UNISONIC TECHNOLOGIES CO., LTD **RBA5104** **Preliminary** #### LINEAR INTEGRATED CIRCUIT # FAN REMOTE CONTROL ENCODER #### DESCRIPTION UTC RBA5104 is a remote control encoder mainly used for Fan remote control, air cleaner, humidifier, heater and other electrical home appliance remote control application. 2 bits custom code options and maximum 8 input channels offers great freedom in application. UTC RBA5104 uses a special coding technique to increase noise immunity to a very great extent. #### ■ FEATURES - * Wide operation voltage: V_{CC}=2.2~4.0V - * Noise immunity technique - * 2 bits custom code - * 8 input channels maximum - * Uses 455kHz crystal oscillator - * Key-in oscillation, reduce static current dissipation. - * 38kHz carrier transmits output. - * LED indicates work state #### ORDERING INFORMATION Note: xx: Output Voltage, refer to Marking Information. #### ■ PIN CONFIGURATION #### ■ PIN DESCRIPTION | PIN NO. | PIN NAME | DESCRIPTION | | | | |---------|----------|---|--|--|--| | 1~2 | C1, C2 | Custom Code Option: Built In Pull-Up Resistor, | | | | | | | Grounding Denote "0", Floating Denote "1". | | | | | 3~7 | K1~K5 | Key Input Pins, Built In Pull-Up Resistor. | | | | | 8 | V_{SS} | Negative Power Supply. | | | | | 9~11 | K6~K8 | Key Input Pins, Built In Pull-Up Resistor. | | | | | 12 | OSCI | 455kHz Oscillator Input Pin. | | | | | 13 | OSCO | 455kHz Oscillator Output Pin. | | | | | 14 | LED | LED Driver Output Indication | | | | | 15 | DOUT | Code Data Output (Contain 38kHz Carrier Signal) | | | | | 16 | V_{DD} | Positive Power Supply. | | | | #### BLOCK DIAGRAM ## ABSOLUTE MAXIMUM RATING (T_A=25°C) | PARAMETER | SYMBOL | RATINGS | UNIT | |-----------------------|------------------|--------------------------------|------| | Supply Voltage | V_{DD} | -0.3~6.0 | V | | Input/Output Voltage | V_{IN} | V_{SS} -0.3V~ V_{DD} +0.3V | V | | Power Dissipation | P_D | 500 | mW | | Operating Temperature | T _{OPR} | -10 ~ +70 | °C | | Storage Temperature | T _{STG} | -40~+125 | °C | Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. ## DC ELECTRICAL CHARACTERISTICS (T_A=25°C, V_{DD}=3V, unless other specified) | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------------|------------------|--|-------------|-------|-------------|------| | Supply Voltage | V_{DD} | | 2.0 | 3.0 | 4.0 | V | | Statia Dawar Discipation | I _{SB} | no load, oscillation is stopped, C1=C2=1 | | 0.1 | | μΑ | | Static Power Dissipation | | no load, oscillation is stopped, C1=C2=0 | | 1.8 | | μΑ | | DOUT Output High Current | I _{OH} | V _{OH} =2.7V | | 2.5 | | mA | | DOUT Output Low Current | I _{OL} | V _{OL} =0.3V | | -0.74 | | mA | | High Input Voltage | V_{IH} | | $0.7V_{DD}$ | | V_{DD} | V | | Low Input Voltage | V_{IL} | | 0 | | $0.3V_{DD}$ | V | | LED High Output Current | I _{OH} | V _{OH} =2.7V | | 2.5 | 10 | mA | | LED Low Output Current | I _{OL} | V _{OL} =0.3V | | -1.0 | | mA | | Oscillation Frequency | f _{OSC} | | | 455 | | kHz | | Pull-up resistor at C1, C2 | R_{C} | V _{IN} =0V | | 4 | | МΩ | | Pull-up resistor at K1~K8 | Ri | V _{IN} =0V | | 250 | | ΚΩ | #### TYPICAL APPLICATION CIRCUIT UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.