Bias Resistor Transistor NPN Silicon Surface Mount Transistor With Monolithic Bias Resistor Network This new series of digital transistors is designed to replace a single device and its internal resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SOT-23 package which is designed for low power surface mount applications. - Simplifies Circuit Design - · Reduces Board Space - Reduces Component Count - The SOT-23 package can be soldered using wave or reflow. The modified gull-winged leads absorb thermal stress during soldering eliminating the possibility of damage to the die. - Available in 8 mm embossed tape and reel Use the Device Number to order the 7 inch/3000 unit reel. Replace "T1" with "T3" in the Device Number to order the 13 inch/10,000 unit reel. ## MMUN2211T1 MMUN2212T1 MMUN2213T1 MMUN2214T1 Motorola Preferred Devices NPN SILICON BIAS RESISTOR TRANSISTOR #### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|------------------|------------|-------------| | Collector-Base Voltage | Vcво | 50 | Vdc | | Collector-Emitter Voltage | VCEO | √50 | Vdc | | Collector Current | lC | 100 | mAdc | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | P _D * | 200
1.6 | mW
mW/°C | #### THERMAL CHARACTERISTICS | Thermal Resistance — Junction-to-Ambient (surface mounted) | R ₀ JA | 625 | °C/W | |---|-----------------------------------|-------------|-----------| | Operating and Storage Temperature Range | T _J , T _{stg} | -65 to +150 | °C | | Maximum Temperature for Soldering Purposes, Time in Solder Bath | TL | 260
5 | °C
Sec | #### **DEVICE MARKING AND RESISTOR VALUES** | Device | Marking | R1 (K) | R2 (K) | |------------|---------|--------|--------| | MMUN2211T1 | A8A | 10 | 10 | | MMUN2212T1 | A8B | 22 | 22 | | MMUN2213T1 | A8C | 47 | 47 | | MMUN2214T1 | A8D | 10 | 47 | ^{*} Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint shown on page 7. Preferred devices are Motorola recommended choices for future use and best overall value. Thermal Clad is a trademark of the Bergquist Company ## **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |---|--|----------------------|----------------------------|-------------------------|--------------------------|------| | OFF CHARACTERISTICS | | | | • | | • | | Collector-Base Cutoff Current (V _{CB} = 50 V, I | E = 0) | ІСВО | _ | _ | 100 | nAdc | | Collector-Emitter Cutoff Current (V _{CE} = 50 V | , I _B = 0) | ICEO | _ | _ | 500 | nAdc | | Emitter-Base Cutoff Current
(VEB = 6.0 V, I _C = 0) | MMUN2211T1
MMUN2212T1
MMUN2213T1
MMUN2214T1 | ¹ EBO | _
_
_
_ |

 | 0.5
0.2
0.1
0.2 | mAdc | | Collector-Base Breakdown Voltage (I _C = 10 μA, I _E = 0) | | V(BR)CBO | 50 | _ | _ | Vdc | | Collector-Emitter Breakdown Voltage* (I _C = 2.0 mA, I _B = 0) | | V(BR)CEO | 50 | _ | _ | Vdc | | ON CHARACTERISTICS* | | | | | | | | DC Current Gain
(V _{CE} = 10 V, I _C = 5.0 mA) | MMUN2211T1
MMUN2212T1
MMUN2213T1
MMUN2214T1 | hFE | 35
60
80
80 | 60
100
140
140 | _
_
_
_ | | | Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.3 mA) | _ | V _{CE(sat)} | _ | _ | 0.25 | Vdc | | Output Voltage (ON) $(V_{CC}=5.0 \text{ V}, V_B=2.5 \text{ V}, R_L=1.0 \text{ k}\Omega)$ $(V_{CC}=5.0 \text{ V}, V_B=3.5 \text{ V}, R_L=1.0 \text{ k}\Omega)$ | MMUN2211T1
MMUN2212T1
MMUN2214T1
MMUN2213T1 | Vol
Vol | _
_
_
_ | _
_
_
_ | 0.2
0.2
0.2
0.2 | Vdc | | Output Voltage (OFF) ($V_{CC} = 5.0 \text{ V}$, $V_B = 0.5 \text{ V}$, $R_L = 1.0 \text{ k}\Omega$) | | Voн | 4.9 | _ | _ | Vdc | | Input Resistor | MMUN2211T1
MMUN2212T1
MMUN2213T1
MMUN2214T1 | R1 | 7.0
15.4
32.9
7.0 | 10
22
47
10 | 13
28.6
61.1
13 | kΩ | | Resistor Ratio MMUN2211T1/MMUN2212
MMUN2214T1 | T1/MMUN2213T1 | R1/R2 | 0.8
0.17 | 1.0
0.21 | 1.2
0.25 | | ^{*} Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2.0%. Figure 1. Derating Curve #### TYPICAL ELECTRICAL CHARACTERISTICS — MMUN2211T1 Figure 2. VCE(sat) versus IC Figure 3. DC Current Gain Figure 4. Output Capacitance Figure 5. Output Current versus Input Voltage Figure 6. Input Voltage versus Output Current ### TYPICAL ELECTRICAL CHARACTERISTICS — MMUN2212T1 Figure 7. V_{CE(sat)} versus I_C Figure 8. DC Current Gain Figure 9. Output Capacitance Figure 10. Output Current versus Input Voltage Figure 11. Input Voltage versus Output Current #### TYPICAL ELECTRICAL CHARACTERISTICS — MMUN2213T1 Figure 12. VCE(sat) versus IC Figure 13. DC Current Gain Figure 14. Output Capacitance Figure 15. Output Current versus Input Voltage Figure 16. Input Voltage versus Output Current #### TYPICAL ELECTRICAL CHARACTERISTICS — MMUN2214T1 Figure 17. VCE(sat) versus IC Figure 18. DC Current Gain Figure 19. Output Capacitance Figure 20. Output Current versus Input Voltage Figure 21. Input Voltage versus Output Current #### **TYPICAL APPLICATIONS FOR NPN BRTs** Figure 22. Level Shifter: Connects 12 or 24 Volt Circuits to Logic Figure 23. Open Collector Inverter: Inverts the Input Signal Figure 24. Inexpensive, Unregulated Current Source #### MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process. #### **SOT-23 POWER DISSIPATION** The power dissipation of the SOT-23 is a function of the collector pad size. This can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient; and the operating temperature, T_A . Using the values provided on the data sheet, P_D can be calculated as follows. $$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$ The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 200 milliwatts. $$P_D = \frac{150^{\circ}C - 25^{\circ}C}{625^{\circ}C/W} = 200 \text{ milliwatts}$$ The 625°C/W assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 200 milliwatts. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[™]. Using a board material such as Thermal Clad, a power dissipation of 400 milliwatts can be achieved using the same footprint. #### **SOLDERING PRECAUTIONS** The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. - Always preheat the device. - The delta temperature between the preheat and soldering should be 100°C or less.* - When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C. - The soldering temperature and time shall not exceed 260°C for more than 5 seconds. - When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less. - After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. - Mechanical stress or shock should not be applied during cooling - * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. #### **SOLDER STENCIL GUIDELINES** Prior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. A solder stencil is required to screen the optimum amount of solder paste onto the footprint. The stencil is made of brass or stainless steel with a typical thickness of 0.008 inches. The stencil opening size for the surface mounted package should be the same as the pad size on the printed circuit board, i.e., a 1:1 registration. #### TYPICAL SOLDER HEATING PROFILE For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones, and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 25 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177–189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints. Figure 25. Typical Solder Heating Profile #### **OUTLINE DIMENSIONS** #### NOTES - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: INCH. - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. - 4. 318-03 OBSOLETE, NEW STANDARD 318-07. | | MILLIMETERS | | INCHES | | | |-------|-------------|-------|--------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α_ | 2.80 | 3.04 | 0.1102 | 0.1197 | | | _ В _ | 1.20 | 1.40 | 0.0472 | 0.0551 | | | _ C | 0.89 | 1.11 | 0.0350 | 0.0440 | | | D | 0.37 | 0.50 | 0.0150 | 0.0200 | | | G | 1.78 | 2.04 | 0.0701 | 0.0807 | | | Н | 0.013 | 0.100 | 0.0005 | 0.0040 | | | J | 0.085 | 0.177 | 0.0034 | 0.0070 | | | K | 0.45 | 0.60 | 0.0180 | 0.0236 | | | T | 0.89 | 1.02 | 0.0350 | 0.0401 | | | S | 2.10 | 2.50 | 0.0830 | 0.0984 | | | v | 0.45 | 0.60 | 0.0177 | 0.0236 | | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. #### Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan. ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. MOTOROLA