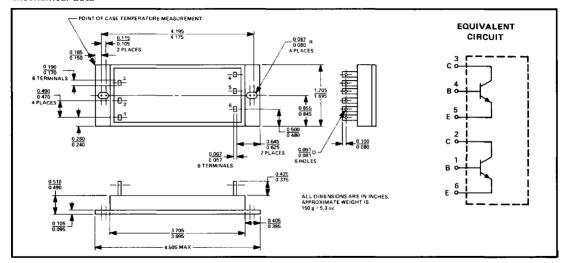

SOLID-STATE POWER FUNCTIONS


- 25-A Continuous Collector Current
- 400 V Collector-Base Voltage
- 300 Watts at 25°C Case Temperature

description

The TIXH702 is a high-voltage power stage which can be utilized in many types of circuit applications operating from a rectified 115-volt a-c line. Typical examples include motor controls and frequency conversion systems.

mechanical data

absolute maximum ratings over operating case temperature range (unless otherwise noted)

Terminal-to-Case Voltage
Collector-Base Voltage
Collector-Emitter Voltage (See Note 1)
Emitter-Base Voltage
Continuous Collector Current
Continuous Base Current
Safe Operating Area at (or below) 25°C Case Temperature
Continuous Total Package Dissipation at (or below) 25°C Case Temperature (See Note 2) 300 W
Unclamped Inductive Load Energy (See Note 3)
Operating Case and Storage Temperature Range
Terminal Temperature 1/8 Inch from Case for 5 Seconds

- NOTES: 1. This value applies when the base-emitter diode is open-circuited.
 - 2. Derate linearly to 120 W at 85°C case temperature at the rate of 3 W/°C. Power may be divided between the two switches in any proportion subject to the limitations of the Maximum Safe Operating Area Curve, Figure 2.
 - 3. This rating is based on the capability of each switch to operate safely in the unclamped-inductive load circuit of Section 3.2 of the forthcoming JEDEC publication Suggested Standards on Power Transistors. ↓ L = 20 mH, R_{BB1} = 20 Ω, R_{BB2} = 100 Ω, V_{BB1} = 10 V, V_{BB2} = 0 V, R_L = 0.2 Ω, V_{CC} = 10 V, I_{CM} = 3 A. Energy ≈ I_C²L/2.

‡This circuit appears on page 5-1 of this data book,

TYPE TIXH702 DUAL HIGH-CURRENT SWITCH

electrical characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V(BR)CEO	Collector-Emitter Breakdown Voltage	IC = 1 mA, I _B = 0, See Note 4	300		٧
СВО	Collector Cutoff Current	V _{CB} = 400 V, I _E = 0		1	mA
IEBO	Emitter Cutoff Current	V _{E8} = 5 V, I _C = 0		4	mA
hFE	Static Forward Current Transfer Ratio	V _{CE} = 5 V, I _C = 25 A, See Notes 4 and 5	12		
VBE	Base-Emitter Voltage	1 _B = 2.5 A, 1 _C = 25 A, See Notes 4 and 5		4	v
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _B = 2.5 A, I _C = 25 A, See Notes 4 and 5		3	v

STATIC FORWARD CURRENT TRANSFER RATIO **COLLECTOR CURRENT** 100 VCE≈5V hpe-Static Forward Current Transfer Ratio Tc = 25°C 70 See Notes 4 and 5 40 20 10 0.4 0.7 1 2 3 7 10 20 40 IC-Collector Current-A

TYPICAL CHARACTERISTICS

MAXIMUM SAFE OPERATING AREA

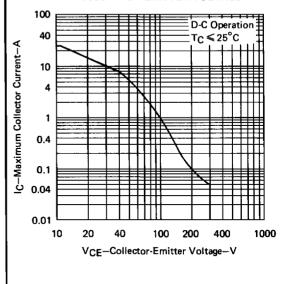


FIGURE 2

NOTES: 4. These parameters must be measured using pulse techniques, $t_W = 300 \ \mu s$, duty cycle $\leq 2\%$.

5. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within 0.2 inch from the device body.

FIGURE 1