MD5000, A, B (SILICON) Dual PNP silicon annular transistors designed for ultra-high frequency oscillator and amplifier applications and for differential-amplifier applications requiring a matched pair of transistors with a high degree of parameter uniformity under varying environmental conditions. PINS 4 AND 8 OMITTED Pin Connections, Bottom View All Leads Electrically Isolated from Case ## MAXIMUM RATINGS ($T_A = 25^{\circ}$ C unless otherwise noted) | Rating | Symbol | Value | | Unit | | |---|-----------------------------------|-------------|---------------|--------------------------|--| | Collector-Emitter Voltage | v _{CEO} | 15 | | Vdc | | | Collector-Base Voltage | v_{CB} | 20 | | Vdc | | | Emitter-Base Voltage | v_{EB} | 5.0 | | Vdc | | | Collector Current | I_{C} | 50 | | mAdc | | | Operating and Storage Junction Temperature Range | T _J , T _{stg} | -65 to +200 | | °C | | | | | One
Side | Both
Sides | | | | Total Device Dissipation @ T _A = 25 ^o C
Derate above 25 ^o C | P_{D} | 300
1.7 | 400
2.3 | mW
mW/ ^O C | | ## MD5000, A, B (Continued) | Characteristic | | Symbol | Min | Тур | Max | Unit | |---|-------------------------------|--|------------|-------------|-------|------------| | FF CHARACTERISTICS | | | | | | | | Collector-Emitter Breakdown Voltage (IC = 3 mAdc, Ig = 0) | | BVCEO | 15 | | | Vde | | Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) | | BVCBO | 20 | _ | | Vdc | | Emitter-Base Breakdown Voltage
(Ig = 10 \(mu\)Adc, IC = 0) | | BVEBO | 5.0 | | | Vdc | | Collector Cutoff Current (VCB = 15 Vdc, I _E = 0) | | ICBO | _ | _ | 0.010 | μAdc | | $(V_{CB} = 15 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$ | | | <u> </u> | L =_ | 1.0 | | | N CHARACTERISTICS | | | | , | | | | DC Current Gain (I _C = 3 mAdc, V _{CE} = 1 Vdc) | | h _{FE} | 20 | 50 | | _ <u>_</u> | | Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc) | | V _{CE} (sat) | | | 0.4 | Vdc | | Base-Emitter Saturation Voltage
(I _C = 10 mAdc, I _B = 1 mAdc) | | VBE(sat) | | | 1.0 | Vde | | YNAMIC CHARACTERISTICS | | | r- | | | | | Current-Gain-Bandwidth Product (I _C = 4 mAdc, V _{CE} = 10 Vdc, f = 100 MHz) | | f _T | 600 | 900 | | MHz | | Output Capacitance
(V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz) | | С ^{ор} | _ | | 1.7 | pF | | Input Capacitance
(V _{BE} = 0.5 Vdc, I _C = 0, f = 140 kHz) | | C _{ib} | | | 2.0 | pF | | Noise Figure $(I_C = 1 \text{ mAdc}, V_{CE} = 6 \text{ Vdc}, f = 60 \text{ MHz}, R_S = 400 \text{ ohms})$ | | NF | _ | 3.0 | 6.0 | dB | | UNCTIONAL TEST | | | | | | | | Amplifier Power Gain (I_C = 6 mAdc, V_{CB} = 12 Vdc, R_G = R_L = 50 ohms, f = 200 MH | z) | G _{pe} | 15 | 20 | | dB | | IATCHING CHARACTERISTICS | | | | | | | | DC Current Gain Ratio* (I _C = 4 mAdc, V _{CE} = 10 Vdc) | MD5000
MD5000A
MD5000B | h _{FE1} /h _{FE2*} | 0.9
0.8 | 0.7 | 1.0 | _ | | Base Voltage Differential (I _C = 4 mAdc, V _{CE} = 10 Vdc) | MD5000B
MD5000A
MD5000B | V _{BE1} - V _{BE2} | = | 5.0 | 5.0 | mVdc | | Base Voltage Differential Change
(I _C = 4 mAdc, V _{CE} = 10 Vdc, T _A = -55 to +125°C) | MD5000
MD5000A
MD5000B | $\frac{\Delta(V_{BE1} - V_{BE2})}{\Delta T_A}$ | = | 10 | | μV/°C | ^{*}The lowest $h_{\mbox{\scriptsize FE}}$ reading is taken as $h_{\mbox{\scriptsize FE}1}$ for this ratio.