

μ PA675T

DESCRIPTION

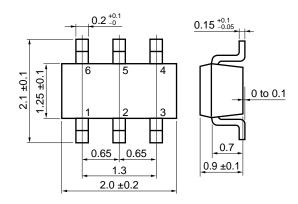
The μ PA675T is an N-channel vertical MOS FET. Because it can be driven by a voltage as low as 1.5 V and it is not necessary to consider a drive current, this FET is ideal as an actuator for low-current portable systems such as headphone stereos and video cameras.

FEATURES

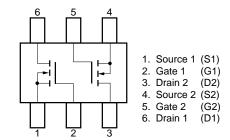
- Two MOS FET circuits in package the same size as SC-70
- · Automatic mounting supported
- Gate can be driven by a 1.5 V power source
- Because of its high input impedance, there's no need to consider a drive current
- Since bias resistance can be omitted, the number of components required can be reduced

ORDERING INFORMATION

PART NUMBER	PACKAGE
μ PA675T ^{Note}	SC-88 (SSP)


Note Marking: SA

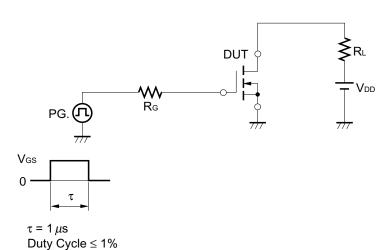
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

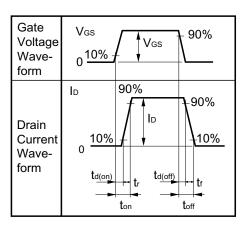

Drain to Source Voltage (Vss = 0 V)	VDSS	16	V
Gate to Source Voltage (VDS = 0 V)	Vgss	±7.0	V
Drain Current (DC) (Tc = 25°C)	ID(DC)	±0.1	Α
Drain Current (pulse) Note	ID(pulse)	±0.2	Α
Total Power Dissipation (Tc = 25°C)	P⊤	0.2	W
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	-55 to +150	°C

Note PW \leq 10 ms, Duty Cycle \leq 50%

PACKAGE DRAWING (Unit: mm)

PIN CONNECTION




μ PA675T

ELECTRICAL CHARACTERISTICS (TA = 25°C)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	Ipss	Vps = 16 V, Vgs = 0 V			1.0	μΑ
Gate Leakage Current	Igss	Vgs = ±7.0 V, Vps = 0 V			±3.0	μΑ
Gate Cut-off Voltage	V _{GS(off)}	$V_{DS} = 3 \text{ V}, \text{ ID} = 10 \mu\text{A}$	0.5	0.8	1.1	V
Forward Transfer Admittance	y fs	V _{DS} = 3 V, I _D = 10 mA	20			mS
Drain to Source On-state Resistance	RDS(on)1	Vgs = 1.5 V, ID = 1 mA		20	50	Ω
	RDS(on)2	V _{GS} = 2.5 V, I _D = 10 mA		7	15	Ω
	RDS(on)3	Vgs = 4.0 V, ID = 10 mA		5	12	Ω
Input Capacitance	Ciss	V _{DS} = 3 V		10		pF
Output Capacitance	Coss	Vgs = 0 V		13		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		3		pF
Turn-on Delay Time	td(on)	V _{DD} = 3 V, I _D = 10 mA		15		ns
Rise Time	t r	V _G S = 3 V		70		ns
Turn-off Delay Time	td(off)	R _G = 10 Ω		100		ns
Fall Time	t _f			110		ns

SWITCHING TIME MEASUREMENT CIRCUIT AND CONDITIONS

