PREPARED BY :DATE 20.JUN. 2007 Y Leshima	SHARP ELECTRONIC COMPONENTS GROUP SHARP CORPORATION SPECIFICATION	SPEC NO. EC-06Y04C		
		FILE NO.		
		ISSUE 20.JUN. 2007		
CHECKED BY :DATE 20.JUN. 2007 a. yokryana		PAGE 1/19		
		REPRESENTATIVE DIVISION RF DEVICES DIV.		
APPROVED BY :DATE 20.JUN. 2007				

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$3 / 19$

GHARP

[DESCRIPTION] This specification covers DBS tuner intended for use in Digital Broadcasting Satellites. This tuner incorporates "LINK" section that is composed of DVB standard QPSK demodulation circuit and FEC (Forward Error Correction) circuit. This tuner has 8-bit transport stream output.
[1] GENERAL SPECIFICATIONS
1-1 Receiving frequency range

> 950 MHz to 2150 MHz
> -65 dBm to -25 dBm
> F type Female
> 75 ohm
> PLL synthesizer(Clock 4.0 MHz)

1-2 Input level
1-3 Input structure
1-4 Nominal input impedance
1-5 Channel selection system
1-6 Step frequency
1-7 I/Q output LPF cut off frequency $(-3 \mathrm{~dB})$
10 MHz to 30 MHz , variable (2 MHz step)
1-8 Symbol rate
2 Msps to 45 Msps
1-9 Roll-off Factor
35% (root-raised cosine)
1-10 LINK IC
STV0288 (Clock: 4MHz, Address: D0 (HEX))
1-11 FEC Inner decoder: Viterbi soft decoder, Constraint length M=7
Punctured codes $1 / 2,2 / 3,3 / 4,5 / 6,7 / 8$
Automatic or manual rate and Phase recognition
deinterleaver
Word synchro extraction
Convolutive deinterleaver
Outer decoder: Reed-solomon decoder, for 16 parity bytes
Block lengths 204byte
Energy dispersal descrambler
1-12 Absolute maximum ratings (B2) $\quad-0.30$ to +4.00 V DC
(B3) -0.30 to +3.63 V DC
(B4) -0.30 to +4.00 V DC
(VDD) -0.25 to +2.75 V DC
1-13 Operating voltage
LNB voltage
(B1A, B1B) $\quad 25 \mathrm{~V}, 400 \mathrm{~mA} \max$
Supply voltage
(B2) $3.3 \mathrm{~V}+/-0.165 \mathrm{~V}$ DC
(B3) $3.3 \mathrm{~V}+/-0.165 \mathrm{~V}$ DC
(B4) $3.3 \mathrm{~V}+/-0.165 \mathrm{~V}$ DC
(VDD) $2.5 \mathrm{~V}+/-0.125 \mathrm{~V}$ DC
1-14 Circuit block diagram
1-15 Connection diagram
1-16 Mass
Fig. 1

1-17 Storage condition
Temperature 15 deg.C to 35 deg.C
Humidity $\quad 25 \% \mathrm{RH}$ to $75 \% \mathrm{RH}$
Period
6 months
1-18 Environmental characteristics RoHS compliant
(RoHS refers to the "DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.")
1-19 Attention items:

1) This unit contains components that can be damaged by electro-static discharge. Before handling this unit, ground your hands, tools, working desks and equipment to protect the unit from Electronic Static Destroy.
2) Avoid following actions;
a)to store this unit in the place of the high temperature and humidity. b)to expose this unit to corrosive gases.

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$4 / 19$

GHARP

[2] MECHANICAL SPECIFICATION
2-1 Dimension and mounting details
2-2 Strength of F-connector

2-3 Clamp Torque of F-connector

Fig. 3
No severe transform or distortion at bending moment, $98 \mathrm{~N} \cdot \mathrm{~cm}$. To be connected electrically.
No severe transform or distortion on the connection with F -connector at bending moment, $98 \mathrm{~N} \cdot \mathrm{~cm}$.
To be connected electrically.
[3] ENVIRONMENTAL SPECIFICATION
(ELECTRICAL FUNCTIONAL OPERATION GUARANTEE)
3-1. Operating Temperature 0 to +60 deg . Humidity Less than 85\%

3-2. Storage Temperature -20 to +85 deg. C Humidity Less than 95\%
[Point to notice] Water vapor pressure 6643Pa max, no condensation
Please be careful that sudden temperature changes may cause condensation during storage, and such condensation may cause corrosion.

[4] TESTING CONDITION

4-1. Supply voltage

4-2. Ambient temperature
$4-3$. Ambient humidity

(B2)	$3.3 \mathrm{~V}+/-0.05 \mathrm{~V}$
(B3)	$3.3 \mathrm{~V}+/-0.05 \mathrm{~V}$
(B4)	$3.3 \mathrm{~V}+/-0.05 \mathrm{~V}$
(VDD)	$2.5 \mathrm{~V}+/-0.05 \mathrm{~V}$
	25 deg. $\mathrm{C}+/-5$ deg. C
	$65 \%+/-10 \%$

(Unless otherwise stated testing condition 4-1 to 4-3.)

No.	Item		Specification				Condition
			MIN.	TYP.	MAX.	UNIT	
5-1	RF input VSWR			2.0	2.5		950 M to 2150 MHz
5-2	Noise figure(at max. gain)			8	12	dB	950 M to 2150 MHz
5-3	Intermodulation rejection Desired signal Fo Undesired signal (2 signals) (Fo +29.5 MHz, Fo +59 MHz) or (Fo-29.5MHz, Fo-59MHz)		40	60		dB	Input level:-25dBm I/Q output level: $0.6 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}(1 \mathrm{kohm}$ load) BBLPF:Fc=20MHz
5-4	L.O. leak at input terminal			-68	-63	dBm	950 M to 2150 MHz
5-5	Eb/No for $B E R=2 e-4$ @viterbi_out	$\mathrm{PC}=1 / 2$		3.7	4.5	dB	$4<$ Fs <45 [Msps] (Fs :symbol rate)
		$\mathrm{PC}=2 / 3$		4.2	5.0		
		$\mathrm{PC}=3 / 4$		4.7	5.5		
		$\mathrm{PC}=5 / 6$		5.3	6.0		
		$\mathrm{PC}=7 / 8$		5.7	6.4		
		$\mathrm{PC}=1 / 2$		4.8	5.5	dB	$2<\mathrm{Fs}<4[\mathrm{Msps}]$
		$\mathrm{PC}=2 / 3$		5.0	6.0		
		$\mathrm{PC}=3 / 4$		5.5	6.5		
		$\mathrm{PC}=5 / 6$		6.2	7.0		
		$\mathrm{PC}=7 / 8$		6.8	7.4		
5-6	PLL lock up time (C1,C0)=(1,1)			10	50	ms	
5-7	PLL phase noise ($\mathrm{C} 1, \mathrm{C} 0)=(1,1)$			-78	-70	$\mathrm{dBc} / \mathrm{Hz}$	10 kHz offset
				-85	-78	$\mathrm{dBc} / \mathrm{Hz}$	100 kHz offset

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$5 / 19$

5-8	PLL reference leak			-40	-30	dBc	500 kHz
5-9	RF output VSWR			2.0	2.5		950 M to 2150 MHz
5-10	RF output gain		-5	0	+5	dB	measured at RF out
5-11	Current consumption	B2		90	135	mA	B2=3.3V
		B3		34	112	mA	B3 $=3.3 \mathrm{~V}$
		B4		25	40	mA	B4=3.3V
		VDD		61	180	mA	$\mathrm{VDD}=2.5 \mathrm{~V}$

[6] PLL FUNCTION DESCRIPTION

PLL and VCO are promptly set up without fail when the user correctly program the data with the prompt $\mathrm{I}^{2} \mathrm{C}$ access sequence as long as the following are also applied;
a) Follow the $\mathrm{I}^{2} \mathrm{C}$ standard specification
b) Leave RTS to 0

6-1. I ${ }^{2}$ C-BUS DATA FORMATS
Table 1; Write data format (MSB is transmitted first)
MSB

1	1	0	0	0	$0(\mathrm{MA} 1)$	$0(\mathrm{MA} 0)$	0	A	Byte 1
0	BG1	BG0	N8	N7	N6	N5	N4	A	Byte 2
N3	N2	N1	A5	A4	A3	A2	A1	A	Byte3
1	$1(\mathrm{C} 1)$	$1(\mathrm{C} 0)$	PD5	PD4	TM	$0(\mathrm{RTS})$	$1(\mathrm{REF})$	A	Byte4
BA2	BA1	BA0	PSC	PD3	PD2/TS2	DIV/TS1	PD0/TS0	A	Byte 5

* A	; Acknowledge bit	
* N8 to N1	; Programmable division ratio control bits	(see Table 3)
* A5 to A1	; Swallow division ratio setting bits	(see Table 4)
* REF	; Reference division ratio setting bits	(see Table 5)
* PSC	; Prescaler division ratio setting bits	(see Table 6)
* MA1, MA0	; Address setting bits	(see Table 7)
* PD0	; PO control bit	(see Table 8)
* BA2, BA1, BA0	; Local oscillator select	(see Table 9)
* DIV	; Local oscillator divided ratio setting	(see Table 9)
* PD5 to PD2	; BB LPF cut-off frequency setting	(see Table 10)
* RTS	; Test mode control bit	(see Table 11)
* TS2, TS1, TS0	; Test mode setting bits (when RTS = '1')	(see Table 11)
* C1, C0	; Charge pump current setting bits	(see Table 12)
* BG1, BG0	; BB AMP gain setting bits	(see Table 13)
* TM	; VCO/LPF adjustment mode setting bits	(see section [8])

Write PLL register data to set one among the following $\mathrm{I}^{2} \mathrm{C}$ access sequence as \#a) to h).
It is available to skip the bytes which does not require for renewal or change the sequence of the bytes to choose one of the following.
$\mathrm{I}^{2} \mathrm{C}$ start $->1^{\text {st }}$ byte $->2^{\text {nd }}$ byte $->3^{\text {rd }}$ byte $->4^{\text {th }}$ byte $->5^{\text {th }}$ byte
a) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte $2->$ byte $3->$ byte $4->$ byte 5 * byte $1: \mathrm{I}^{2} \mathrm{C}$ address byte
b) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte $4->$ byte $5->$ byte $2->$ byte 3 *
c) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte $2->$ byte $3->$ byte $4->$ either $\mathrm{I}^{2} \mathrm{C}$ stop or (another) start
d) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte $4->$ byte $5->$ byte $2->$ either $\mathrm{I}^{2} \mathrm{C}$ stop or (another) start
e) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte $2->$ byte $3->$ either $\mathrm{I}^{2} \mathrm{C}$ stop or (another) start
f) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte $4->$ byte $5->$ either $\mathrm{I}^{2} \mathrm{C}$ stop or (another) start
g) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte2 $->$ either $\mathrm{I}^{2} \mathrm{C}$ stop or (another) start
h) $\mathrm{I}^{2} \mathrm{C}$ start $->$ byte $1->$ byte $4->$ either $\mathrm{I}^{2} \mathrm{C}$ stop or (another) start
*: Either $\mathrm{I}^{2} \mathrm{C}$ stop or (another) start is available to follow after the $5^{\text {th }}$ byte, but not mandatory
(Caution): During receiving signals, don't access $\mathrm{I}^{2} \mathrm{C}$ bus to satisfy the phase noise character specification.

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$6 / 19$

SHARP

(Note): PLL set up rules
The following conditions are required to program the $I^{2} \mathrm{C}$ access sequence.
According to a required renewal data on each byte, one of the access sequence shown above as a) to h) should be chosen.

1) Write byte 1 on the $1^{\text {st }}$ byte after $I^{2} C$ start.
2) Write either byte 2 or byte 4 on the $2^{\text {nd }}$ byte. When the MSB header is 0 on the $2^{\text {nd }}$ byte, the $2^{\text {nd }}$ byte is recognized as byte2.
When the MSB header is 1 on the $2^{\text {nd }}$ byte, the $2^{\text {nd }}$ byte is recognized as byte 4 .
3) The following byte after byte 2 or byte 4 should be the sequent \# of the last byte as;

The byte3 should be followed after byte2.
The byte 5 should be followed after byte 4 .
4) The number of byte to write in one access sequence as from a start to a stop (or another start) state should be two bytes at least. Review \#g) and \#h).
Maximum bytes are five as write all byte 1 to byte 5 data in one access sequence. Review \#a) and \#b)
5) The renewal of the register data is only available when it becomes an $I^{2} \mathrm{C}$ stop or another start state after all the bytes to write in case of \#c) to h).
Only in the case when the renewal of the register data all from byte 2 to byte 5 in one access sequence as \#a) and \#b), a stop state or another start state is not mandatory required for data renewal.
6) The data already registered and not to write for renewal has kept as it is as the last state.
7) Every time when the power is on, write all the register data on byte 2 to byte 5 in one sequence for the purpose of the initial default set up to follow either \#a) or \#b). Because the initial values on byte2 to byte5 are not fixed before the initialization.

Table 2; Read data format
MSB

1	1	0	0	0	MA1	MA0	1	A	Byte 1
POR	FL	RD2	RD1	RD0	X	X	X	A	Byte 2

* POR ; Power on reset indicator (see table 14)
* FL ; Phase lock detect flag (see table 15)
* RD2 - RD0 ; Reserved (These bit values change under the condition of ICs.)
* X ; don't care
* All data of byte2 will be "H", when "Power on reset" operates
* "Read mode" will change to "Write mode" after completing to output the byte 2.

6-2. PROGRAMING

6-2-1 Programmable divider bits data

Please set P, N, A, R as follows.

$$
\mathrm{fvco}=[(\mathrm{P} * \mathrm{~N})+\mathrm{A}] * \text { fosc } / \mathrm{R}
$$

fvco : Receiving frequency
P : Dividing factor of prescaler (16 or 32)
$\mathrm{N} \quad:$ Programmable division ratio (5 to 255)
A : Swallow division ratio (0 to 31 and $\mathrm{A}<\mathrm{N}$)
fosc : Reference oscillation frequency (4 MHz)
$\mathrm{R} \quad$: Reference division ratio (see table 5)

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$7 / 19$

GHARP

6-2-2 Data setting

Table 3; Programmable division ratio control
(Binary: 8 bits)

Dividing factor (N)	Bit data								
	N8	N7	N6	N5	N4	N3	N2	N1	
5	0	0	0	0	0	1	0	1	
6	0	0	0	0	0	1	1	0	
\cdot									
255	1	1	1	1	1	1	1	1	

Table 4; Swallow division ratio setting
(Binary: 5 bits)

Dividing factor (A)	A5 data					
	A5	A3	A2	A1		
0	0	0	0	0	0	
1	0	0	0	0	1	
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
31	1	1	1	1	1	

* The using of 4 or smaller dividing factors is inhibited.
* The dividing factor is set by the data of N 8 to N 1 and A 5 to A 1 in byte2, 3 on $\mathrm{I}^{2} \mathrm{C}$ write data.

Table 5; Reference division ratio setting (Binary: 1 bit)

REF	Dividing factor (R)	Compare frequency	fvco(MHz)
0	4	1 MHz	$1024-2150 \mathrm{MHz}^{*}$

*When the reference division ratio set to $4(\mathrm{REF}=$ ' 0 '), the fvco's minimum frequency must be higher than 1024 MHz (including 1024 MHz). If the frequency is lower than 1023 MHz , the condition mentioned in section 6-2-1 "A < N" is not satisfied.
But all receiving ranges can be covered with combination with PSC setting. (see Table 6)

Table 6; Prescaler division ratio setting (Binary: 1 bit)

PSC	Dividing factor (P)	fvco
0	32	$950-2150 \mathrm{MHz}$
1	16	$950-1375 \mathrm{MHz}^{*}$

*When the prescaler division ratio of the prescaler is set to 16 ($\mathrm{PSC}=$ ' 1 '), the fvco's maximum frequency must be lower than 1375 MHz (including 1375 MHz). This fvco's maximum frequency limitation is depended on the operation frequency of the internal programmable counter.
Refer to Table 9 about PSC detailed setting.

Table 7; Address selection (Binary: 2 bits)

Bit		
MA1	MA0	
0	0	0 V to $0.1 * \mathrm{~B} 2$
0	1	open
1	0	$0.4^{*} \mathrm{~B} 2$ to $0.6 * \mathrm{~B} 2$
1	1	$0.9 * \mathrm{~B} 2$ to B 2

* The address of this tuner is C0(h).

Table 8; PO control (Binary: 1 bit)

Bit	Output of PO		
PD0	Normal	Power on reset	Power on
1	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
0	$\mathrm{Hi}-\mathrm{Z}$	Hi Z	

Hi-Z : High impedance

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$8 / 19$

SHANP

Table 9; Local oscillator select

BAND	DIV	BA2	BA1	BA0	Local frequency (Receiving frquency)	Divider ratio
1	1	1	1	0	950 MHz to 1065 MHz	$1 / 4$
2	1	1	1	1	1065 MHz to 1170 MHz	$1 / 4$
3	0	0	0	1	1170 MHz to 1300 MHz	$1 / 2$
4	0	0	1	0	1300 MHz to 1445 MHz	$1 / 2$
5	0	0	1	1	1445 MHz to 1607 MHz	$1 / 2$
6	0	1	0	0	1607 MHz to 1778 MHz	$1 / 2$
7	0	1	0	1	1778 MHz to 1942 MHz	$1 / 2$
8	0	1	1	0	1942 MHz to 2150 MHz	$1 / 2$

Table10; Baseband LPF cut-off frequency setting

PD2	PD3	PD4	PD5	LPF cut-off Frequency
0	0	1	1	10 MHz
0	1	0	0	12 MHz
0	1	0	1	14 MHz
0	1	1	0	16 MHz
0	1	1	1	18 MHz
1	0	0	0	20 MHz
1	0	0	1	22 MHz
1	0	1	0	24 MHz
1	0	1	1	26 MHz
1	1	0	0	28 MHz
1	1	0	1	30 MHz

Table 11; Test mode setting

Register Bit				Test mode
RTS	TS2	TS1	TS0	
0	X	X	X	Normal operation
1	Don't use			Reserved (Test Mode)

* When RTS=1 on " $\mathrm{I}^{2} \mathrm{C}$ write data (table 1)", it changes to test mode.

Table 12; Charge pump output current selection

Bit		Charge pump output current [$\mu \mathrm{A}]$		
C1	C0	\min	typ	\max
0	0	± 78	± 120	± 150
0	1	± 169	± 260	± 325
1	0	± 360	± 555	± 694
1	1	± 780	± 1200	± 1500

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$9 / 19$

GHARP

Table 13; Baseband AMP gain control (Depend on PLL register setting)

BG1	BG0	ATTENUATION (Typ.)
0	$0 / 1$	0
1	0	-2 dB
1	1	-4 dB

Table 14; POR bit polarity

	VCC3 $>2.2 \mathrm{~V}$	VCC3 $<2.2 \mathrm{~V}$
POR bit	L	H

* SDA has to be pulled up.

6-3. INTERFACE CIRCUITS

Table 16; Internal interface of $\mathrm{I}^{2} \mathrm{C}$ bus

Tuner pin No.	$\mathrm{I}^{2} \mathrm{C}$ port	
8	SDA	Refer to following figure
9	SCL	

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$10 / 19$

SHARP

[7] CONFIGURATION REGISTERS
Table 17; STV0288's Test Register Value

address [H]	$\begin{gathered} \text { data }[\mathrm{H}] \\ 27.5 \mathrm{Msps} \\ \hline \end{gathered}$	$\begin{gathered} \text { data }[\mathrm{H}] \\ 5 \mathrm{Msps} \\ \hline \end{gathered}$
00	n/a	n/a
01	15	15
02	20	20
03	8 E	8 E
04	8E	8E
05	12	12
06	00	00
07	n/a	n/a
08	n/a	n/a
09	00	00
0A	04	04
0B	00	00
0C	00	00
0D	00	00
0 E	C4	C4
0F	54	54
10	n/a	n/a
11	7A	7A
12	03	03
13	48	48
14	84	84
15	45	45
16	B7	B7
17	9C	9C
18	00	00
19	A6	A6
1A	88	88
1B	8F	8F
1 C	F0	F0
1 E	n/a	n/a
1F	n/a	n/a
20	0B	0B
21	54	54
22	00	00
23	00	00
24	n/a	n/a
25	n/a	n/a
26	n/a	n/a
27	n/a	n/a
28	46	0C
29	65	CC
2A	E0	B0
2B	FF	FF
2C	F7	F7
2D	n/a	n/a
2 E	n/a	n/a
2 F	n/a	n/a

address [H]	$\begin{array}{r} \text { data }[\mathrm{H}] \\ 27.5 \mathrm{Msps} \\ \hline \end{array}$	$\begin{gathered} \text { data }[\mathrm{H}] \\ 5 \mathrm{Msps} \\ \hline \end{gathered}$
30	00	00
31	1 E	1 E
32	14	14
33	0F	0F
34	09	09
35	0C	0C
36	05	05
37	2F	2 F
38	16	16
39	BD	BD
3A	00	00
3B	13	13
3C	11	11
3D	30	30
3 E	n/a	n/a
3F	n/a	n/a
40	63	63
41	04	04
42	60	60
43	00	00
44	00	00
45	00	00
46	00	00
47	00	00
4A	00	00
4B	n/a	n/a
4 C	n/a	n/a
50	10	10
51	38	38
52	21	21
53	A2	86
54	D9	56
55	23	06
56	8D	76
57	1B	05
58	54	54
59	86	86
5A	00	00
5B	9B	9B
5C	08	08
5D	7F	7F
5 E	00	00
5F	FF	FF
60	n/a	n/a
61	n/a	n/a
62	n/a	n/a
63	n/a	n/a

address [H]	$\begin{gathered} \text { data }[\mathrm{H}] \\ 27.5 \mathrm{Msps} \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { data }[\mathrm{H}] \\ 5 \mathrm{Msps} \\ \hline \end{gathered}$
64	n/a	n/a
65	n/a	n/a
66	n/a	n/a
67	n/a	n/a
68	n/a	n/a
69	n/a	n/a
6A	n/a	n/a
6B	n/a	n/a
6 C	n/a	n/a
70	00	00
71	00	00
72	00	00
74	00	00
75	00	00
76	00	00
81	00	00
82	3 F	3 F
83	3F	3F
84	00	00
85	00	00
88	00	00
89	00	00
8A	00	00
8B	00	00
8C	00	00
90	00	00
91	00	00
92	00	00
93	00	00
94	1C	1C
97	00	00
A0	48	48
A1	00	00
B0	B8	B8
B1	3A	3A
B2	10	10
B3	82	82
B4	80	80
B5	82	82
B6	82	82
B7	82	82
B8	20	20
B9	00	00
F0	00	00
F1	00	00
F2	C0	C0

<note>
(1) The data field with " n / a " stands for "read only register". No need to write, no malady with writing.
(2) Some register bit should be swiched " 1 " and "0", duaring the signal search

Ex) $\mathrm{I}^{2} \mathrm{C}$ bus repeater [address:01/bit7] : $\mathrm{OFF}=0 / \mathrm{ON}=1$
(3) symbol_frequency: \quad SFRH,M,L[address:28,29,2A] = symbol_frequency / $\mathrm{F}_{\mathrm{M} _ \text {CLK }}[100 \mathrm{MHz}] \times 2{ }^{20}$
(4) Fm_CLK : $\quad f_{p l l}=$ fxtal $x\left(P L L _D I V\right) / 4$ when PLL_SELRATIO $=1$
$\mathrm{f}_{\mathrm{pll}}=\mathrm{fxtal} \mathrm{x}\left(\mathrm{PLL} _\mathrm{DIV}\right) / 6$ when PLL_SELRATIO $=0$
$(\#$ fxtal $=4 \mathrm{MHz}$, PLL_SELRATIO[address:41,bit2] $)$

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$11 / 19$

SHARP

[8]TUNER CONTROL PROCEDURE
8-1 FLOW CHART

*1 Tuning details is shown in the next section.

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$12 / 19$

SHARP

8-2 VCO and LPF ADJUSTMENT MODE SETTING SEQUENCE AFTER POWER ON and AT EVERY TUNING

(BB LPF cut-off frequency setting)
Set the DIV bit
(Local oscillator divided ratio setting)
Leave the latest data (PSC, PD0)

1^{2} C stop

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$13 / 19$

GHARP

[9] Reliability
$9-1$. High temperature high humidity load (40deg.C, 90% RH, 500 h)

1) After leaving DUT at room temperature and humidity for 24 h or longer, measure the initial value.
2) After cycling DUT in the constant chamber at $40 \mathrm{deg} . \mathrm{C} / 90-95 \% \mathrm{RH}$ in on state, for total 500 h , leave the DUT at room temperature and humidity for 2 h and then measure value after test.
3) Must meet the specifications of Table 19.
4) The contact resistance of F-connector must be less than 0.02 ohm . (*)

9-2. High temperature load (70deg.C, 40% RH, 500h)

1) After leaving DUT at room temperature and humidity for 24 h or longer, measure the initial value.
2) After leaving DUT in the constant chamber at $70+/-2$ deg.C/40\% RH for total 500 h , leave the DUT at room temperature and humidity for 2 h and then measure value after test.
3) Must meet the specifications of Table 19.

9-3. Cold test (-25deg.C, 500h)

1) After leaving DUT at room temperature and humidity for 24 h or longer, measure the initial value.
2) After leaving DUT in the constant temperature chamber at -25deg.C for 500 h , leave the DUT at room temperature and humidity for 2 h and then measure the values after test.
3) Must meet the specifications of Table 19.
$9-4$. Shock ($686 \mathrm{~m} / \mathrm{s}^{2}, 6$ planes, 3 times)
4) After leaving DUT at room temperature and humidity for 24 h or longer, measure the initial values.
5) Using the shock tester, apply shock of $686 \mathrm{~m} / \mathrm{s}^{2}$ three times to each of 6 planes and then measure the values.
6) Must meet the specifications of Table 19.
7) This test is to be conducted using a single tuner.
$9-5$. Vibration ($10-55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$, in each of three mutually perpendicular directions, each 2 times)
8) After leaving DUT at room temperature and humidity for 24 h or longer, measure the initial values.
9) Using the vibration tester, apply motion having an amplitude of 1.5 mm (constant), the frequency being varied uniformly between 10 and 55 Hz , to DUT, for 2 h in each of three mutually perpendicular directions (X, Y and Z , total of 6 h). After the test, measure the values.
10) Must meet the specifications of Table 19.
11) This test is to be conducted using a single tuner.
$9-6$. Heat shock test (1 cycle $=1 \mathrm{~h}$ ($-20 \mathrm{deg} . \mathrm{C} ; 0.5 \mathrm{~h}, 70 \mathrm{deg} . \mathrm{C} ; 0.5 \mathrm{~h}$), 50 cycles) $)$
12) After leaving DUT at room temperature and humidity for 24 h or longer, measure the initial value.
13) Using the heat shock tester, apply heat shock to DUT. After the test, measure the values.
14) Must meet the specifications of Table 19.
15) The contact resistance of F-connector must be less than $0.02 \mathrm{ohm} .(*)$

9-7. Solderability of terminal

Pretreatment of heating terminal at $150 \mathrm{deg} . \mathrm{C}$ for 1 h is performed and leave it at room temperature for 2 h or longer. Immerse 1.9 mm length of terminal (from the tip) to be soldered into rosin
(JIS-K-5902), isopropyl alcohol (JIS-K-8839 or JIS-K-1522, rosin concentration ($10-35 \%$ range) approx. 25% by weight unless otherwise specified) or equivalent solution for $3-5 \mathrm{~s}$, and then immerse the length of the terminal into a pool of molten solder ($\mathrm{Sn} / 3.0 \mathrm{Ag} / 0.5 \mathrm{Cu}$, or equivalent) at 240 $+/-2$ deg.C for 3 s .Dipped terminal portion shall be wetted by more than 95%.
(Excluding the cutting plane of the chassis)

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$14 / 19$

GHARP

9-8. Soldering heat resistance
Immerse the terminal mounted on a PCB (1.6t thick) into solder at $350 \pm 5 \mathrm{deg}$.C for $3.0-3.5$ seconds or at $260+/-5$ deg.C for $10+/-1$ seconds. Remove the PCB from the solder and leave it for 1 hour at room temperature. The test sample shall show no degradation in appearance and electrical characteristics.

9-9. ESD protection
Table 18; ESD Test Condition (IEC61000-4-2 Compliant)

terminal	Limits	condition
RF_IN (coaxial center)	+/-6kV DC	Air discharge $150 \mathrm{pF} / 330$ ohm, each 5 times
Others	+/-200V DC	Contact discharge $150 \mathrm{pF} / 330$ ohm, each 5 times

Table 19

item	specification	condition
$\mathrm{Eb} / \mathrm{No}$	(initial values)+/-1dB	$\mathrm{BER}=2 \mathrm{e}-4$ at viterbi output $\mathrm{PC}=3 / 4$

(*)Method of measuring contact resistance
Center-contact
Insert the gauge $\operatorname{pin}(\phi 0.8 \mathrm{~mm})$ to F -connector.
Measure the resistance between the gauge and the center-contact of F-connector. Outer-shell

Connect the plug(3/8-32 UNEF-2B) to F-connector at $29.4 \mathrm{~N} \cdot \mathrm{~cm}$ of the clamping torque. Measure the resistance between the plug and chassis.
(Measuring device: Milliohm meter)
-F-connector is made from iron. If the plating is peeled off, rust might occur to surface of F-connector. But it makes no influence of electric specifications, under contact resistance is less than 0.02 ohm .
-The cutting plane of chassis and shield cover is not plated, therefore rust might occur. But it makes no influence of electric specifications.

Fig 1. BLOCK DIAGRAM

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$16 / 19$

GHARP

Fig 2. CONNECTION DIAGRAM
PIN LIST

PIN NAME	PIN No.	PIN DESCRIPTION
B1B	1	Voltage supply of LNB B. Please ground it with a 1000pF ceramic capacitor.
B1A	2	Voltage supply of LNB A. Please ground it with a 1000pF ceramic capacitor.
B4	3	3.3V supply for RF Booster Amp of tuner. B2 $4^{3.3 V ~ s u p p l y ~ f o r ~ t h e ~ R F ~ s e c t i o n . ~ P l e a s e ~ k e e p ~ a ~ r i p p l e ~ a t ~ t h e ~ P o w e r ~}$
Supply less than 10mVp-p.		

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$17 / 19$

SHAPP

$\lambda \searrow \forall\lrcorner \exists I \searrow d O \searrow d \quad d \searrow \forall H S$

GHARP

SHARP PROPRIETARY Recommended dimension of pin holes on mother PWB. (Viewed from mounting side) - Reference drawing -

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	$19 / 19$

GHARP

Packaging details

antistatic_sheet x1

<Reference drawing>

UNIT	$: \mathrm{mm}$
QUANTITY	$: 200$ pcs

