

SANYO Semiconductors DATA SHEET

LV23401V For Home Stereo System 1-chip Tuner IC Incorporating PLL

Overview

The LV23401V is a AM/FM one-chip tuner IC for home stereo system.

Functions

- AM tuner
- FM tuner
- MPX stereo decoder
- FLL tuning system

Features

- All the adjustment work of external parts is unnecessary.
- CCB control with easy command base
- External parts are reduced by LOW-IF frequency (FM=225kHz, AM=53kHz) adoption.
- The high sensitivity reception is achieved in low noise MIX input circuit.
- All bands of Japan-U.S.-Euro can be received by the soft program change (76MHz to 108MHz).
- With built-in FLL(Frequency Locked Loop) tune function
- Soft mute and stereo blend function (seven stages programmed control possible)
- With built-in adjacent channel obstruction removal function
- With built-in stereo pilot cancellation function
- For EN55020-S1 standard (European immunity)
- With built-in power save function

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Specifications

Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	Analog block supply voltage	10.0	V
Maximum output voltage	V _O max	Digital block supply voltage	4.5	V
Maximum input voltage	V _{IN} 1 max	CE, DI, CL	*1) Vref2+0.35	V
	V _{IN} 2 max	CLK IN	4.5	V
Allowable power dissipation	Pd max	Ta≤70°C *2)	450	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

^{*1)} Vref2 = 22 pin voltage

Operating Condition at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC} Analog block supply voltage 9.0		٧	
Operating supply voltage range	V _{CC} op	Resister 1Eh Bit 1(LEVSHIF)=0	4.5 to 6.5	V
		Resister 1Eh Bit 1(LEVSHIF)=1	8.5 to 9.5	V

^{*} Stabilize the service voltage so as not to cause the voltage charge by the noise etc.

Interface block allowable operation range at $Ta = -20 \text{ to } +70^{\circ}\text{C}, V_{SS} = 0\text{V}$

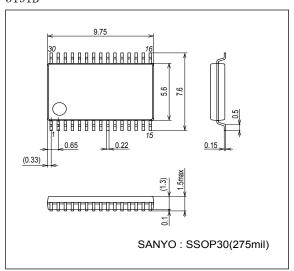
Decemeter	Cumbal	Combal Conditions		Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Input "H" level voltage	V _I H1	CE, DI, CL	2.3		3.435	V	
	V _I H2	CLK IN	2.3		3.435	V	
Input "L" level voltage	V _I L1	CE, DI, CL	0		0.5	V	
	V _I L2	CLK IN	0		0.3	V	
Output voltage	VO	D0	0		4.0	V	
Crystal frequency	f _{IN}	CLK IN		32.768		kHz	
Crystal frequency deflection	f devi1	For the standard European immunity	-50		+50	ppm	
	f devi2	When standard non-corresponds European immunity	-150		+150	ppm	
Crystal vibrator load capacity	CL	*	4	12.5		pF	

^{*} The evaluation request to the crystal maker is recommended because it changes by the substrate and the circuit constant used.

Operating Characteristics at Ta = 25°C, $V_{CC} = 9.0V$ with the designated circuit.

Parameter	Cumbal	Conditions		Unit		
Parameter	Symbol Conditions		min	typ	max	Offic
Current drain	I _{CC} FM	No input in FM mode. 15 pin supply current.	25	35	45	mA
(at no input)	I _{CC} AM	No input in AM mode. 15 pin supply current.	14	24	34	mA
Power save current drain	I standby	15 pin supply current power save : Register 1Fh_bit0 = 0		0.25	0.7	mA
V _{DD} output voltage	V_{DD}	22 pin voltage (reference value)	(2.772)	3.3	(3.435)	V
V _{DD} drop-out voltage	V _{DD} _drop	22 pin voltage. Drive mode at 10mA. *Drive current maximum = 10mA		0.15		V
		i7.5kHz dev., Pilot = 7.5kHz dev. = off, Resister 1Eh Bit 1(LEVSHIF) = 1, 9 pin outp	out, IHF-BPF			
S/N 50dB Sensitivity	SN50	Input level that becomes S/N=50dB	Jul, INF-BPF	17	24	dBµV
S/N 30dB Sensitivity	SN30	Input level that becomes S/N=30dB		12	18	dΒμV
IHF Sensitivity	IHF	Input level that becomes THD=3%		12	20	dΒμV
Signal-to-noise ratio	SN	MONO	62	70		dB
	SN-ST1	STEREO	58	66		dB
Total harmonic distortion	THD1	MONO		0.5	1.5	%
	THD1-ST	STEREO		0.5	2.5	%
	THD2	MONO, 150kHz dev.		1.5	5	%
	THD3	MONO, V _{IN} = 120dBμV		0.6	2.5	%

Continued on next page.


^{*2)} When mounted on the specified printed circuit board (114.3mm × 76.1mm × 1.6mm), glass epoxy

Continued		

Parameter	Symbol	Conditions	Ratings min typ max (218) (327) (489)		Unit	
	5,55.	33.14.13.113				
Demodulation output	V _O 0	MONO, V _O L = 0 (reference value)	(218)	(327)	(489)	mVrms
	V _O 1	MONO, V _O L = 1 (reference value)	(291)	(436)	(652)	mVrms
	V _O 2	MONO, V _O L = 2 (reference value)	(366)	(549)	(821)	mVrms
	V-3	MONO, V _O L = 3 (reference value)	518	775	1160	mVrms
	V _O 3	*In-house management = Typ ± 3.0 dB	310	775	1100	IIIVIIIS
MPX output	V _O _MPX	6 pin output	100	200	300	mVrms
Channel balance	СВ	10 pin output / 9 pin output	-1	0	+0	dB
SD operation level	SD	FS_S = 4	17	25	33	dΒμV
Stereo operation level	ST	FS_S = 4	17	25	33	dΒμV
Stereo separation		Both channels of 9 pins and 10 pins are				
	Sep	measured.	25	40		dB
		*In-house management value ≥25dB				
De-emphasis deflection	Deemp50	fm = 10kHz, 15kHz LPF OFF	-12.5	-10	-7.5	dB
	Deemp75	fm = 10kHz, 15kHz LPF OFF		-13		dB
Carrier leakage	CL	STEREO S/N, 15kHz LPF OFF	30	40		dB
Pilot margin	OT ON	L.D. C7 Sidle Bilet mad	0.0			0/
(Pilot lighting sensitivity)	ST-ON	L+R = 67.5kHz, Pilot-mod	0.6		5.5	%
AM suppression ratio	AMR	400Hz AM 30% mod.	40	65		dB
Mute attenuation	MUTE		60	75		dB
Volume level = 3, Soft mute	e = 4, Resister 1Eh	IBµV, fm = 400Hz, 30% mod, IF = 53kHz, BW = 50 Bit 1(LEVSHIF) = 1, 9 pin output, 15kHz LPF OFF	70	40	05	4D. 1/
S/N 20dB Sensitivity	SN20	Input level that becomes S/N=20dB		49	65	dΒμV
	SN20-L	fc = 603kHz (reference value)		(55)	(65)	dΒμV
	SN20-H	fc = 1404kHz (reference value)		(49)	(65)	dΒμV
Signal-to-noise ratio	SN		42	50		dB
Total harmonic distortion	THD1			0.6	2.8	%
	THD2	V _{IN} = 104dBμV		0.8	2.8	%
Detected output	V _O 0	VOL = 0 (reference value)	(55)	(78)	(109)	mVrms
	V _O 1	VOL = 1 (reference value)	(69)	(98)	(138)	mVrms
	V _O 2	VOL = 2 (reference value)	(87)	(123)	(173)	mVrms
	V _O 3	VOL = 3	110	155	218	mVrms
Channel balance	СВ	10 pin output / 9 pin output	-1	0	+1	dB
AGC response		Input level difference that output level becomes				
7.00.0000.00	AGC1	-10dB. Soft mute = 3 (reference value)	(52)	(62)		dB
	AGC2	Soft mute = 4	47	57		dB
Frequency response	Hi-cut	fm = 4kHz	-22	-17	-12	dB
	i ii-cut	AGC = ON, FS = 4	-22	-17	-12	uБ
SD operation level	SD	,	46	54	65	dΒμV
		*In-house management =46 to 65dBµV				
Mute attenuation	MUTE	15kHz LPF ON	50	65		dB

Package Dimensions unit: mm

3191B

Pin function

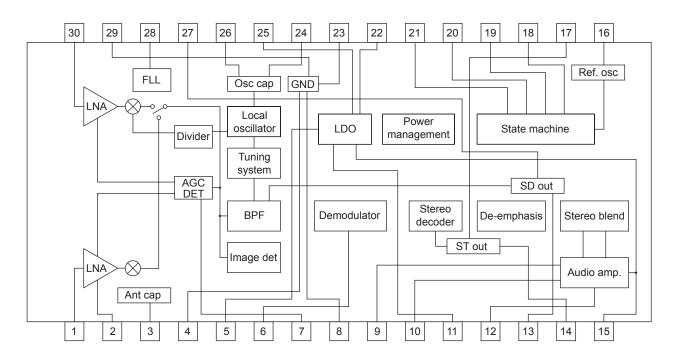
pin	pin name	Description	Remark	DC_bias
1	AM ANT	AM antenna	It connects it to 2pin through the matching coil or the bar antenna.	
2	AM ref	AM reference voltage	It connects it to 1pin through the matching coil or the bar antenna.	2.0V
3	AM CAP	AM capacitor bank	It connects it to GND through an external inductor of recommendation 240µH.	
4	GND1	AM antenna GND	Connect to GND	
5	Vref1	Analog reference voltage	It connects it to GND through the capacitor of 1µF.	
6	MPX OUT	Detected output	LC72725 and connection when RDS is used	
7	AM AGC	AM AGC	It connects it to GND through the capacitor of 4.7μF	
8	GND2	Analog GND	Connect to GND	
9	L OUT	L-ch audio output	The DC level changes by setting Resistor 1Eh bit1 (LEVSHIF) to adjust the output level	
10	R OUT	R-ch audio output	according to the V _{CC} potential.	
11	V _{CC} Low	Low voltage mode	It is short with 15pin when using it with V_{CC} < 6.0V or less.	
12	AM LCF	AM low cutting filter	It connects it to GND through the capacitor of 0.047µF	
13	SD OUT	SD detecting phase output		
14	ST OUT	ST detecting phase output		
15	V _{CC}	Supply voltage		
16	CLK IN	Reference clock input	The crystal is recommended to be used.	
			It is also possible to input directly clock signals (square wave GND standard).	
17	ST ADJ	Pilot margin adjustment pin	It connects it to GND through 180kΩ	
18	CE	address/data switching		
		timing		
19	CL	Communication clock		
20	DI	Data input		
21	DO	Data output	It connects it to 22 pin through 10kΩ	
22	Vref2	V _{DD} voltage output	3.3V voltage output pin.	
			It is also possible to supply the current to other IC up to 10mA.	
23	GND3	Logic GND	Connect to GND	
24	L1	Local oscillation circuit	It connects it to 25 pin through 33nF.	
25	Vref3	Reference voltage for local	It connects it to GND through the capacitor of 100µF	
		oscillation circuit		
26	L2	Local oscillation circuit	It connects it to 25 pin through 33nF.	
27	SD ADJ	SD = ON sensitivity	It connects it to GND through $22k\Omega$	
		adjustment pin		
28	FLL CAP	FLL low pass filter	It connects it to 25 pin through 0.1μF.	
29	GND4	FM antenna GND	Connect to GND	
30	FM ANT	FM antenna	Input impedance 75 Ω .	

Description of Pin Functions

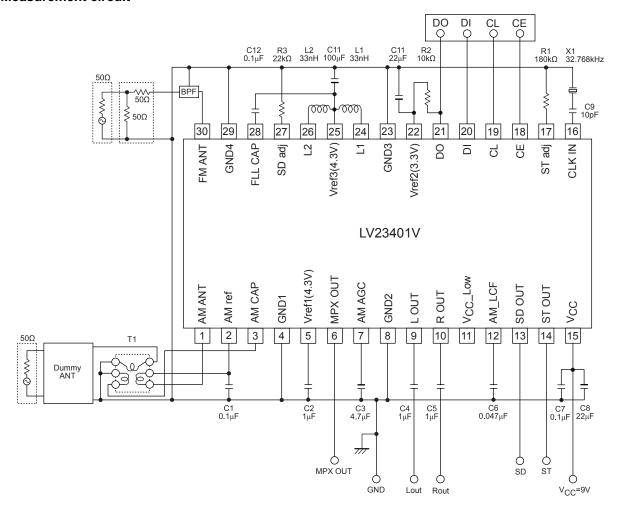
No.	Pin name	Voltage (V)	Internal Equivalent Circuit	Remarks
1	AM-ANT	2.2V		AM antenna input pin. The AM antenna coil is connected between 2pin. $R=100\Omega$
2	AM-REF	2.2V	2.2V Regulator	AM standard bias pin.
3	AM-CAP	-	3 CAP-BANK	AM Tuning for tune pin. (AM Capacitor Bank)
4	GND1	0V		Analog (AM_FE) GND pin.
5	VREF1	4.3V	4.3V Regulator	Analog (tuner area) standard bias pin. VREF = 4.3V
6	MPX-OUT	2.5V	R2 R2 R3	FM demodulation output pin. R1 = 100Ω R2 = $23k\Omega$ R3 = $1k\Omega$
7	AM RF-AGC	-	$\begin{array}{c c} R2 & R4 \\ \hline & R1 & R3 \\ \hline & & \\ $	AGC pin for AM-RF department Gain control. R1 = $2M\Omega$ R2 = $5k\Omega$ R3 = 250Ω R4 = $1k\Omega$
8	GND2	0V		Analog (tuner) GND pin.
9 10	L-OUT R-OUT	2.5V (It is 3.3V for LEVSHIF = 1)	(15) R (10) 9	L-ch (R-ch) output pin. $R = 100\Omega$ $R_{OUT} = 150\Omega$

Continued on next page.

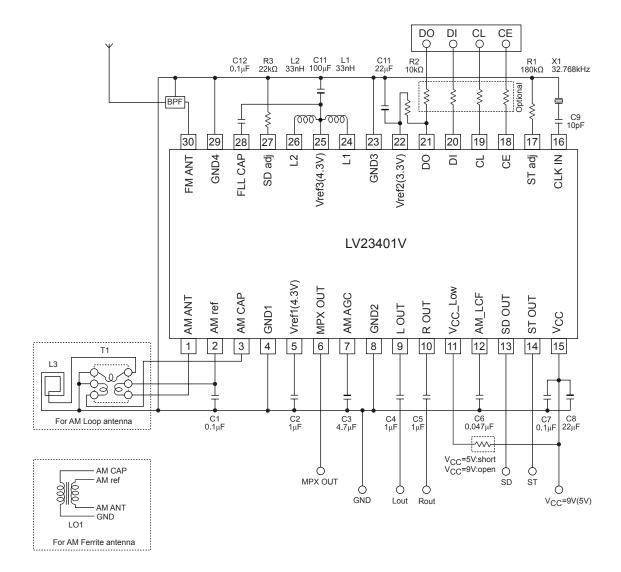
Continued from preceding page.

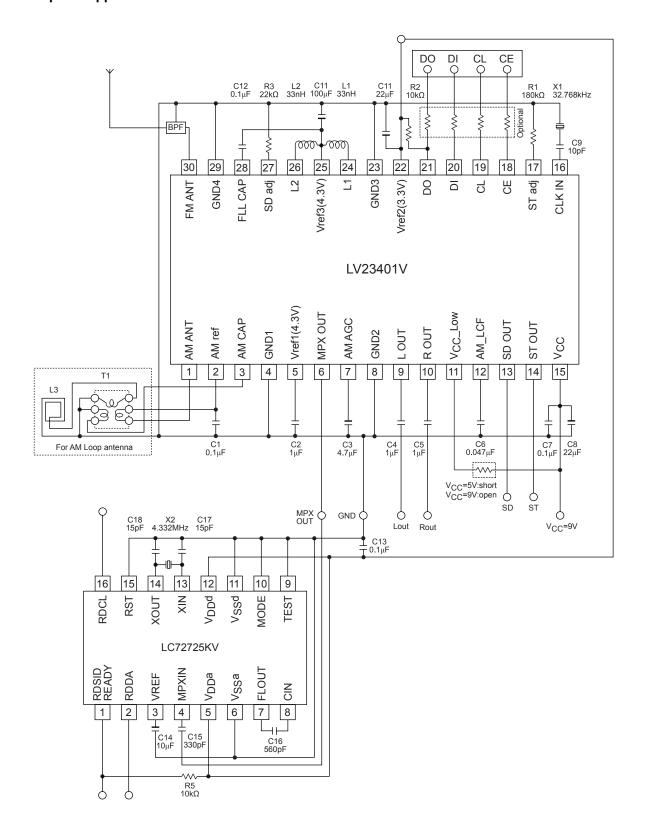

No.	Pin name	Voltage (V)	Internal Equivalent Circuit	Remarks
11	V _{CC} -Low	-	15 Regulator	It is short 11pin with 15pin when using it with $$V_{CC}${<}6.0V.$
12	AM LCF	2.2V	R2 R3 R3 R5	AM Low-cut Filter pin. $R1 = 250\Omega$ $R2 = 100k\Omega$ $R3 = 100k\Omega$ $R4 = 50k\Omega$ $R5 = 50k\Omega$
13	SD-OUT	VDD	22) R SD SW 3W	SD indicator output pin. Active Low output $R = 100 k\Omega$
14	ST-OUT	VDD	R ST M 14	FM stereo indicator output pin. Active Low output $R = 100 k \Omega$
15	Vcc	Vcc		Analog area supply voltage pin. 8.5 to 9.5V are impressed at Resister 1Eh bit 1(LEVSHIF) = 1, and it is short at "0" with VCC_Low.
16	CLK_IN	2.1V	R Crystal oscillator	Clock connection pin for internal standard. 32.768kHz crystal is connected. R = 100Ω
17	ST-ADJ	3.7V	R R	Stereo lighting sensitivity adjustment pin. It connects it to GND through 180k Ω . R = 24k Ω
18	CE	-	18	Chip enable pin. Pin assumed to be high-level when serial data input (DI) and serial data output (DO).
19	CL	-	19	Data clock input pin Clock that takes data and synchronization when serial data input (DI) and serial data output (DO).

Continued on next page.


Continued from preceding page.

No.	Pin name	Voltage (V)	Internal Equivalent Circuit	Remarks
20	DI	-	20	Serial data input pin. Input pin of the serial data transmitted by controller.
21	DO	-	21	Serial data output pin. Serial data output pin to controller.
22	V _{DD}	3.3V		Logic area standard bias pin. VDD = 3.3V
23	GND3	0V		Digital area (control block) GND pin.
24 26	L1 L2	4.3V	CAP BANK BANK	OSC coil connect pin. 33nH is connected between 25pin.
25	VREF2	4.3V	4.3V Regulator	OSC area standard bias pin. VREF2 = 4.3V
27	SD-ADJ	0.1V	COMP R 27	SD lighting sensitivity adjustment pin. It connects it to GND through 22k Ω . R = 100 Ω
28	FLL-CAP	-	28	LPF pin for internal FLL control. $R = 80 k \Omega$
29	GND4	0V		Analog (FMRF) GND pin.
30	FM-ANT	0.9V	30 R 29	FM antenna input pin. $R = 1.5k\Omega$ $R_{\text{IN}} = 75\Omega$


Block Diagram


Measurement circuit

Example of applied circuit 1

Example of applied circuit 2

Used parts

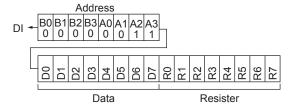
Component	Parameter	Value	Tolerance	Туре	Supplier
L1	Local Osc Coil	33nH	5%	LL2012-FHL33NJ	TOKO
L2	Local Osc Coil	33nH	5%	LL2012-FHL33NJ	TOKO
L3	AM Loop antenna	18.1μΗ	5%	4910-CSL18R1JN1	SAGAMI
T1	AMPE 41			A90326057	COILS
T1	AM RF matching	-	-	#7003RNS-A1109YZS	TOKO
C1	Ripple Filter	0.1μF			
C2	Ripple Filter	1μF			
C3	AM RF AGC Capacitor	4.7μF			
C4	Coupling Capacitor	1μF			
C5	Coupling Capacitor	1μF			
C6	AM Low-cut Filter	0.047μF			
C7	Supply Bypass Capacitor	0.1µF			
C8	Supply Bypass Capacitor	22μF			
C9	Correction Capacitor	10pF			
C10	Supply Bypass Capacitor	22μF			
C11	Ripple Filter	0.1µF			
C12	Osc Filter	0.1µF			
C13	Ripple Filter	0.1µF			
C14	Ripple Filter	10μF			
C15	Coupling Capacitor	330pF			
C16	Coupling Capacitor	560pF			
C17	Correction Capacitor	15pF			
C18	Correction Capacitor	15pF			
R1	Reference Resistor	180Ω			
R2	Pulled-up Resistor	10kΩ			
R3	Reference Resistor	22kΩ			
R4	Reference Resistor	33kΩ			
R5	Pulled-up Resistor	10kΩ			
BPF	FM ANT BPF	-	-	GFMB7	SOSHIN
X1	Crystal	32.768kHz	100ppm	VT-200-F(12.5pF)	SEIKO
X2	Crystal	4.332MHz	100ppm	AT-49	DAISHINKI
LO1	AM Ferrite antenna	260μΗ	TBD	-	-

 $[\]ast$ L1 must be used when you receive an Eastern European band (65MHz to 75MHz) and L2 must use 39nH.

^{*} Inquire match (C9, C17, C18) of X1 and the X2 crystal of the crystal maker together with the substrate used.

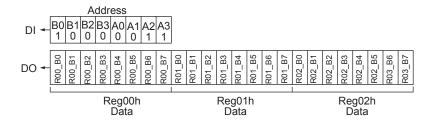
Interface specification

1) LV23401 Interface specification


LV23401 is controlled by the C²B (Computer Control Bus) cereal bus format.

 C^2B is a bus to achieve it economically surely format as for the communications between LSI in the system with two or more LSI. Because it is single master's system, the processing of a complex arbitration is unnecessary. Therefore, the load of hardware is reduced, and the system configuration that is economically abundant becomes possible. Moreover, neither a lot of kinds of controller and interface doing nor special hardware is easily needed by serial I/O with software. C^2B is thought between LSI in the equipment, and the communications between equipment that need a long line are not targeted.

2) C2B data composition


DI control data (cereal data input) composition

IN mode

LV23401V is controlled by the bus format composed of the sub-address (register) that stores the data of the device address of 8bit (address) and each 8bit. "C0" is input from LSB to the start as an address when the serial data is input to LV23401V, the device that controls is specified, and the mode as the data input is fixed. It inputs from LSB in order of data (bit setting)→ register synchronizing with data clock (CL) after the address is input and the data input can be concluded.

Composition of the DO control data (serial data output) OUT mode

"C1" is input from LSB to the start as an address when the serial data is output from LV23401V, the controlled device is specified, and the mode as the data output is fixed. The subsequent data is output from DO pin synchronizing with lock (CL) after the address is input LSB from one with small register number. The output of data is ended by setting CE pin to Low.

3) Description of the Register of LV23401

Register 00h – CHIP_ID – Chip identify register (Read-Only)

7	6	5	4	3	2	1	0	
ID[7:0]								
Bit 7-0 :	ID[7:0] : 8-bit CH	ID[7:0] : 8-bit CHIP ID.						
	LV23400: 18h							
Note : To abo	ort the command, write	any value in this r	egister.					

Register 01h - CHIP_REV - Chip Revision identify resister (Read-Only)

7	6	5	4	3	2	1	0				
Revision[7:0]											
Bit 7-0 :	ID[7:0]: 8-bit Chip revision										
	ES1:00h										
Note: To abort t	Note: To abort the command, write any value in this register.										

7	6	5	4	3	2	1	0						
IM_STAT	IM_FS[1:	0]	MO_ST	FS[2:0]			TUNED						
Bit 7:	IM_STAT :	State of image eva	sion code										
	0 = Eternal	operation (It is poss	ible to write it.)										
	1 = The ima	ige evasion is being	processed. (Writing is	s improper.)									
Note: This bi	t operates only v	vhen Resister 14h_b	it7 (IM_EVAS) is set	to "1". The data v	vriting processing	to LV23401 when th	is bit is "1" is prohibite						
Bit 6 - 5 :	IM_FS: Image bureau electric field strength												
	0 : Image bureau none												
	1:0	2:0dB to 10dB compared with the hope bureau.											
	3 : The level of the image bureau is +10dB or more stronger than that of the hope bureau.												
Bit 4 :	MO_ST : MONAURAL/STEREO display												
	0 = Stereo reception (Compelling the monaural setting is also the same.)												
	1 = Receivi	ng in stereo mode.											
Bit 3 - 1 :	FS[2:0]: Field strength												
		ength < 10dBμV											
	1 : Field str	ength 10 to 20dBµV	7										
	2 : Field stre	ength 20 to 30dBµV	7										
	•••												
	$3: Field\ strength > 70dB\mu V$												
Bit 0:	TUNED : R	adio-tuning flag											
	0 = No tuni	ng.											
	4 771												

1 =The tuning.

Note: When the frequency tuning succeeds, this bit is set. This flag is cleared under the following three conditions.

1. $PW_RAD = 0$

2. Do the tuning of the frequency.

3. When FLL becomes outside the correction range

Only when the TUNED flag is changed from one into 0, the RAD_IF interrupt flag is set.

When the status of TUNED changes from 0 into one, the interrupt is not generated.

Register 04h – TNPL – Tune position low (Read-Only)

7	6	5	4	3	2	1	0	
TUNEPOS[7:0]								
Bit 7-0: TUNEPOS[7:0]: Current RF frequency (Low 8bit)								

Register 05h	- TNPH_STAT	 Tune position 	high / status (I	Read-Only)			
7	6	5	4	3	2	1	0
ERROR[1:0]		TUNEPOS[12:8]					
Bit 7 - 6:	ERROR[1:0] : Err	or code					
	ERROR[1:0]		Remark				
	0		OK, Command e	nd (No Error)			
	1		DAC Limit Error				
	2		Command forced				
	3		Command busy (executing it)			
Bit 5 – 0 :	TUNEPOS[13:8]:	Current RF freque	ncy (High 5 bit)				
Register 06h	- COUNT_L -	Counter low (R	ead-Only)				
7	6	5	4	3	2	1	0
COUNT[7:0]	•	•	I	1	.	-	1
Bit 7 – 0 :	COUNT[7:0] : Cor	unter value (Low 81	oit)				
		,	•				
Register 07h	- COUNT_H -	Counter High (Read Only)				
7	6	5	4	3	2	1	0
COUNT[15:8]							
Bit 7 – 0:	COUNT[15:8] : Co	ounter value (High	8bit)				
Register 08h	- IF_OSC - DA	C for IF OSC (Read/Write)				
7	6	5	4	3	2	1	0
IFOSC[7:0]							
Bit 7 – 0:	IFOSC[7:0] : IF O	scillator DAC					
Register 09h	- IFBW - DAC	for IF – Filter	Band width (Re	ead/Write)			
7	6	5	4	3	2	1	0
IFBW[7:0]							
Bit $7 - 0$:	IFBW[7:0] : IF Ba	nd-pass Filter Band	DAC				
Register ORh	- STEREO_OS	C = DAC for St	ereo Decoder (DSC (Read/Wr	ita)		
	STEREO_OS	e brie jor si	Teo Decouer e	To the transfer of the transfe	·		
7	6	5	4	3	2	1	0
SDOSC[7:0]							
Bit 7 – 0 :	SDOSC[7:0] : Ster	eo Decoder Oscilla	tor DAC				
Register 0Ch	$-RF_OSC-D$	AC for RF OSC	(Read/Write)				
7	6	5	4	3	2	1	0
RFCAP[7:0]							
Bit 7 – 0:	RFOSC[7:0] : RF	Oscillator DAC					
Register 0Dh	- RFCAP – RF	Cap bank (Red	ud/Write)				
7	6	5	4	3	2	1	0
RFCAP[7:0]	10	l ³	T	1 3		1	1 0
Bit 7 – 0:	RFCAP[7:0] : RF	Oscillator Capacito	r hank				
	-AMCAP1 - A			te)			
	1		· 1	1	- 1.	- I .	
7	6	5	4	3	2	1	0
AMCAP[7:0]	13.00.000						
	AMCAP[7:0] : AN antenna capacitor ba ts are arranged in Al	-					

Register 0Fh – AMCTRL – AM Station Control (Read/Write)

7	6	5	4	3	2	1	0
AMDIV[2:0]			AM CAL	ACAP11	ACAP10	ACAP9	ACAP8

Bit 7 - 5 : AMDIV[2:0] : AM Clock Divider
Bit 7 : AM_CD2 : AM Clock Divider bit 2.
Bit 6 : AM_CD1 : AM Clock Divider bit 1.
Bit 5 : AM_CD0 : AM Clock Divider bit 0.

Note: AMCD[2:0] uses the frequency of FM belt even for the AM belt to lower.

Set the machine of the AM dividing frequency to turning off at FM mode.

AM_CD[2:0]	Rate of dividing frequency	Rough estimate AM-RF frequency (In kHz)
0,1	Divider OFF	0 (FM mode)
2	224	338 - 483
3	160	474 - 676
4	112	676 – 966
5	80	947 – 1353
6	64	1183 – 1692
7	48	1578 - 2256

Bit 4: NA (0 Fixation)

Bit 3-0: AMCAP[11:8]: AM antenna capacitor bank.

Bit 3 : AMCAP_bit11
Bit 2 : AMCAP_bit10
Bit 1 : AMCAP_bit9
Bit 0 : AMCAP_bit8

Register 10h – DO_REF_CLK_CNF – Do output mode and reference clock configuration (Read/Write)

7	6	5	4	3	2	1	0
IPOL	DO_SEL[1:0]	SEL[1:0] EXT_CLK		[1:0]	FS_S[2:0]		

Bit 7 : IPOL : Indicator (DO pin _SD/ST mode) polarity

0 = SD/ST Active Low (The same state change as 13pin – SD pin / 14pin – ST pin)

1 = SD/ST Active High (State change opposite to 13pin – SD pin / 14pin – ST pin)

Note : This bit doesn't influence the polarity of the serial data. \\

Bit 6 -5: DO_SEL: DO pin select (DO pin output mode select)

DO_SEL[1:0]	DO pin
00	Serial data output mode
01	ST pin mode
10	SD pin mode
11	Local position confirmation mode

DO pin is used by observing the position (Upper heterodyne / Lower heterodyne) of a state of SD pin/ST pin besides the serial data output and local OSC.

- * The state of DO pin changes synchronizing with SD pin / ST pin when DO_SEL is set to (01b) or (10b).
- * The state of DO pin changes by the position of Local OSC when DO is set to (11b). Lower heterodyne = 0, Upper heterodyne = 1
- * Set DO_SEL to (00b) when you output the serial data.

Bit 4 – 3: EXT_CLK_CFG[1:0]: External clock setting

EXT_CLK_CFG[1:0]	Reference clock
00	Off
01	The external clock is supplied.
10	32768Hz Crystal oscillation
11	Unused

 $Bit \ 2-0: \qquad \qquad FS_S[2:0]: SD(Station\ Detector)\ operate\ level\ setting\ (distinguishes\ at\ the\ FS\ level\)$

$Register\ 11h-IF_SEL-IF\ frequency\ selection\ (Read/Write)$

7	6	5	4	3	2	1	0
FLL MOD	AMIF[2:0]			FMIF[3:0]			

Bit 7: FLL_MOD: FLL operation mode

0 : Smoothing filter = OFF1 : Smoothing filter = ON

Bit 6-4: AMIF[2:0]: IF frequency setting when AM mode is selected

AMIF[2:0]										
0	0 1 2 3 4 5 6 7									
20kHz	31kHz	42kHz	53kHz	64kHz	75kHz	86kHz	97kHz			

Bit 3-0: FMIF[3:0]: IF frequency setting when FM mode is selected (kHz)

SE_	RF_		FMIF[3:0]														
AM	SEL	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	112.5	125	137.5	150	162.5	175	187.5	212.5	225	237.5	250	262.5	275	287.5	312.5	325
0	1	112.5	127.5	142.5	157.5	157.5	172.5	187.5	202.5	217.5	232.5	247.5	262.5	277.5	292.5	307.5	322.5

Register 12h – REF_CLK_MOD – Slope correction (Read/Write)

7	6	5	4	3	2	1	0

REFMOD[7:0]

Bit 7 - 0: REFMOD[7:0]: Reference clock correction

Note: As for this register, a set value is different according to the crystal connected with 16pin and the input clock. Inform of a set value of this register when you adopt the applications other than an example of applied circuit and recommended parts of this specifications.

Register 13h – SM_CTRL – Statemachine control (Read/Write)

7	6	5	4	3	2	1	0				
FLL_ON	CLKS_SE[2:0]			nSD_PM	nIF_PM	DM_SE[1:0]					
Bit 7:	FLL_ON : FLL cor	ntrol									
	0 = FLL OFF										
	1 = FLL ON										
Bit 6 – 4 :	CLKS_SE : Clock	course select									
	0 = No select										
	1 = The source of the stereo decoder oscillator is effective.										
	2 = The source of t	he IF oscillator is e	effective.								
	3 = The source of t	he AM antenna osc	cillator is effective.								
	4 = The source of t	he FM-RF oscillato	or is effective.								
	5 = The source of t	he AM-RF oscillat	or is effective.								
	6 - 7 = no select										
Note:	Bit[6-4] selects the	source of the oscill	ator. Select the arbi	trary source that to	be adjusted and to	be measured.					
Bit 3:	nSD_PM : Stereo d	lecoder clock PLL	mute								
	0 = SD PLL OFF (Adjustment)									
	1 = SD PLL ON (C	Operation usually)									
Bit 2:	nIF_PM : IF PLL r	nute									
	0 = IF PLL OFF (A	Adjustment)									
	1 = IF PLL ON (O	peration usually)									
Bit 1 – 0 :	CM_SE : Comman	d mode select									
	0 = Command no s	select									
	1 = Measurement r	mode									
	2 = Adjustment mo										
	3 = Radio tuning (r	reception frequency	adjustment) mode								
Note:	This bit is used to so	elect the command	mode. Select the ar	bitrary command to	be executed. The	command is execute	ed by setting				
	TARGET_VAL_L/I	Н.									
Comm	nand execution time	:									
	SD calibration = 540ms										
	IF calibration = 134ms										
	RF(FM) tuning = 105ms										
	RF(AM) tuning = 1										
	* Stand-by at time to have provided for the above-mentioned before all processing including reading the register value after having										
	executed the com	mand.									

$Register\ 14h-REF_CLK_PRS-Reference\ clock\ pre\text{-}scalar\ (Read/Write)$

7	6	5	4	3	2	1	0				
IM_EVAS	Reserved	WAIT_SEL	A<_FINE	REFPRE[3:0]							
Bit 7:	IM_EVAS : Image	evasion function O	N/OFF								
	0 = The image bure	au is not evaded.									
	1 = The image bure	au is evaded. (reco	mmendation)								
Bit 6 :	Reserved: 0 fixation	on									
Bit 5:	WAIT_SEL : Selec	WAIT_SEL: Selection after tuning at mute release standby time									
	0 = 8ms standby										
	1 = 4ms standby										
Bit 4 :	AM_FINE : Selecti	ion at AM_ANT ad	justment standby ti	me							
	0 = No standby after	er switch of DAC									
	1 = 2ms standby af	ter switch of DAC									
Bit $3 - 0$:	REFPRE[3:0] : Sta	ndard Clock Pre-sc	alar								
	0 = 1:1										
	1 = 1:2										
	2 = 1:4										
	•••										
	15 = 1:32768										

$Register\ 15h-REF_CLK_DIV-Reference\ clock\ divider\ (Read/Write)$

7	6	5	4	3	2	1	0		
REFDIV[7:0]									
Bit 7 – 0:	REFDIV[7:0]: Standard clock divider								
	0 : Rate of dividing	0 : Rate of dividing frequency = 1							
	1 : Rate of dividing	g frequency = 2							
	•••								
	255 : Rate of divid	ing frequency =256)						

Register 16h – TARGET_VAL_L – Target Value Low Register (Read/Write)

7	6	5	4	3	2	1	0		
TARGET[7:0]									
Bit 7 – 0 :	Bit 7 – 0: TARGET[7:0]: Target Frequency Low 8bit: Targeted value of radio tuning and oscillator adjustment: Low byte								

$Register~17h-TARGET_VAL_H-Target~Value~High~Register~(Read/Write)$

7	6	5	4	3	2	1	0			
TARGET[15:8]										
Bit 7 – 0: TARGET[15:8]: Target Frequency High 8 bit: Targeted value of radio tuning and oscillator adjustment: High byte										
Note: When subordinate position 8bit of the frequency of the target is set when it is on, and high rank of the frequency of the target 8bit is set										
to this register afterwards, the command is executed as for the radio power.										

TUNEPOS and TARGET:

- 1kHz interval at AM
- 10kHz interval at FM

Register 18h – RADIO_CTRL1 – Radio control 1 (Read/Write)

7	6	5	4	3	2	1	0			
IQC_CTR	IFPOL	OSC_LE	V[1:0]	DEEM	VOL[1:0]		EN_AMHC			
Bit 7:	IQC_CTR: I/	Q phase convers	sion							
	0 = Operation	al mode usually	(Upper heterodyne)							
	1 = I/Q phase	conversion : Im	age measures (Lowe	r heterodyne)						
Note	e: When the local	is switched as a	n image measures, it	t uses it.						
Bit 6:	IF polarity con	nversion in State	Machine.							
	0 = The IF fre	quency is added	to a local frequency	. (Operational usually)					
	1 = The IF fre	quency is subtra	cted by a local frequ	ency. (Image measure	s)					
Bit 5 – 4:	OSC_LEV[1:)] : RF-OSC osc	cillation level setting							
	0 = Minimum	oscillation leve	I							
	3 = Maximum	oscillation leve	1							
	* A	possible level	adjustment and "2" a	re assumed to be a rec	ommended valu	e at each interval of	3dB.			
Bit 3 :	DEEN : De-emphasis time constant switch									
	$0 = 50 \mu s$: Jap	an, South Korea	, China, and Europe							
	$1 = 75 \mu s$: The	United States								
Bit 2 – 1 :	VOL[1:0] : Vo	olume setting								
	0 = Minimum	(VOL0)								
	• • •									
	3 = Maximum	(VOL3)								
Bit 0:	EN_AMHC:	AM high cut fil	er ON/OFF							
	0 = AM hi-cut filter function OFF									
	1 = AM hi-cut filter function ON									

Register 19h – RADIO_CTRL 2 – Radio control 2 (Read/Write)

7	6	5	4	3	2	1	0					
Reserved	Reserved	EN_AMM	Reserved	IF_AGC_LEV	RF_AGC_LEV[1:0]	EN_RFAGC					
Bit 7:	Reserved: 0 fixation	on										
Bit 6:	Reserved: 1 fixation	on										
Bit 5 :	FN AMM · AM n	EN_AMM : AM mute ON/OFF										
BRO.	0 = AM mute func											
	1 = AM mute func											
Bit 4:	Reserved: 0 fixation	on										
Bit 3:	IF_AGC_LEV : IF	F-AGC level cont	rol									
	0 = AGC slow mo	de										
	1 = AGC first mod	le										
Bit 2 – 1 :	RF_AGC_LEV[1:	0] : RF-AGC leve	el control									
	0 = AGC slow mo											
	1 = AGC normal	mode										
	3 = AGC first mod	de										
Bit 0:	EN_RFAGC : RF-	-AGC ON/OFF										
	0 = AGC OFF											
	1 = AGC ON (Op	perational usually)									

Register 1Ah – RADIO_CTRL3 – Radio control 3 (Read/Write)

7	6	5	4	3	2	1	0	
AMOSC_GA	.[2:0]		AMOSC	_DL[2:0]		AMAGC_S	SP[1:0]	
Bit 7 – 5:	AMOSC_GA[2:0]	: AM antenna	oscillator gain o	control				
	0 = Minimum leve	1						
	7 = Maximum leve	el						
Bit 4 – 2 :	AMOSC_DL[2:0]	: AM oscillator	r detection level	I				
	0 = Minimum leve	1						
	7 = Maximum leve	el						
Bit 1 – 0 :	AMSGC_SP[1:0]	: AM oscillator	AGC speed					
	0 = Slow mode							
	3 = First mode							

Register 1Ch - STEREO_CTRL1 - Stereo control 1 (Read/Write)

7	6	5	4	3	2	1	0						
CRC[1:0]		SS_SP2	SS_SP1	NA	PICAN_EN	FOSTEREO	ST_M						
Bit 7 – 6:	CRC[1:0] : Captur	re range control											
	0 = Narrowband mode												
	1 = Recommended value												
	3 = Wideband mode												
Bit 5:	SS_SP2 : STEREO sensitivity speed 2 (First mode)												
	0: First mode = 0)FF											
	1 : First mode = O	N - Recommend	led value										
Bit 4:	SS_SP1 : STERE	O sensitivity spe	ed 1 (Slow mode)										
	0 : Slow mode = OFF - Recommended value												
	1 : Slow mode = ON												
Bit 3:	NA												
Bit 2:	PICAN_EN : Pilo	t cancel function	ON/OFF										
	0 = OFF												
	1 = ON												
Bit 1:	FOSTEREO : Cor	mpulsion stereo											
	0 = Operational us	sually											
	1 = Compulsion st	tereo mode											
Bit 0:	ST_M: STEREO	/MONAURAL s	etting										
	0 = Stereo functio	n ON (Operation	nal usually)										
	1 = Stereo function	n OFF (Compuls	sion monaural)										

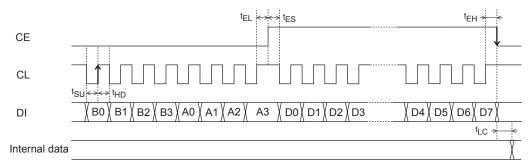
Register 1Dh - STEREO_CTRL2 - Stereo control 2 (Read/Write)

7	6	5	4	3	2	1	0
NA		·	FOAMAGC	Reserved	NA	CPAJ[1:0]	
Bit 7 – 5:	NA						
Bit 4:		ion AGC = OFF					
Bit 3:	Reserved: 0	fixation					
Bit 2 :	NA						
Bit 1 – 0:		Channel separation	adjustment				
		er level minimum					
	7 = Sub care	er level maximum					

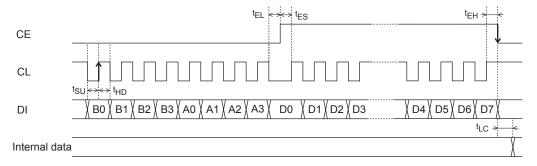
Register 1Eh – RADIO_CTRL4 – Radio control 4 (Read/Write)

7	6	5	4	3	2	1	0		
SOFTST[2:0]			SOFTMU[2:0]			LEVSHIF	FO_SOFTT		
Bit 7 – 5:	SOFTST[2:0] : Sof	ft stereo function se	etting						
	0 : Soft stereo func	tion = OFF							
	7 : Soft stereo function = Lev7 (Max)								
Bit 4 – 2 :	SOFTMU[2:0] : So	oft audio mute func	etion setting						
	0 : Soft mute function = OFF								
	7 : Soft mute funct	ion = Lev7 (Max)							
Bit 1:	LEVSHIF : Audio	line DC level shift							
	0 = Normal DC lev	vel (V _{CC} =5.0V sup	oply)						
	1 = DC level shift ((V _{CC} =9.0V supply	<i>i</i>)						
Bit 0:	FO_SOFTST : Cor	npulsion soft stereo	o function setting						
	0 : Compulsion sof	t stereo function =	ON						
	1 : Compulsion sof	t stereo function =	OFF						
	* Set it to "0" when	n corresponding to	European immunity	y standard.					

$Register\ 1Fh-RADIO_XTRL5-Radio\ control\ 5\ (Read/Write)$

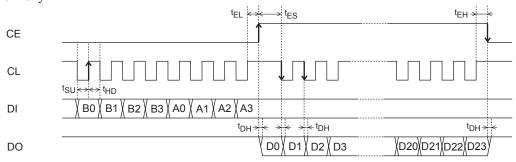

7	6	5	4	3	2	1	0					
RF_SEL	IFRIM	nAGC_SPD	SE_FM/AM	AMP_CTR	MUTE	NA	PW_RAD					
Bit 7:	RF_SEL : RF frequency range setting											
	0 = Normal (Japan / USA / Europe)											
	1 = Eastern Europe (65MHz to 74MHz)											
Bit 6 :												
	0 : Max = 350kHz (FM mode) 1 : Max =150kHz (AM mode)											
Bit 5:	nAGC_SPD : IF AGC speed setting											
	0 = Hi speed (FM s											
	1 = Normal (AM n)	mode)										
Bit 4:	SE_FM/AM : AM/	/FM mode select										
	1 = AM mode											
Bit 3 :	AMP CTR : Audio amplifier ON/OFF											
Bit 3.	0 = OFF		I.									
	1 = ON											
Div 4	NOTES A 1	. a ovvor										
Bit 2:	MUTE : Audio mu											
	0 = Mute ON											
	1 = Mute OFF											
Bit 1:	AM_CAL : AM calibration (Oscillation mode)											
	0 = AM calibration impropriety (Operational usually)											
	1 = AM calibration mode (AM antenna frequency setting time)											
N	ote: Set this bit to "1"	when you measure	the frequency of	the AM antenna.								
Bit 0:	PW_RAD : Radio	circuit power										
	0 = Power OFF (Power save)											
	1 = Power ON											
* 1 : After the	V _{CC} voltage is impre	essed, PW RAD of	Register 1Fh bit0	is automatically se	et to "0" in 50ms.							
* 2 : When the V _{CC} voltage is dropped once, content of registers other than PW_RAD becomes irregular.												
* 3 : The content of the register change set at the power save becomes effective, and any command processing cannot be executed.												
* 4 : The standby time of 1200ms is necessary, the circuit with stability (PW RAD = $0 \rightarrow 1$) after the power save returns.												

- * 4 : The standby time of 1200ms is necessary, the circuit with stability (PW_RAD = $0 \rightarrow 1$) after the power save returns.
- * 5 : Tune RF again after the power save returns.
- * 6 : A built-in each oscillator including the RF bureau departure and all other analogue part circuit operation stop at the power save.
- * 7 : The standby time of 200ms is necessary after the switch of the band to AM before counting IF after adjusting the first RF.

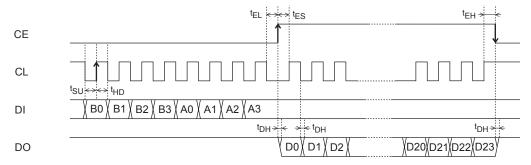

4) C²B communication timing specification

Serial data input (IN1/IN2) tSU, tHD, tEL, tES, $tEH \ge 0.75 \mu s$ $tLC < 0.75 \mu s$

CL: Normally Hi

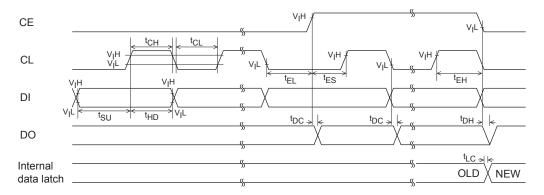


CL: Normally Low



Serial data output (OUT) tSU, tHD, tEL, tES, $tEH \ge 0.75 \mu s$ tDC, $tDH < 0.35 \mu s$

CL: Normally Hi



CL: Normally Hi

(Note) DO pin is an Nch open drain pin, so that the data varying time (tDC and tDH) differs depending on the pull-up resistance and substrate capacity.

Serial data timing

<< When CL stops at the "L" level >>

<< When CL stops at the "H" level >>

Parameter	Symbol	Pin	Conditions	Min	Тур	Max	Unit
Data setup time	tSU	DI, CL		0.75			μS
Data hold time	tHD	DI, CL		0.75			μS
Clock "L" level time	tCL	CL		0.75			μS
Clock "H" level time	tCH	CL		0.75			μS
CE wait time	tEL	CE, CL		0.75			μS
CE setup time	tES	CE, CL		0.75			μS
CE hold time	tEH	CE, CL		0.75			μS
Data latch change time	tLC					0.75	μS
Data output time	tDC	DO, CL	Differs depending on the pull-up resistance			0.35	μS
	tDH	DO, CE	and substrate capacity				

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2010. Specifications and information herein are subject to change without notice.