MD5000, A, B (SILICON)

Dual PNP silicon annular transistors designed for ultra-high frequency oscillator and amplifier applications and for differential-amplifier applications requiring a matched pair of transistors with a high degree of parameter uniformity under varying environmental conditions.

PINS 4 AND 8 OMITTED

Pin Connections, Bottom View All Leads Electrically Isolated from Case

MAXIMUM RATINGS ($T_A = 25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value		Unit	
Collector-Emitter Voltage	v _{CEO}	15		Vdc	
Collector-Base Voltage	v_{CB}	20		Vdc	
Emitter-Base Voltage	v_{EB}	5.0		Vdc	
Collector Current	I_{C}	50		mAdc	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		°C	
		One Side	Both Sides		
Total Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	P_{D}	300 1.7	400 2.3	mW mW/ ^O C	

MD5000, A, B (Continued)

Characteristic		Symbol	Min	Тур	Max	Unit
FF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage (IC = 3 mAdc, Ig = 0)		BVCEO	15			Vde
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)		BVCBO	20	_		Vdc
Emitter-Base Breakdown Voltage (Ig = 10 \(mu\)Adc, IC = 0)		BVEBO	5.0			Vdc
Collector Cutoff Current (VCB = 15 Vdc, I _E = 0)		ICBO	_	_	0.010	μAdc
$(V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$			<u> </u>	L =_	1.0	
N CHARACTERISTICS				,		
DC Current Gain (I _C = 3 mAdc, V _{CE} = 1 Vdc)		h _{FE}	20	50		_ <u>_</u>
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)		V _{CE} (sat)			0.4	Vdc
Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)		VBE(sat)			1.0	Vde
YNAMIC CHARACTERISTICS			r-			
Current-Gain-Bandwidth Product (I _C = 4 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		f _T	600	900		MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)		С ^{ор}	_		1.7	pF
Input Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 140 kHz)		C _{ib}			2.0	pF
Noise Figure $(I_C = 1 \text{ mAdc}, V_{CE} = 6 \text{ Vdc}, f = 60 \text{ MHz}, R_S = 400 \text{ ohms})$		NF	_	3.0	6.0	dB
UNCTIONAL TEST						
Amplifier Power Gain (I_C = 6 mAdc, V_{CB} = 12 Vdc, R_G = R_L = 50 ohms, f = 200 MH	z)	G _{pe}	15	20		dB
IATCHING CHARACTERISTICS						
DC Current Gain Ratio* (I _C = 4 mAdc, V _{CE} = 10 Vdc)	MD5000 MD5000A MD5000B	h _{FE1} /h _{FE2*}	0.9 0.8	0.7	1.0	_
Base Voltage Differential (I _C = 4 mAdc, V _{CE} = 10 Vdc)	MD5000B MD5000A MD5000B	V _{BE1} - V _{BE2}	=	5.0	5.0	mVdc
Base Voltage Differential Change (I _C = 4 mAdc, V _{CE} = 10 Vdc, T _A = -55 to +125°C)	MD5000 MD5000A MD5000B	$\frac{\Delta(V_{BE1} - V_{BE2})}{\Delta T_A}$	=	10		μV/°C

^{*}The lowest $h_{\mbox{\scriptsize FE}}$ reading is taken as $h_{\mbox{\scriptsize FE}1}$ for this ratio.