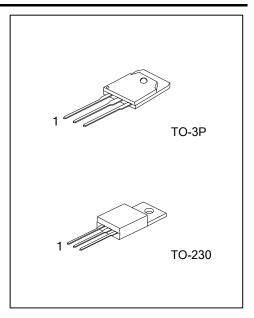


UNISONIC TECHNOLOGIES CO., LTD

11N80 **Preliminary Power MOSFET**

11A, 812V N-CHANNEL POWER MOSFET

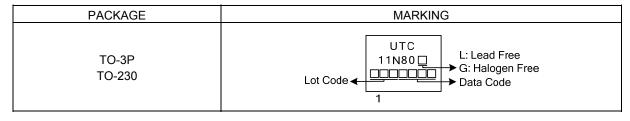

DESCRIPTION

The UTC 11N80 is an N-Channel power MOSFET, it uses UTC's advanced technology to provide customers with a minimum on-state resistance, low gate charge and high switching speed.

The UTC 11N80 is suitable for high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.

FEATURES

- * $R_{DS(ON)} < 0.9 \Omega V_{GS} = 10 V$
- * Low gate charge (typical 60 nC)
- * High switching speed



ORDERING INFORMATION

Ordering Number		Doolsono	Pin Assignment			Deaking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
11N80L-T3P-T	11N80G-T3P-T	TO-3P	G	D	S	Tube	
11N80L-TC3-T	11N80G-TC3-T	TO-230	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source 11N80L-T3P-T (1)Packing Type (1) T: Tube (2) T3P: TO-3P, TC3: TO-230 (2)Package Type (3)Lead Free (3) L: Lead Free, G: Halogen Free

MARKING INFORMATION

www.unisonic.com.tw 1 of 4

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	800	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Drain Current	Continuous	I _D	11	Α	
	Pulsed	I _{DM}	11	Α	
Avalanche Current		I _{AR}	44	Α	
Avalanche Energy	Single Pulsed	E _{AS}	960	mJ	
	Repetitive	E _{AR}	12	mJ	
Peak Diode Recovery dv/dt		dv/dt	4.0	V/ns	
Power Dissipation (T _C =25°C)	TO-3P	0	297	W	
	TO-230	P _D	156		
Junction Temperature		TJ	-55~+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-3P	0	40	°C/W	
	TO-230	θ_{JA}	62.5		
Junction to Case	TO-3P	θ _{JC}	0.42	°C/W	
	TO-230		0.80		

^{2.} L=15mH, I_{AS} =11.7A, V_{DD} =50V, R_{G} =25 Ω starting T_{C} =25 $^{\circ}$ C.

■ ELECTRICAL CHARACTERISTICS

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS				·	ı			
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	800			V	
Breakdown Voltage Temperature Coefficient			Reference to 25°C, I _D =250μA		1.0		V/°C	
Drain-Source Leakage Current		I _{DSS}	V _{DS} =800V, V _{GS} =0V			10	μA	
Gate-Source Leakage Current	Forward Reverse	I _{GSS}	V_{GS} =+30V, V_{DS} =0V			+100	nA nA	
ON CHARACTERISTICS			V _{GS} =-30V, V _{DS} =0V			-100	ΠA	
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}, I_{D}=250\mu A$			5	V	
	Static Drain-Source On-State Resistance		V _{GS} =10V, I _D =5.5A			0.9	Ω	
Static Drain-Source On-State Resistance $R_{DS(ON)}$ V_{GS} =10V, I_D =5.5A 0.9 Ω DYNAMIC PARAMETERS								
Input Capacitance		C _{ISS}	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		2530	3290	pF	
Output Capacitance		Coss			215	280	pF	
Reverse Transfer Capacitance		C _{RSS}			23	30	pF	
SWITCHING PARAMETERS								
Total Gate Charge		Q_{G}	V_{GS} =10V, V_{DD} =640V, I_{D} =11A, R_{G} =25 Ω		60	80	nC	
Gate to Source Charge		Q_{GS}			13		nC	
Gate to Drain Charge		Q_{GD}			25		nC	
Turn-ON Delay Time		t _{D(ON)}	V_{DD} =400V, I_{D} =11A, R_{G} =25Ω,		60	130	ns	
Rise Time		t _R			130	270	ns	
Turn-OFF Delay Time		t _{D(OFF)}	V _{GS} =10V		130	270	ns	
Fall-Time		t _F			85	180	ns	
SOURCE- DRAIN DIODE RATI	NGS AND	CHARACTER	ISTICS					
Maximum Body-Diode Continuous Current		I _S				11	Α	
Maximum Body-Diode Pulsed Current		I _{SM}				44	Α	
Drain-Source Diode Forward Voltage		V _{SD}	I _S =11.0A, V _{GS} =0V			1.4	V	
Body Diode Reverse Recovery Time		t _{RR}	 V _{GS} =0V, I _S =11A, d _{IF} /dt=100A/μS		1000		ns	
Body Diode Reverse Recovery Charge		Q_{RR}	VGS-0V, IS-1 1Λ, αμ/αι-100Λ/μ3		170		μC	

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

