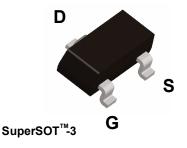
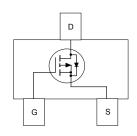
FDN306P

General Description

This P-Channel 1.8V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management applications.


Applications


- · Battery management
- · Load switch
- · Battery protection

Features

• -2.6 A, -12 V. $R_{DS(ON)}$ = 40 m Ω @ V_{GS} = -4.5 V $R_{DS(ON)}$ = 50 m Ω @ V_{GS} = -2.5 V $R_{DS(ON)}$ = 80 m Ω @ V_{GS} = -1.8 V

- · Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}
- SuperSOT[™] -3 provides low R_{DS(ON)} and 30% higher power handling capability than SOT23 in the same footprint

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter Drain-Source Voltage		Ratings	Units V	
V _{DSS}			-12		
V _{GSS}	Gate-Source Voltage		±8	V	
I _D	Drain Current - Continuous	(Note 1a)	-2.6	А	
	- Pulsed		-10		
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W	
		(Note 1b)	0.46		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
306	FDN306P	7"	8mm	3000 units

FDN306P

Symbol	Parameter	Test Condit	tions	Min	Тур	Max	Units
Off Char	acteristics						
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -1$	250 μΑ	-12			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A,Reference	ed to 25°C		-3		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -10 \text{ V}, \qquad V_{GS} =$	0 V			-1	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 V$, $V_{DS} =$	0 V			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, \qquad V_{DS} =$	0 V			-100	nA
On Char	acteristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -1$	250 μΑ	-0.4	-0.6	-1.5	V
$\Delta V_{GS(th)} \ \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 μ A,Reference			2.5		mV/°C
$R_{DS(on)}$	Static Drain–Source On–Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -6.0 \text{ V}$ $V_{GS} = -2.5 \text{ V}, I_D = -6.0 \text{ V}$ $V_{GS} = -1.8 \text{ V}, I_D = -6.0 \text{ V}$ $V_{GS} = -4.5 \text{ V}, I_D = -2.6 \text{ V}$	2.3 A 1.8 A		30 39 54 40	40 50 80 54	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} =$		-10			Α
g FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -5 \text{ V}$	2.6 A	<u> </u>	10		S
Dvnamic	Characteristics						
C _{iss}	Input Capacitance	$V_{DS} = -6 \text{ V}, \qquad V_{GS} =$: 0 V.		1138		pF
Coss	Output Capacitance	f = 1.0 MHz	,		454		pF
C _{rss}	Reverse Transfer Capacitance	-			302		pF
Switchin	ng Characteristics (Note 2)		1				
$t_{d(on)}$	Turn-On Delay Time	$V_{DD} = -6 \text{ V}, \qquad I_{D} = -6 \text{ V}$	-1 A,		11	20	ns
t _r	Turn-On Rise Time	V_{DD} = -6 V, I_{D} = - V_{GS} = -4.5 V, R_{GEN}	$R_{GEN} = 6 \Omega$		10	20	ns
$t_{d(off)}$	Turn-Off Delay Time		İ		38	61	ns
t _f	Turn-Off Fall Time		F		35	56	ns
$\overline{Q_g}$	Total Gate Charge	$V_{DS} = -6 \text{ V}, \qquad I_{D} = -6 \text{ V}$	2.6 A,		12	17	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = -4.5 \text{ V}$			2		nC
Q_{gd}	Gate-Drain Charge		-		3		nC
Drain-Se	ource Diode Characteristics	and Maximum Ra	ntings				
Is	Maximum Continuous Drain-Sourc					-0.42	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -1$	0.42 (Note 2)		-0.6	-1.2	V

Notes

 R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BJC} is guaranteed by design while R_{BCA} is determined by the user's board design.

a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%