FORCE TECHNOLOGIES LTD

FORCE Technologies

2 Megabit CMOS SRAM FTS256S8N

DESCRIPTION:

The FTS256S8N is a Military 256K X 8 high-density, low-power static RAM module comprised of two ceramic 128K X 8 monolithic SRAM's, an advanced high-speed CMOS decoder and decoupling capacitors surface mounted on a co-fired ceramic substrate having side-brazed leads.

The FTS256S8N is available in a 600-mil-wide, 32-pin dual-in-line package that conforms to the same JEDEC standard pin configuration as the future four megabit monolithics.

The FTS256S8N operates from a single +5V supply and all input and output pins are completely TTL-compatible. The low standby power of the FTS256S8N make it ideal for battery-backed applications.

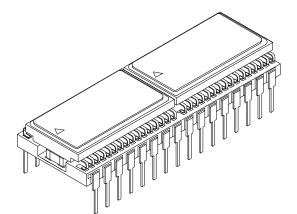
FEATURES:

- 262,144 by 8 bit configuration
- Access Times: 85*, 100, 120, 150ns - Faster Speeds Upon Request
- Low Power Dissipation: 40 μW (typ.) standby 375 mW (typ.) operating
- 2-Volt data retention
- Fully Static Operation No clock or refresh required
- All inputs and outputs are TTL-compatible
- 600 mil, 32-pin JEDEC standard DIP pinout

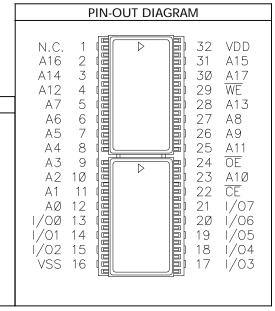
A17

OE

WF


AØ-A16

1/00 - 1/07


FUNCTIONAL BLOCK DIAGRAM

DECODER

* Commercial Only.

PIN NAMES							
Address Inputs							
Data In/Out							
Chip Enable							
Write Enable							
Output Enable							
Power (+5V)							
Ground							
No Connect							

This document contains information on a product that is currently released to production at FORCE Technologies. FORCE reserves the right to change products or specifications herein without prior notice.

SRAM

8 SRAM 128Kx8

28K×8

FTS256S8N

FORCE Technologies

R	RECOMMENDED OPERATING RANGE 1									
Symbol	Characterist	Min.	Тур.	Max.	Unit					
VDD	Supply Voltage	4.5	5.0	5.5	V					
VIH	Input HIGH Vo	2.2		V _{DD} +0.3	V					
VIL	Input LOW Vol	tage	-0.5 ²		0.8	V				
		С	0	+25	+ 70					
TA	Operating Temperature	Ι	-40	+25	+85	°C				
	remperature	M/B	-55	+25	+ 125					

	TRUTH TABLE										
Mode		CE	WE	OE	I/O Pin	Supply Current					
Not Selected		Н	Х	Х	HIGH-Z	Standby					
Not Selected		Х	Х	Х	HIGH-Z	Standby					
Dout Disable		L	Н	Н	HIGH-Z	Active					
Read		L	Н	L	Dout	Active					
Write		L	L	Х	DIN	Active					
H = HIGH		L =	LOW	/	X =	Don't Care					

DC OUTPUT CHARACTERISTICS										
Symbol	Parameter	Conditions	Min.	Max.	Unit					
Voh	HIGH Voltage	lон = -1.0mA	-	V						
VOL	LOW Voltage	$I_{OL} = 2.1 \text{mA}$		0.4	V					

	ABSOLUTE MAXIMUM RATINGS 3								
Symbol	Parameter	Max.	Unit						
Тятс	Storage Temperature	-65 to +150	°C						
TBIAS	Temperature Under Bias	-55 to +125	°C						
V _{DD}	Supply Voltage ¹	-0.5 to + 7.0	V						
V _{I/O}	Input/Output Voltage ¹	-0.5 to V _{DD} +0.5	V						

1										
CA	CAPACITANCE ⁴ : $T_A = 25^{\circ}C$, $F = 1.0MHz$									
Symbol	Parameter	Max.	Unit	Condition						
CADR	Address Input	35								
CCE	Chip Enable	20								
CWE	Write Enable	30	рF	$V_{IN} = 0V$						
COE	Output Enable	30								
Ci/o	Data Input/Output	35								

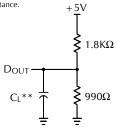
	DC OPERATING CHARACTERISTICS: Over operating ranges									
Symbol	Characteristics	Test Conditions	TYP.	C I			Μ	Unit		
Symbol	Characteristics	Test conditions	· · · · ·	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Input Leakage Current VIN = 0V to VDD		-	-10	+ 10	-10	+ 10	-10	+10	μΑ	
IOUT	Output Leakage Current	$\frac{V_{I/O}}{CE} = \frac{0}{OE} V \text{ to } V_{DD},$ $\overline{CE} \text{ or } \overline{OE} = V_{IH}, \text{ or } \overline{WE} = V_{IL}$	-	-10	+ 10	-10	+ 10	-10	+10	μΑ
ICC1	Active Supply Current	$\label{eq:cell} \begin{array}{l} \overline{CE} \ = \ V_{IL}, \ V_{IN} \ = \ V_{IH} \ or \ V_{IL}, \\ I_{OUT} \ = \ 0mA \end{array}$	30		50		50		60	mA
ICC2	Operating Supply Current	$\begin{array}{l} Cycle = min., Duty = 100\%, \\ I_{OUT} = 0mA \end{array}$	75		110		110		120	mA
I _{SB1}	Full Standby Supply Current	$V_{IN} \ge V_{DD}$ -0.2V or $V_{IN} \le V_{SS}$ +0.2V, $\overline{CE} \ge V_{DD}$ -0.2V	8		200		400		1000	μΑ
I _{SB2}	Standby Current	$\overline{CE} = V_{IH}, V_{IN} = V_{IH} \text{ or } V_{IN}$	3		6		6		6	mA
VOL	Output Low Voltage	$I_{OUT} = 2.1 \text{mA}$	-		0.4		0.4		0.4	V
Voh	Output High Voltage	$I_{OUT} = -1.0 \text{mA}$	-	2.4		2.4		2.4		V

* Typical measurements made at $+25^{\circ}$ C, Cycle = min., V_{DD} = 5.0V.

FORCE **TECHNOLOGIES LTD**

FORCE Technologies

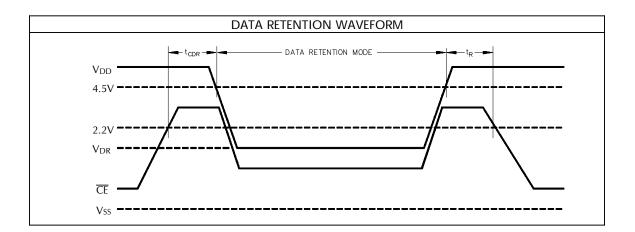
FTS256S8N

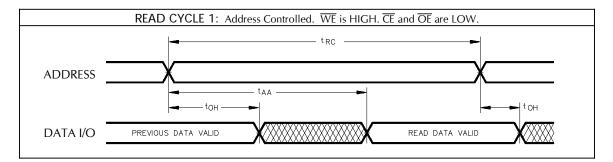

	DATA RETENTION CHARACTERISTICS									
Symbol	Parameter	Test Conditions	Тур.	(2			М	/B	Unit
Symbol	Faranieter		(+)	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Vdr	Data Retention Voltage	$\overline{CE} \ge V_{DR} - 0.2V$	-	2.0	5.5	2.0	5.5	2.0	5.5	V
I _{CCDR2}	Data Retention Supply Current	$V_{DR} = 2.0V$	4		90		170		700	μΑ
I _{CCDR3}	Data Retention Supply Current	$V_{DR} = 3.0V$	4		100		200		800	μΑ
tcdr	Chip Disable to Data Retention Time		-	0		0		0		ns
tR	Recovery Time	t _{RC} = Read Cycle Timing		5		5		5		ms
+ Typical mea	surement made at +25°C, Cycle =	min., V _{DD} = 5.0V.								

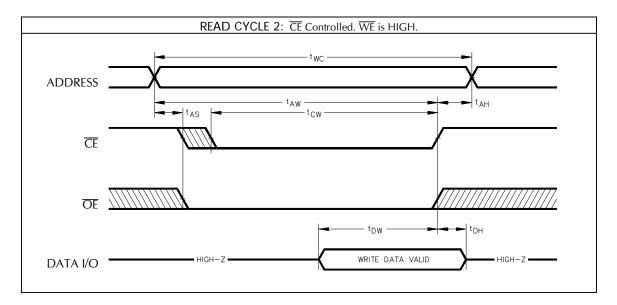
AC TEST CONDITIONS							
Input Pulse Levels	0V to 3.0V						
Input Pulse Rise and Fall Times	5ns *						
Input and Output Timing Reference Levels	1.5V						

* Transition measured between 0.8V and 2.2V.

	Output Load								
Load	CL	Parameters Measured							
1	100pF	except t _{CLZ} , t _{OLZ} , t _{CHZ} , t _{OHZ} , t _{WHZ} , and t _{WLZ}							
2	5pF	tCLZ, tOLZ, tCHZ, tOHZ, tWHZ, and tWLZ							

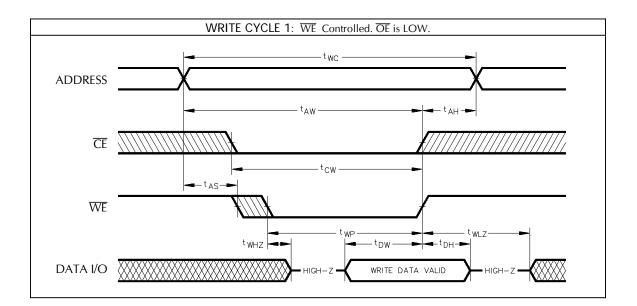

	AC OPERATING CONDITIONS AND CHARACTERISTICS - READ CYCLE: Over operating ranges										
No.	Symbol	Parameter	85	ins	10	Ons	12	Ons	15	Ons	Unit
110.	NO. Symbol	r al allietei	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
1	t _{RC}	Read Cycle Time	85		100		120		150		ns
2	t _{AA}	Address Access Time		85		100		120		150	ns
3	tco	Chip Enable to Output Valid		85		100		120		150	ns
4	tov	Output Enable to Output Valid		40		45		50		60	ns
5	tон	Output Hold from Address Change	10		10		10		10		ns
6	tclz	Chip Enable to Output in LOW-Z ^{4,6}	5		5		10		10		ns
7	tolz	Output Enable to Output in LOW-Z ^{4,6}	0		0		0		0		ns
8	t CHZ	Chip Enable to Output in HIGH-Z ^{4,6}		45		45		50		60	ns
9	tонz	Output Enable to Output in HIGH-Z ^{4, 6}		30		30		35		45	ns

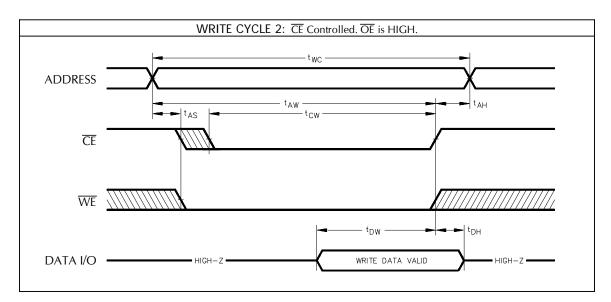

	AC OPERATING CONDITIONS AND CHARACTERISTICS					- WRITE CYCLE: Over operating ranges ⁷					
No.	Symbol	ol Parameter		ns	100	Ons	120	Ons	150ns		Unit
140.	NO. Symbol	r al allietei	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
10	twc	Write Cycle Time	85		100		120		150		ns
11	taw	Address Valid to End of Write	80		90		105		115		ns
12	tcw	Chip Enable to End of Write	80		90		105		115		ns
13	tow	Data to Write Time Overlap	35		35		40		50		ns
14	tdн	Data Hold Time from Write Time	0		0		0		0		ns
15	twp	Write Pulse Width	55		65		75		85		ns
16	tas	Address Set-up Time ***	0		0		0		0		ns
17	tah	Address Hold Time	5		5		5		5		ns
18	twnz	Write Enable to Output in HIGH-Z ^{4,6}		30		30		35		40	ns
19	twlz	Write Enable to Output in LOW-Z ^{4, 6}	5		5		5		5		ns
*** Val	id for both Re	ad and Write Cycles.							-		;



FTS256S8N

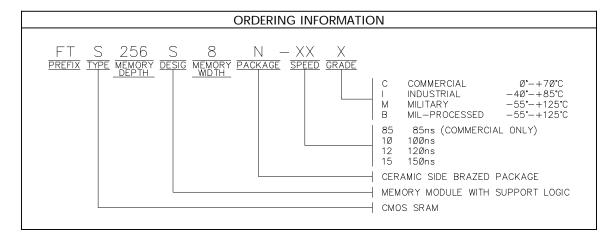
FORCE Technologies




4

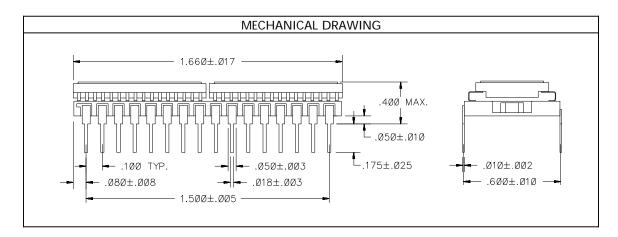
FORCE Technologies

FTS256S8N



WAVEFORM KEY			
Data Valid	Transition from	Transition from	Data Undefined
	HIGH to LOW	LOW to HIGH	or Don't Care

FORCE TECHNOLOGIES LTD


FTS256S8N

FORCE Technologies

NOTES:

- 1. All voltages are with respect to Vss.
- 2. -2.0V min. for pulse width less than 20ns (V_{IL} min. = -0.5V at DC level).
- 3. Stresses greater than those under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 4. This parameter is guaranteed and not 100% tested.
- 5. Transition is measured at the point of \pm 500mV from steady state voltage.
- 6. When $\overline{\text{OE}}$ and $\overline{\text{CE}}$ are LOW and $\overline{\text{WE}}$ is HIGH, I/O pins are in the output state, and input signals of opposite phase to the outputs must not be applied.
- 7. The outputs are in a high impedance state when \overline{WE} is LOW.

Ashley Crt, Henley, Marlborough, Wilts, SN8 3RH UK **Tel: +44(0)1264 731200 Fax:+44(0)1264 731444** E-mail info@forcetechnologies.co.uk tech@forcetechnologies.co.uk sales@forcetechnologies.co.uk

www.forcetechnologies.co.uk

Unless otherwise stated in this SCD/Data sheet, Force Technologies Ltd reserve the right to make changes, without notice, in the products, Includ -ing circuits, cells and/or software, described or contained herein in order to improve design and/or performance. Force Technologies resumes no responsibility or liability for the use of any of these products, conveys no licence or any title under patent, copyright, or mask work to these products, and makes no representation or warranties that these products are free from patent, copyright or mask work infringement, unless otherwise specified.

Life Support Applications

Force Technologies products are not designed for use in life support appliances, devices or systems where malfunction of a Force Technologies product can reasonably be expected to result in a personal injury. Force Technologies customers using or selling Force Technologies products for use in such applications do so at their own risk and agree to fully indemnify Force Technologies for any damages resulting from such improper use or sale.

All trademarks acknowledged

Copyright Force Technologies Ltd 2005