple sectors may be erased concurrently by writing the six bus cycle operations on "MBM29F200TC/BC Command Definitions Table" in "■ FLEXIBLE SECTOR-ERASE ARCHITECTURE". This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than 50 µs otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of 50 µs from the rising edge of the last WE will initiate the execution of the Sector Erase command(s). If another falling edge of the WE occurs within the 50 µs time-out window the timer is reset. (Monitor DQ₃ to determine if the sector Erase or Erase Suspend during this time-out period will reset the devices to the read mode, ignoring the previous command string. Resetting the device once execution has begun will corrupt the data in that sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to the Write Operation Status section for Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 6).

Sector erase does not require the user to program the devices prior to erase. The device automatically programs all memory locations in the sector(s) to be erased prior to electrical erase. When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations.

The automatic sector erase begins after the 50 μ s time out from the rising edge of the WE pulse for the last sector erase command pulse and terminates when the data on DQ₇ is "1" (see Write Operation Status section) at which time the device returns to the read mode. Data polling must be performed at an address within any of the sectors being erased.

"Toggle Bit algorithm" in "■ FLOW CHART" illustrates the Embedded Erase Algorithm using typical command strings and bus operations.

Erase Suspend

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads from or programs to a sector not being erased. This command is applicable ONLY during the Sector Erase operation which includes the time-out period for sector erase. The Erase Suspend command will be ignored if written during the Chip Erase operation or Embedded Program Algorithm. Writting the Erase Suspend command

during the Sector Erase time-out results in immediate termination of the time-out period and suspension of the erase operation.

Writing the Erase Resume command resumes the erase operation. The addresses are "don't cares" when writing the Erase Suspend or Erase Resume command.

When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of 20 μ s to suspend the erase operation. When the device has entered the erase-suspended mode, the RY/BY output pin and the DQ7 bit will be at logic "1", and DQ6 will stop toggling. The user must use the address of the erasing sector for reading DQ6 and DQ7 to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.

When the erase operation has been suspended, the device defaults to the erase-suspend-read mode. Reading data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-read mode will cause DQ₂ to toggle. (See the section on DQ₂).

After entering the erase-suspend-read mode, the user can program the device by writing the appropriate command sequence for Program. This program mode is known as the erase-suspend-program mode. Again, programming in this mode is the same as programming in the regular Program mode except that the data must be programmed to sectors that are not erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-program mode will cause DQ₂ to toggle. The end of the erase-suspended program operation is detected by the RY/BY output pin, Data polling of DQ₇, or by the Toggle Bit I (DQ₆) which is the same as the regular Program operation. Note that DQ₇ must be read from the program address while DQ₆ can be read from any address.

To resume the operation of Sector Erase, the Resume command (30h) should be written. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

•	Hardware Sequence Flags Table										
		Status	DQ7	DQ ₆	DQ₅	DQ ₃	DQ ₂				
	Embedded P	Program Algorithm	DQ ₇	Toggle	0	0	1				
	Embedded E	rase Algorithm	0	Toggle	0	1	Toggle				
In		Erase Suspend Read (Erase Suspended Sector)	1	1	0	0	Toggle				
Progress Erase Suspended Mode	Erase Suspend Read (Non-Erase Suspended Sector)	Data	Data	Data	Data	Data					
		Erase Suspend Program (Non-Erase Suspended Sector)	DQ7	Toggle*1	0	0	1* ²				
	Embedded P	Program Algorithm	\overline{DQ}_7	Toggle	1	0	1				
Exceeded	Embedded E	rase Algorithm	0	Toggle	1	1	N/A				
Time Limits	Erase Suspended Mode	Erase Suspend Program (Non-Erase Suspended Sector)	DQ7	Toggle	1	0	N/A				

Write Operation Status

*1 : Performing successive read operations from any address will cause DQ6 to toggle.

*2 : Reading the byte address being programmed while in the erase-suspend program mode will indicate logic "1" at the DQ₂ bit. However, successive reads from the erase-suspended sector will cause DQ₂ to toggle.

Notes : • DQ_0 and DQ_1 are reserve pins for future use. DQ_4 is Fujitsu internal use only.

• DQ15 to DQ8 are "DON'T CARES" because there is for \times 16 mode.

DQ7

Data Polling

The MBM29F200TC/BC device feature Data Polling as a method to indicate to the host that the Embedded Algorithms are in progress or completed. During the Embedded Program Algorithm an attempt to read the device will produce the complement of the data last written to DQ₇. Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ₇. During the Embedded Erase Algorithm, an attempt to read the device will produce a "0" at the DQ₇ output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a "1" at the DQ₇ output. The flowchart for Data Polling (DQ₇) is shown in "Sector Protection Algorithm" in "■ FLOW CHART".

For Programing, the Data Polling is valid after the rising edge of fourth write pulse in the four write pulse sequence.

For chip erase and sector erase, the Data Polling is valid after the rising edge of the sixth write pulse in the six write pulse sequence. Data Polling must be performed at sector address within any of the sectors being erased and not a protected sector. Otherwise, the status may not be valid. Once the Embedded Algorithm operation is close to being completed, the MBM29F200TC/BC data pins (DQ₇) may change asynchronously while the output enable (\overline{OE}) is asserted low. This means that the device is driving status information on DQ₇ at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the DQ₇ output, it may read the status or valid data. Even if the device has completed the Embedded Algorithm operation and DQ₇ has a valid data, the data outputs on DQ₆ to DQ₀ may be still invalid. The valid data on DQ₇ to DQ₀ will be read on the successive read attempts.

The Data Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm or sector erase time-out (See "Hardware Sequence Flags Table" in "■ FUNCTIONAL DESCRIPTION").

See "AC Waveforms for Data Polling during Embedded Algorithm Operations" in "■ TIMING DIAGRAM" for the Data Polling timing specifications and diagrams.

DQ₆

Toggle Bit I

The MBM29F200TC/BC also feature the "Toggle Bit I" as a method to indicate to the host system that the Embedded Algorithms are in progress or completed.

During an Embedded Program or Erase Algorithm cycle, successive attempts to read (\overline{OE} toggling) data from the device will result in DQ₆ toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, DQ₆ will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit I is valid after the rising edge of the fourth write pulse in the four write pulse sequence. For chip erase and sector erase, the Toggle Bit I is valid after the rising edge of the sixth write pulse in the six write pulse sequence. The Toggle Bit I is active during the sector time out.

In programming, if the sector being written to is protected, the toggle bit I will toggle for about 2 μ s and then stop toggling without the data having changed. In erase, the device will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the toggle bit for about 100 μ s and then drop back into read mode, having changed none of the data.

Either \overline{CE} or \overline{OE} toggling will cause the DQ₆ to toggle. In addition, an Erase Suspend/Resume command will cause DQ₆ to toggle.

See "AC Waveforms for Toggle Bit I during Embedded Algorithm Operations" in "■ TIMING DIAGRAM" for the Toggle Bit I timing specifications and diagrams.

DQ₅

Exceeded Timing Limits

 DQ_5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ_5 will produce a "1". This is a failure condition which indicates that the program or erase

cycle was not successfully completed. Data Polling is the only operating function of the devices under this condition. The \overline{CE} circuit will partially power down the device under these conditions (to approximately 2 mA). The \overline{OE} and \overline{WE} pins will control the output disable functions as described in "MBM29F200TC/BC User Bus Operation Table (BYTE = VIH)" and "MBM29F200TC/BC User Bus Operation Table (BYTE = VIH)" and "MBM29F200TC/BC User Bus Operation Table (BYTE = VIH)" in " \blacksquare FLEXIBLE SECTOR-ERASE ARCHITECTURE".

The DQ₅ failure condition may also appear if a user tries to program a non blank location without erasing. In this case the device locks out and never complete the Embedded Algorithm operation. Hence, the system never reads a valid data on DQ₇ bit and DQ₆ never stops toggling. Once the device has exceeded timing limits, the DQ₅ bit will indicate a "1". Please note that this is not a device failure condition since the device was incorrectly used.

DQ₃

Sector Erase Timer

After the completion of the initial sector erase command sequence the sector erase time-out will begin. DQ₃ will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.

If Data Polling or the Toggle Bit I indicates the device has been written with a valid erase command, DQ_3 may be used to determine if the sector erase timer window is still open. If DQ_3 is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit I. If DQ_3 is low ("0"), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of DQ_3 prior to and following each subsequent sector erase command. If DQ_3 were high on the second status check, the command may not have been accepted.

Refer to "Hardware Sequence Flags Table" in "■ FUNCTIONAL DESCRIPTION": Hardware Sequence Flags.

DQ₂

Toggle Bit II

This toggle bit II, along with DQ_6 , can be used to determine whether the device is in the Embedded Erase Algorithm or in Erase Suspend.

Successive reads from the erasing sector will cause DQ_2 to toggle during the Embedded Erase Algorithm. If the device is in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause DQ_2 to toggle. When the device is in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic "1" at the DQ_2 bit.

 DQ_6 is different from DQ_2 in that DQ_6 toggles only when the standard program or Erase, or Erase Suspend Program operation is in progress. The behavior of these two status bits, along with that of DQ_7 , is summarized as follows:

Mode	DQ7	DQ ₆	DQ ₂
Program	DQ ₇	Toggle	1
Erase	0	Toggle	Toggle
Erase Suspend Read (Erase-Suspended Sector) *1	1	1	Toggle
Erase Suspend Program	\overline{DQ}_{7}^{*2}	Toggle	1*2

*1 : These status flags apply when outputs are read from a sector that has been erase-suspended.

*2 : These status flags apply when outputs are read from the byte address of the non-erase suspended sector.

For example, DQ₂ and DQ₆ can be used together to determine the erase-suspend-read mode (DQ₂ toggles while DQ₆ does not). See also "Hardware Sequence Flags Table" in "■ FUNCTIONAL DESCRIPTION" and "Temporary Sector Unprotection Algorithm" in "■ FLOW CHART".

Furthermore, DQ_2 can also be used to determine which sector is being erased. When the device is in the erase mode, DQ_2 toggles if this bit is read from the erasing sector.

RY/BY

Ready/Busy

The MBM29F200TC/BC provides a RY/BY open-drain output pin as a way to indicate to the host system that the Embedded[™] Algorithms are either in progress or completed. If the output is low, the device is busy with either a program or erase operation. If the output is high, the device is ready to accept any read/write or erase operation. When the RY/BY pin is low, the device will not accept any additional program or erase commands. If the MBM29F200TC/BC is placed in an Erase Suspend mode, the RY/BY output will be high. Also, since this is an open drain output, many RY/BY pins can be tied together in parallel with a pull up resistor to Vcc.

During programming, the RY/BY pin is driven low after the rising edge of the fourth write pulse. During an erase operation, the RY/BY pin is driven low after the rising edge of the sixth write pulse. The RY/BY pin will indicate a busy condition during the RESET pulse. Refer to "RY/BY Timing Diagram during Program/Erase Operations" and "RESET/RY/BY Timing Diagram" in "■ TIMING DIAGRAM" for a detailed timing diagram.

Since this is an open-drain output, several RY/BY pins can be tied together in parallel with a pull-up resistor to Vcc.

RESET

Hardware Reset

The MBM29F200TC/BC device may be reset by driving the RESET pin to V_{IL}. The RESET pin has a pulse requirement and has to be kept low (V_{IL}) for at least 500 ns in order to properly reset the internal state machine. Any operation in the process of being executed will be terminated and the internal state machine will be reset to the read mode 20 μ s after the RESET pin is driven low. Furthermore, once the RESET pin goes high, the device requires time of t_{RH} before it will allow read access. When the RESET pin is low, the device will be in the standby mode for the duration of the pulse and all the data output pins will be tri-stated. If a hardware reset occurs during a program or erase operation, the data at that particular location will be corrupted. Please note that the RY/BY output signal should be ignored during the RESET pulse. Refer to "RESET/RY/BY Timing Diagram" in "■ TIMING DIAGRAM" for the timing diagram. Refer to Temporary Sector Unprotection for additional functionality.

If hardware reset occurs during Embedded Erase Algorithm, there is a possibility that the erasing sector(s) cannot be used.

Byte/Word Configuration

The BYTE pin selects the byte (8-bit) mode or word (16-bit) mode for the MBM29F200TC/BC device. When this pin is driven high, the device operates in the word (16-bit) mode. The data is read and programmed at DQ₁₅ to DQ₀. When this pin is driven low, the device operates in byte (8-bit) mode. Under this mode, the DQ₁₅/A₋₁ pin becomes the lowest address bit and DQ₁₄ to DQ₈ bits are tri-stated. However, the command bus cycle is always an 8-bit operation and hence commands are written at DQ₇ to DQ₀ and the DQ₁₅ to DQ₈ bits are ignored. Refer to "Timing Diagram for Byte Mode Configuration", "BYTE Timing Diagram for Write Operations" and "AC Waveforms for Sector Protection Timing Diagram" in "■ TIMING DIAGRAM" for the timing diagram.

Data Protection

The MBM29F200TC/BC are designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the device automatically resets the internal state machine in the read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific multi-bus cycle command sequences.

The device also incorporate several features to prevent inadvertent write cycles resulting form Vcc power-up and power-down transitions or system noise.

Low Vcc Write Inhibit

To avoid initiation of a write cycle during V_{CC} power-up and power-down, a write cycle is locked out for V_{CC} less than 3.2 V (typically 3.7 V). If V_{CC} < V_{LKO}, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the V_{CC} level is greater than V_{LKO}. It is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when V_{CC} is above 3.2 V.

If Embedded Erase Algorithm is interrupted, there is possibility that the erasing sector(s) cannot be used.

Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on OE, CE, or WE will not initiate a write cycle.

Logical Inhibit

Writing is inhibited by holding any one of $\overline{OE} = V_{\mathbb{H}}$, $\overline{CE} = V_{\mathbb{H}}$, or $\overline{WE} = V_{\mathbb{H}}$. To initiate a write cycle \overline{CE} and \overline{WE} must be a logical zero while \overline{OE} is a logical one.

Power-Up Write Inhibit

Power-up of the device with $\overline{WE} = \overline{CE} = V_{IL}$ and $\overline{OE} = V_{IH}$ will not accept commands on the rising edge of \overline{WE} . The internal state machine is automatically reset to the read mode on power-up.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Rating		
Falanielei	Symbol	Min	Max	Unit	
Storage Temperature	Tstg	-55	+125	°C	
Ambient Temperature with Power Applied	TA	-40	+85	°C	
Voltage with respect to Ground All pins except A_9 , \overline{OE} , and $\overline{RESET} *1, *2$	Vin, Vout	-2.0	+7.0	V	
Power Supply Voltage *1	Vcc	-2.0	+7.0	V	
A9, OE, RESET *2, *3	Vin	-2.0	+13.5	V	

*1 : Voltage is defined on the basis of $V_{SS} = GND = 0$ V.

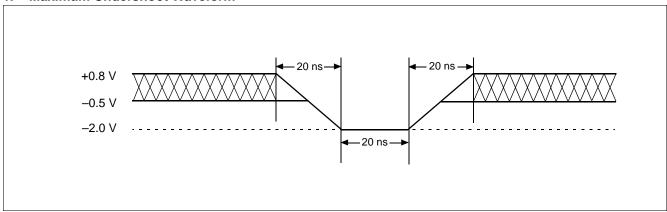
- *2 : Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may undershoot Vss to –2.0 V for periods of up to 20 ns. Maximum DC voltage on output and I/O pins is Vcc +0.5 V. During voltage transitions, input or I/O pins may overshoot to Vcc +2.0 V for periods of up to 20 ns.
- *3 : Minimum DC input voltage on A₉, OE, and RESET pins is –0.5 V. During voltage transitions, A₉, OE, and RESET pins may undershoot Vss to –2.0 V for periods of up to 20 ns. Maximum DC input voltage on A₉, OE, and RESET pins is +13.0 V which may overshoot to 13.5 V for periods of up to 20 ns. Voltage difference between input and supply voltage (VIN Vcc) does not exceed +9.0 V.
 - **WARNING:** Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

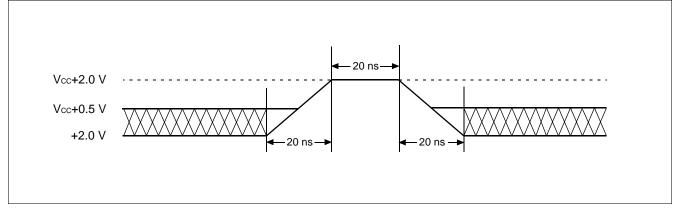
Parameter		Symbol	Val	Unit		
		Symbol	Min	Max	Unit	
Ambient Temperatue	MBM29F200TC/BC-55	TA	-20	+70	°C	
Ambient temperatue	MBM29F200TC/BC-70/-90	IA	-40	+85	C	
Dower Supply Veltage*	MBM29F200TC/BC-55	Vcc	+4.75	+5.25	V	
Power Supply Voltage*	MBM29F200TC/BC-70/-90	V CC	+4.50	+5.50	V	

* : Voltage is defined on the basis of $V_{SS} = GND = 0$ V.

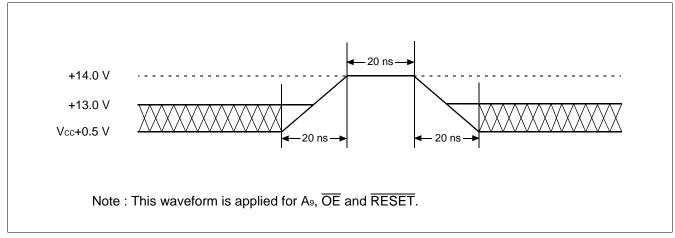
Note : Operating ranges define those limits between which the functionality of the devices are guaranteed.


WARNING: The recommended operating conditions are required in order to ensure the normal operating ranges for the semiconductor device. All of the device's electrical characteristics are warranted whent the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.


No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ MAXIMUM OVERSHOOT/MAXIMUM UNDERSHOOT


1. Maximum Undershoot Waveform

2. Maximum Overshoot Waveform

3. Maximum Overshoot Waveform

DC CHARACTERISTICS

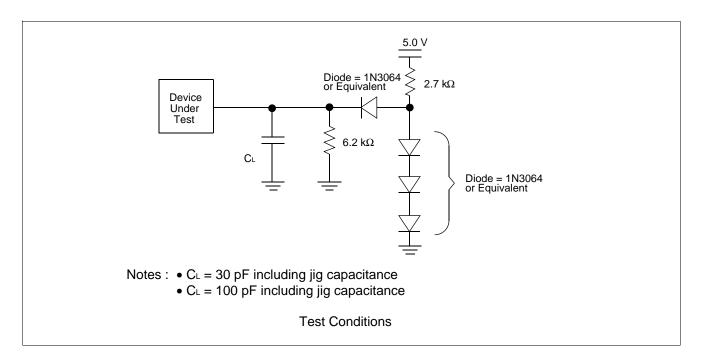
Description	Symbol	Test Conditions		Min	Max	Unit		
Input Leakage Current	lu	VIN = Vss to Vcc, Vcc = Vcc Max		-1.0	+1.0	μA		
Output Leakage Current	Ilo	Vout = Vss to Vcc, Vcc = V	cc Max	-1.0	+1.0	μA		
A₀, OE, RESET Inputs Leakage Current	Ішт	Vcc <u>= Vcc Max,</u> A ₉ , OE, RESET = 12.5 V		_	50	μA		
V Active Ourrent *1	l	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$	Byte		35			
Vcc Active Current *1	Icc1	CE = VIL, OE = VIH	Word		40	mA		
Vcc Active Current *2	Icc2	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$			50	mA		
V Current (Stendby)	1	$\frac{V_{CC} = V_{CC} \text{ Max}, \overline{CE} = V_{IH},}{\overline{RESET} = V_{IH}}$			1	mA		
Vcc Current (Standby)	Іссз	$\frac{V_{cc} = V_{cc} \text{ Max, } \overline{CE} = V_{cc} \pm 0.3 \text{ V,}}{\text{RESET} = V_{cc} \pm 0.3 \text{ V}}$		_	5	μA		
V Current (Stendby Deeet)		Vcc = Vcc Max, RESET = Vi∟			1	mA		
Vcc Current (Standby, Reset)	Icc4	Vcc = Vcc Max, RESET = Vss±0.3 V		_	5	μA		
Input Low Level	VIL	_		-0.5	0.8	V		
Input High Level	Vін	—		2.0	Vcc + 0.5	V		
Voltage for Autoselect and Sector Protection (A ₉ , OE, RESET) * ^{3,*4}	Vid	_		11.5	12.5	V		
Output Low Voltage Level	Vol	lo∟ = 5.8 mA, Vcc = Vcc Min		—	0.45	V		
Output High Voltage Lavel	V _{OH1}	Іон = −2.5 mA, Vcc = Vcc Min		2.4		V		
Output High Voltage Level	V _{OH2}	Iон = -100 µА		Іон = –100 µ А		Vcc-0.4	_	V
Low Vcc Lock-Out Voltage	Vlko	_		3.2	4.2	V		

*1 : The Icc current listed includes both the DC operating current and the frequency dependent component (at 6 MHz). The frequency component typically is 2 mA/MHz, with $\overline{\text{OE}}$ at V_{IH}.

*2 : Icc active while Embedded Algorithm (program or erase) is in progress.

*3 : Applicable to sector protection function.

*4 : (V_{\rm ID} - V_{\rm CC}) do not exceed 9 V.


AC CHARACTERISTICS

Read Only Operations Characteristics

Description	Sy	mbol	Test	-55	5 *1	-70 * ²		-90 * ²		Unit	
Description	JEDEC	DEC Standard Setup		Min	Max	Min	Max	Min	Max		
Read Cycle Time	tavav	t RC	—	55	—	70	—	90	—	ns	
Address to Output Delay	t avqv	tacc	$\frac{\overline{CE}}{OE} = V_{IL}$	_	55	_	70	_	90	ns	
Chip Enable to Output Delay	t elqv	t _{CE}	OE = Vı∟	_	55		70		90	ns	
Output Enable to Output Delay	t GLQV	toe	_	_	30		30		35	ns	
Chip Enable to Output High-Z	t ehqz	t DF		_	15		20		20	ns	
Output Enable to Output High-Z	tgнqz	t DF		_	15		20		20	ns	
Output Hold Time From Addresses, CE or OE, Whichever Occurs First	t axqx	tон		0		0		0		ns	
RESET Pin Low to Read Mode		t READY	_		20		20		20	μs	
CE to BYTE Switching Low or High		telfl telfh		_	5		5		5	ns	

*1 : Test Conditions: Output Load: 1 TTL gate and 30 pF Input rise and fall times: 5 ns Input pulse levels: 0.0 V/3.0 V Timing measurement reference level Input : 1.5 V Output : 1.5 V *2 : Test Conditions:

Output Load: 1 TTL gate and 100 pF Input rise and fall times: 5 ns Input pulse levels: 0.45 V/2.4 V Timing measurement reference level Input : 0.8 V and 2.0 V Output : 0.8 V and 2.0 V

• Write/Erase/Program Operations

		Sy	mbol			М	BM29	9F200)TC/B	C			
	Description	JEDEC	Cton doud		-55			-70			-90		Unit
			Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Write Cycle	Time	t avav	twc	55	_	—	70		—	90	_	—	ns
Address Set	tup Time	t avwl	tas	0	—	—	0		—	0	—	—	ns
Address Ho	ld Time	t wlax	tан	40	—	—	45		—	45	—	—	ns
Data Setup	Time	tovwн	tos	25	—	—	30		_	45	—	—	ns
Data Hold T	ïme	t whdx	tон	0	—	—	0		_	0	—	—	ns
Output Enal	ole Setup Time	—	toes	0	_	—	0		_	0	_	—	ns
Output	Read			0	—	—	0		_	0	—	—	ns
Enable Hold Time	Toggle and Data Polling		tоен	10		—	10		_	10		—	ns
Read Recov	ver Time Before Write	t GHWL	t GHWL	0	_	—	0		—	0	_	—	ns
Read Recov	ver Time Before Write	t GHEL	t GHEL	0	_	—	0		_	0	—	_	ns
CE Setup T	ime	t elwl	tcs	0	_	_	0		_	0	_	_	ns
WE Setup T	īme	twlel	t ws	0	_	—	0		—	0	_	—	ns
CE Hold Tin	ne	twнен	tсн	0	_	_	0		_	0	_	_	ns
WE Hold Tir	me	tенwн	twн	0	_	—	0		—	0	_	—	ns
Write Pulse	Width	twlwн	t wp	30	_	—	35		—	45	_	—	ns
CE Pulse W	/idth	t eleh	t CP	30	_	—	35		—	45	_	—	ns
Write Pulse	Width High	tw∺w∟	t wph	20	_	—	20		—	20	_	—	ns
CE Pulse W	/idth High	tehel	t CPH	20	_	—	20		—	20	_	—	ns
Byte Progra	mming Operation	t whwh1	t whwh1	—	8	—	—	8	—	_	8	—	μs
Sactor From	o Operation *1	4	4	_	1	_	_	1	_	_	1	_	S
Seciol Elas	e Operation *1	t whwh2	t whwh2	—	_	8	—		8	_	_	8	S
Vcc Setup T	ïme		tvcs	50	_	—	50		—	50	_	—	μs
RiseTime to	VID			500	—	—	500		—	500	—	—	ns
Voltage Tra	nsition Time *2		tvlht	4	—	—	4		—	4	—	—	μs
Write Pulse	Width *2		twpp	100	—	—	100		—	100	—	—	μs
OE Setup T	ime to $\overline{\text{WE}}$ Active * ²		toesp	4	_	—	4	_	—	4	—	—	μs
CE Setup T	ime to WE Active *2		t CSP	4	_	—	4		—	4	—	—	μs
Recover Tin	ne from RY/BY		t _{RB}	0	—	—	0	_	—	0	—	—	ns

(Continued)

(Continued)

	Sy	MBM29F200TC/BC										
Description	JEDEC	Standard		-55		-70			-90			Unit
	JEDEC Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max		
RESET Pulse Width		t RP	500	_	_	500	_	_	500	_	—	ns
RESET Hold Time Before Read	—	tкн	50	—		50	_	_	50	_	—	ns
BYTE Switching Low to Output High-Z	—	t FLQZ	—	—	30		_	30	_	_	35	ns
BYTE Switching High to Output Active		t FHQV	—	—	55		—	70	_	—	90	ns
Program/Erase Valid to RY/BY Delay		t BUSY	—	—	55		—	70	_	—	90	ns
Delay Time from Embedded Output Enable		t eoe			55			70			90	ns

*1 : This does not include the preprogramming time.

*2 : These timing is for Sector Protection operation.

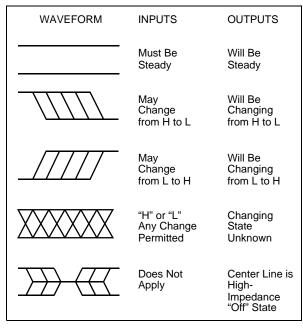
■ ERASE AND PROGRAMMING PERFORMANCE

Parameter		Limits		Unit	Comment
Falameter	Min	Тур	Max	Unit	Comment
Sector Erase Time		1	8	S	Excludes 00h programming prior to erasure
Word Programming Time	_	16	200	μs	Excludes system-level
Byte Programming Time	_	8	150	μs	overhead
Chip Programming Time	_	2.1	5.0	S	Excludes system-level overhead
Erase/Program Cycle	100,000	_	—	cycle	

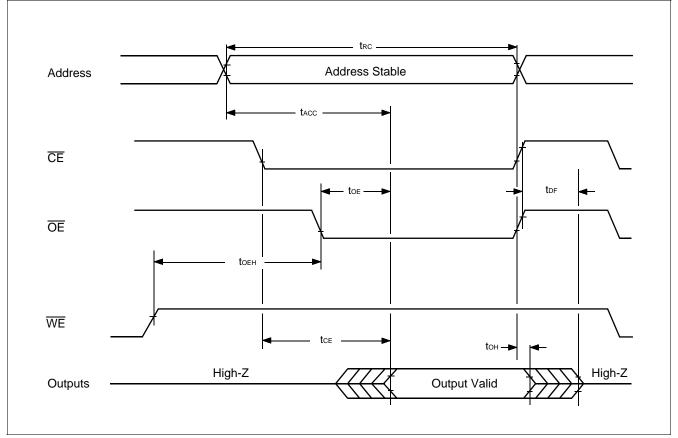
■ TSOP (1) PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Тур	Max	Unit
CIN	Input Capacitance	V _{IN} = 0	8	9	pF
Соит	Output Capacitance	Vout = 0	8	10	pF
CIN2	Control Pin Capacitance	V _{IN} = 0	8.5	11.5	pF

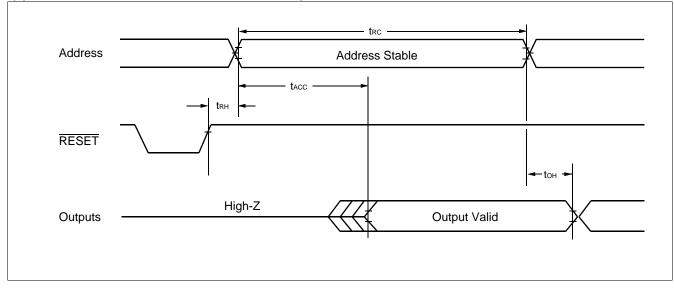
Note : Test conditions $T_A = +25^{\circ}C$, f = 1.0 MHz

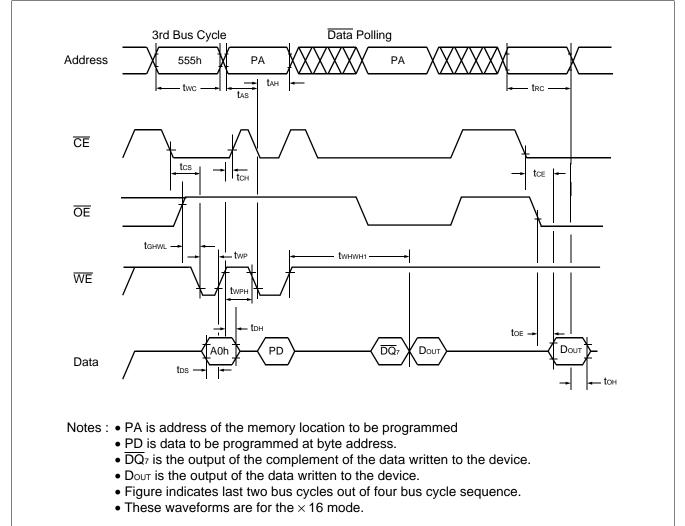

■ SOP PIN CAPACITANCE

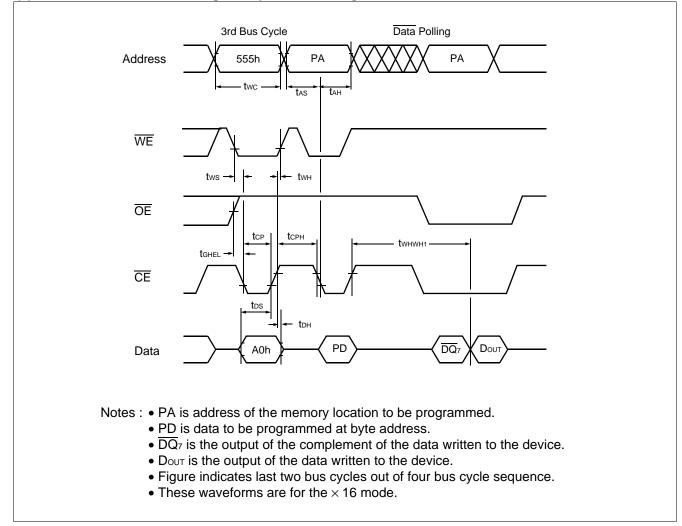
Parameter Symbol	Parameter Description	Test Setup	Тур	Max	Unit
CIN	Input Capacitance	V _{IN} = 0	7.5	9	pF
Соит	Output Capacitance	Vout = 0	8	10	pF
CIN2	Control Pin Capacitance	V _{IN} = 0	8.5	11	pF

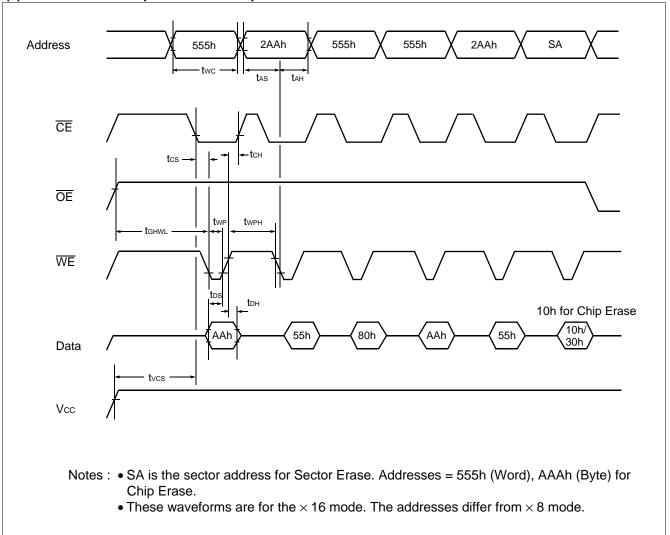

Note : Test conditions $T_A = +25^{\circ}C$, f = 1.0 MHz

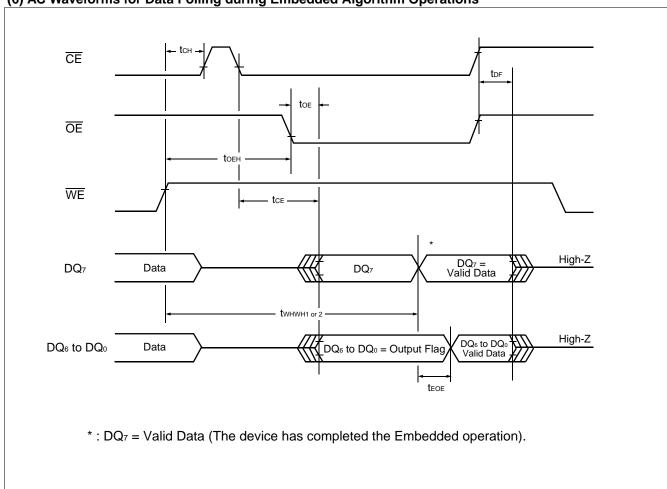
■ TIMING DIAGRAM


• Key to Switching Waveforms

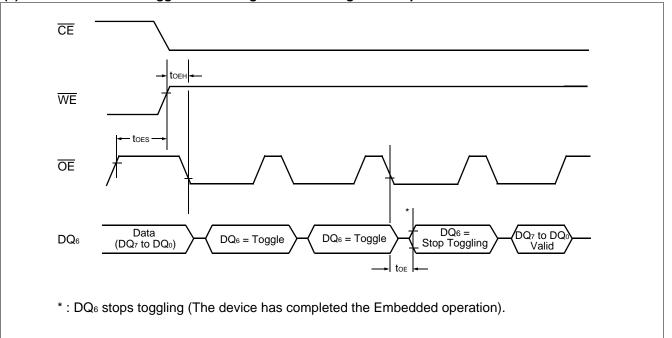

(1) AC Waveforms for Read Operations


(2) AC Waveforms for Hardware Reset/Read Operations

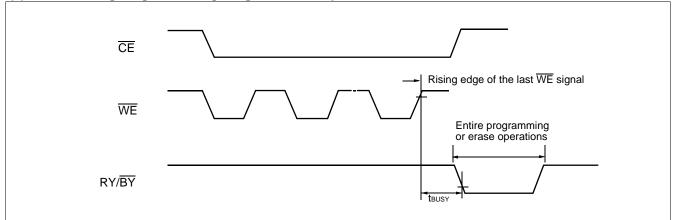

(3) Alternate WE Controlled Program Operation Timings

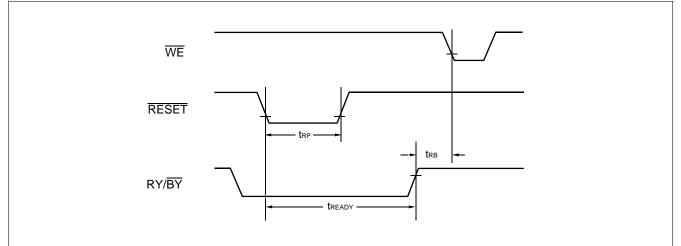


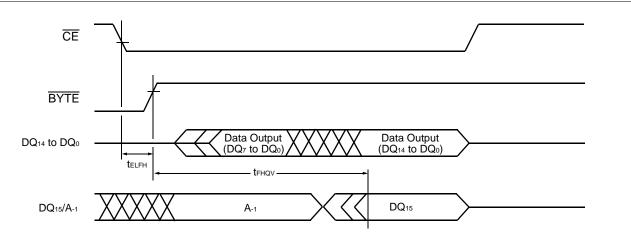
(4) Alternate CE Controlled Program Operation Timings

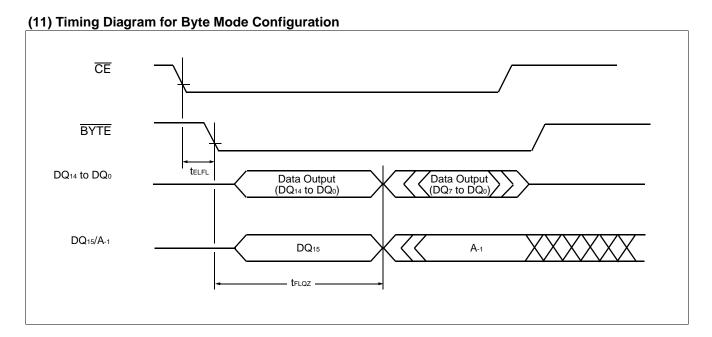


(5) AC Waveforms Chip/Sector Erase Operations

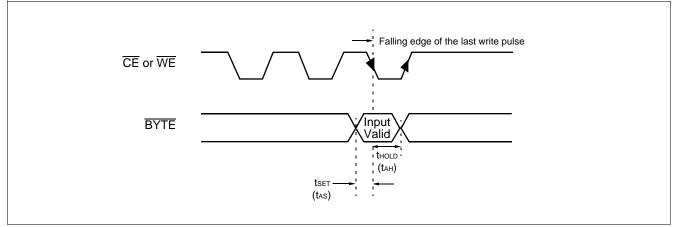


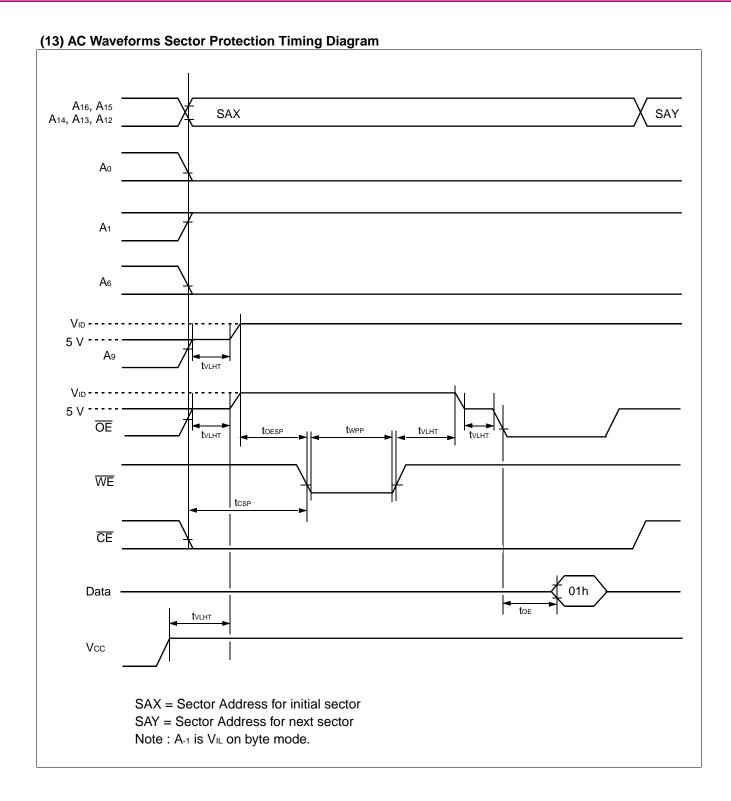

(7) AC Waveforms for Toggle Bit I during Embedded Algorithm Operations

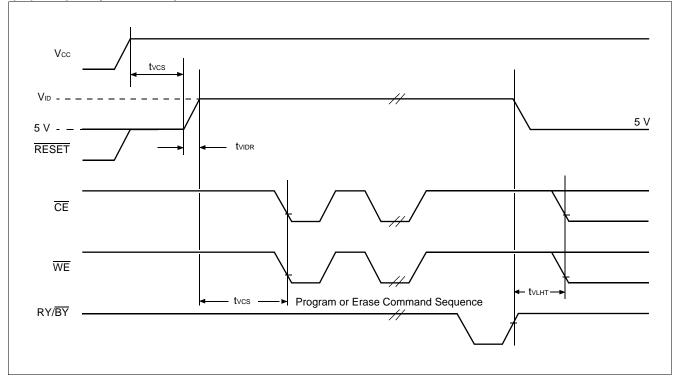

(8) RY/BY Timing Diagram during Program/Erase Operations



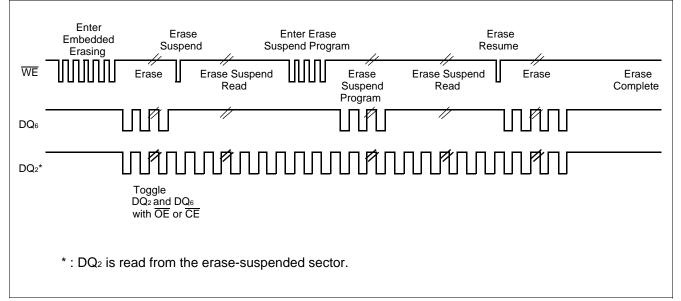
(9) RESET/RY/BY Timing Diagram



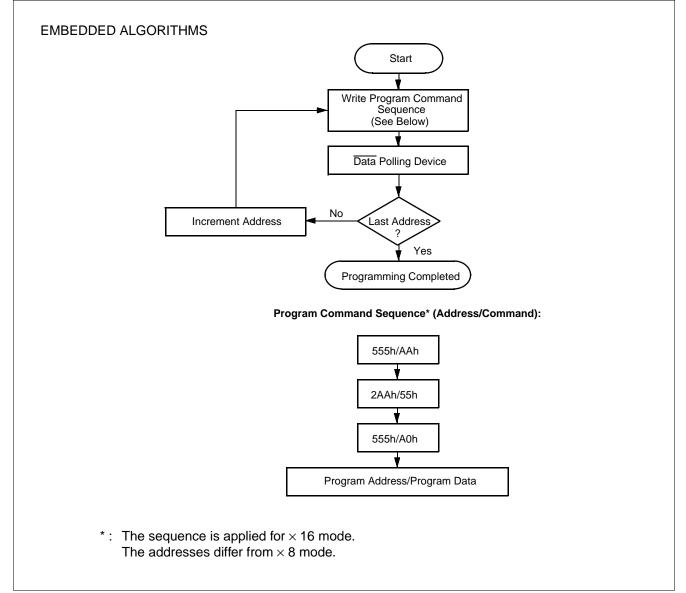

(10) Timing Diagram for Word Mode Configuration



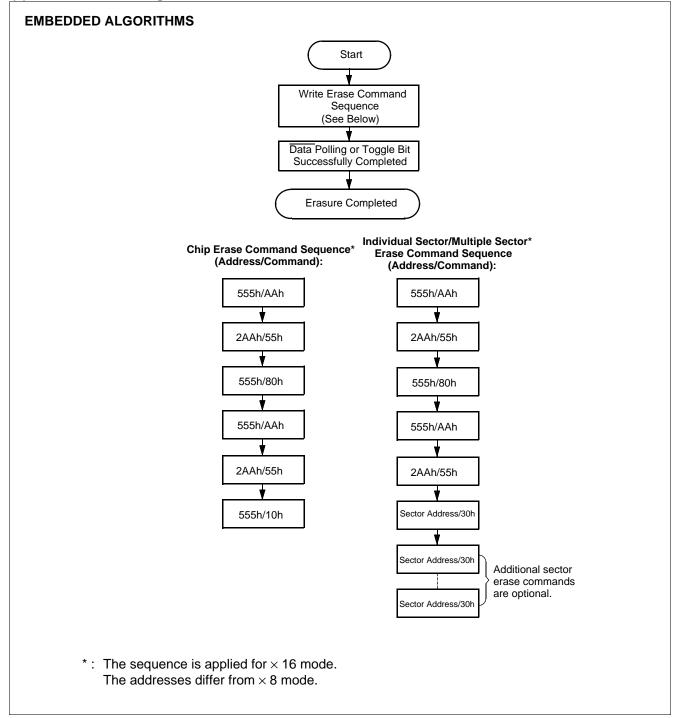
(12) BYTE Timing Diagram for Write Operations



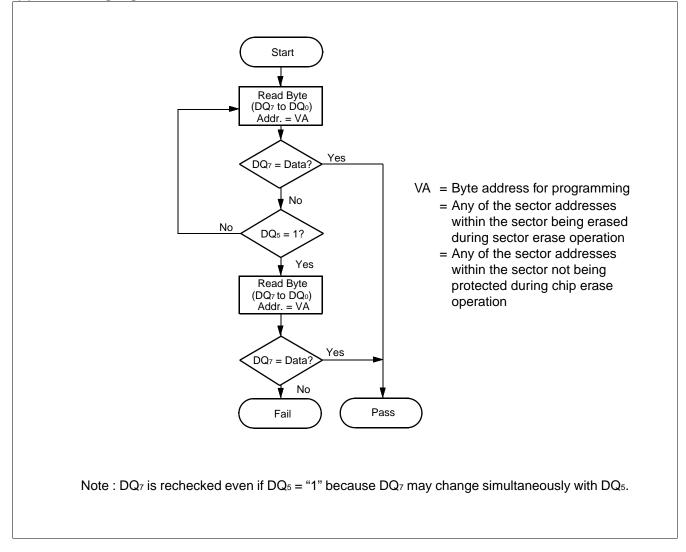
(14) Temporary Sector Unprotection

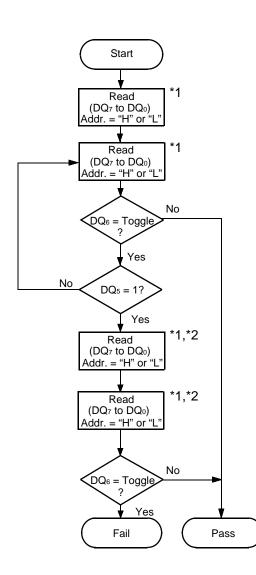


(15) DQ2 vs. DQ6

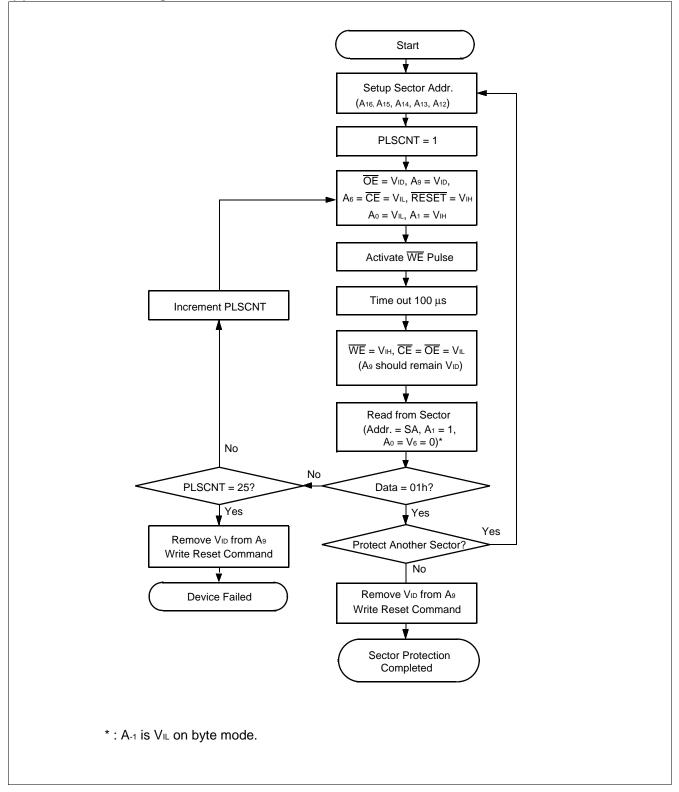


■ FLOW CHART

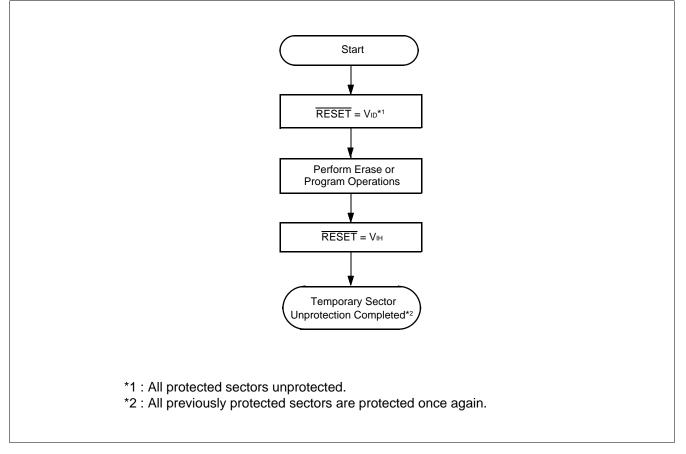

(1) Embedded Programming Algorithm


(2) Embedded Erase Algorithm

(3) Data Polling Algorithm

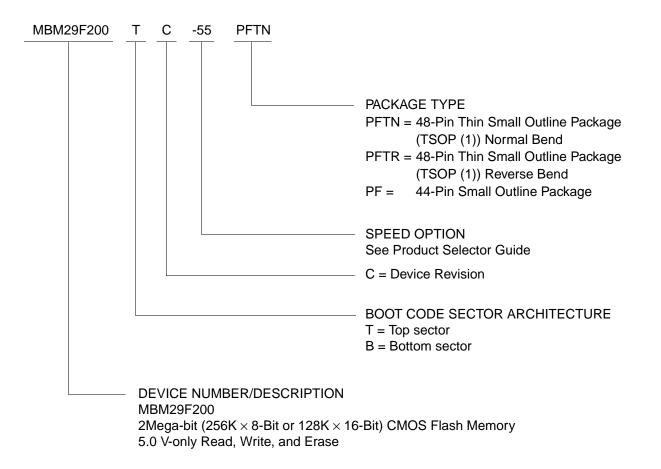


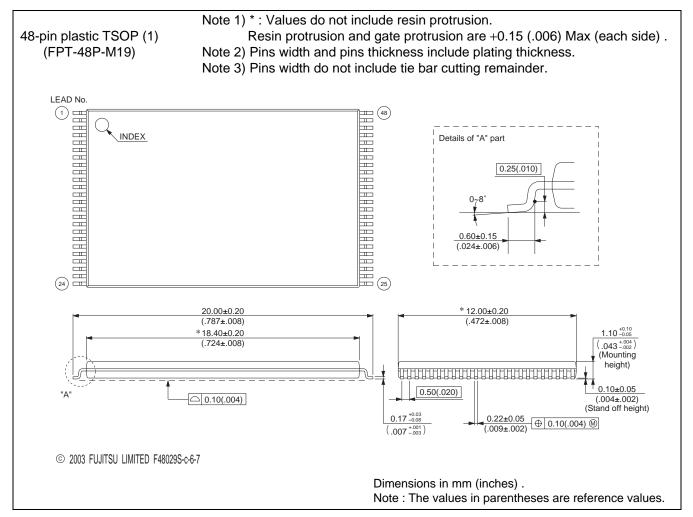
(4) Toggle Bit Algorithm

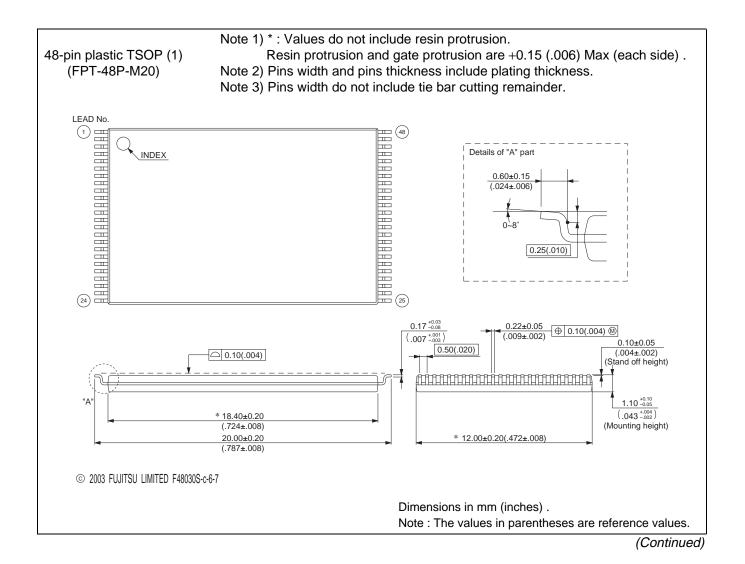


- *1 : Read toggle bit twice to determine whether it is toggling.
- *2 : DQ₆ is rechecked even if DQ₅ = "1" because DQ₆ may stop toggling at the same time as DQ₅ changing to "1".

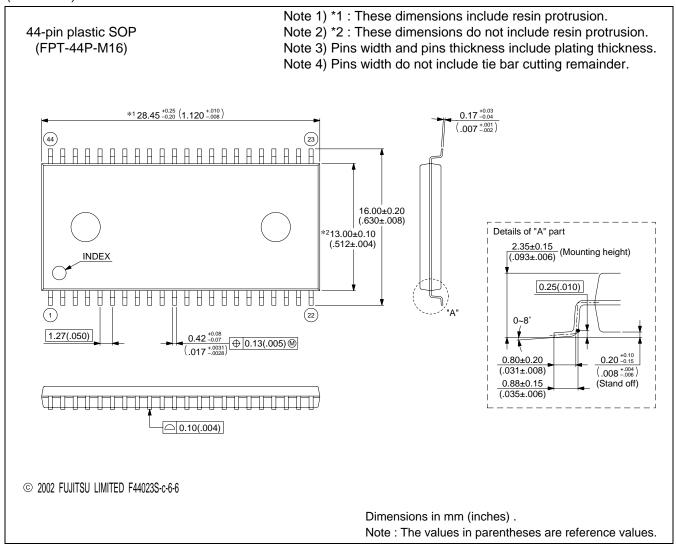
(5) Sector Protection Algorithm






ORDERING INFORMATION

Part No.	Package	Access Time (ns)	Remark
MBM29F200TC-55PF MBM29F200TC-70PF MBM29F200TC-90PF	44-pin plastic SOP (FPT-44P-M16)	55 70 90	
MBM29F200TC-55PFTN	48-pin plastic TSOP (1)	55	Top sector
MBM29F200TC-70PFTN	(FPT-48P-M19)	70	
MBM29F200TC-90PFTN	Normal Bend	90	
MBM29F200TC-55PFTR	48-pin plastic TSOP (1)	55	
MBM29F200TC-70PFTR	(FPT-48P-M20)	70	
MBM29F200TC-90PFTR	Reverse Bend	90	
MBM29F200BC-55PF MBM29F200BC-70PF MBM29F200BC-90PF	44-pin plastic SOP (FPT-44P-M16)	55 70 90	
MBM29F200BC-55PFTN	48-pin plastic TSOP (1)	55	Bottom sector
MBM29F200BC-70PFTN	(FPT-48P-M19)	70	
MBM29F200BC-90PFTN	Normal Bend	90	
MBM29F200BC-55PFTR	48-pin plastic TSOP (1)	55	
MBM29F200BC-70PFTR	(FPT-48P-M20)	70	
MBM29F200BC-90PFTR	Reverse Bend	90	


PACKAGE DIMENSIONS

43

(Continued)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0404 © FUJITSU LIMITED Printed in Japan