New Jersey Semi-Conductor Products, Inc. 20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960 ## IRF710-713 MTP2N35/2N40 N-Channel Power MOSFETs, 2.25 A, 350-400 V Power And Discrete Division These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits. - Low R_{DS(on)} - V_{GS} Rated at ± 20 V - · Silicon Gate for Fast Switching Speeds - I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature Rugged - Low Drive Requirements - Ease of Paralleling #### Maximum Ratings #### TO-220AB IRF710 **IRF711** IRF712 **IRF713** MTP2N35 MTP2N40 | Symbol | Characteristic | Rating
IRF710/712
MTP2N40 | Rating
IRF711/713
MTP2N35 | Unit | | |-----------------------------------|---|---------------------------------|---------------------------------|------|--| | V _{DSS} | Drain to Source Voltage ¹ 400 | | 350 | ٧ | | | V _{DGR} | Drain to Gate Voltage ¹ 400 $R_{GS} = 20 \text{ k}\Omega$ | | 350 V | | | | V _{GS} | Gate to Source Voltage | ± 20 | ± 20 | V | | | T _J , T _{stg} | Operating Junction and Storage Temperatures | -55 to +150 | -55 to +150 | °C | | | TL | Maximum Lead Temperature
for Soldering Purposes,
1/8" From Case for 5 s | 275 | 275 | °C | | #### Maximum On-State Characteristics | | | IRF710-711 | IRF712-713 | MTP2N35/40 | Unit | |---------------------|---|-------------------|-------------------|-------------------|------| | R _{DS(on)} | Static Drain-to-Source
On Resistance | 3.6 | 5.0 | 5.0 | Ω | | I _D | Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed | 1.5
1.0
6.0 | 1.4
0.9
5.0 | 1.3
0.8
5.0 | A | | Maximum | Thermal Characteristics | | | | | | $R_{\theta JC}$ | Thermal Resistance,
Junction to Case | 6.4 | 6.4 | 2.5 | °C/W | | $R_{\theta JA}$ | Thermal Resistance,
Junction to Ambient | 80 | 80 | 80 | °C/W | | P _D | Total Power Dissipation at T _C = 25°C | 20 | 20 | 50 | . W | NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders. ### IRF710-713 MTP2N35/2N40 | Symbol | Characteristic | Min | Max | Unit | Test Conditions | | |-----------------------|---|------------------|-------|-------|---|--| | Off Charac | teristics | | | | | | | V _{(BR)DSS} | Drain Source Breakdown Voltage ¹ | | | V | $V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$ | | | | IRF710/712/MTP2N40 | 400 | | | | | | | IRF711/713/MTP2N35 | 350 | | | | | | IDSS | Zero Gate Voltage Drain Current | | 250 | μΑ | V _{DS} = Rated V _{DSS} , V _{GS} = 0 V | | | | | | 1000 | μΑ | $V_{DS} = 0.8 \times \text{Rated } V_{DSS},$
$V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$ | | | I _{GSS} | Gate-Body Leakage Current | | ± 500 | nA | V _{GS} = ± 20 V, V _{DS} = 0 V | | | On Charac | teristics | | | | | | | V _{GS(th)} | Gate Threshold Voltage | | | V | | | | | IRF710-713 | 2.0 | 4.0 | | $I_D = 250 \mu A, V_{DS} = V_{GS}$ | | | | MTP2N35/2N40 | 2.0 | 4.5 | | $I_D = 1$ mA, $V_{DS} = V_{GS}$ | | | R _{DS(on)} | Static Drain-Source On-Resistance ² | | | Ω | V _{GS} = 10 V, I _D = 0.8 A | | | | IRF710/711 | | 3.6 | | | | | | IRF712/713/MTP2N35/40 | | 5.0 | | | | | V _{DS(on)} | Drain-Source On-Voltage ² | | 13 | V | V _{GS} = 10 V, I _D = 2.0 A | | | | MTP2N35/2N40 | | 10 | V | V _{GS} = 10 V, I _D = 1.0 A,
T _C = 100°C | | | 9fs | Forward Transconductance | 0.5 | | s (හ) | V _{DS} = 10 V, I _D = 0.8 A | | | Dynamic C | haracteristics | | | | | | | Ciss | Input Capacitance | | 200 | ρF | V _{DS} = 25 V, V _{GS} = 0 V | | | Coss | Output Capacitance | | 50 | pF | f = 1.0 MHz | | | C _{rss} | Reverse Transfer Capacitance | | 15 | pF | | | | Switching (| Characteristics (T _C = 25°C, Figures 11, | 12) ³ | | | | | | t _{d(on)} | Turn-On Delay Time | | 10 | ns | V _{DD} = 200 V, I _D = 0.8 A | | | t _r | Rise Time | | 20 | ns | $V_{GS} = 10 \text{ V}, R_{GEN} = 50 \Omega$
$R_{GS} = 50 \Omega$ | | | · t _{d(off)} | Turn-Off Delay Time | | 10 | ns | | | | t _f | Fall Time | | 15 | ns | 1 | | | Qg | Total Gate Charge | | 7.5 | nC | V _{GS} = 10 V, I _D = 2.0 A
V _{DD} = 200 V | | ### IRF710-713 MTP2N35/2N40 Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted) | Symbol | Characteristic | Тур | Max | Unit | Test Conditions | |-----------------|--------------------------|-----|-----|------|---| | Source-Dra | in Diode Characteristics | | | | | | V _{SD} | Diode Forward Voltage | | | | | | | IRF710/711 | | 1.6 | ٧ | I _S = 1.5 A; V _{GS} = 0 V | | | IRF712/713 | | 1.5 | V | I _S = 1.3 A; V _{GS} = 0 V | | t _{rr} | Reverse Recovery Time | 380 | | ns | $I_S = 1.5 \text{ A}; dI_S/dt = 25 \text{ A}/\mu S$ | #### Notes Notes $1. \ T_J = +25^{\circ}\text{C to } +150^{\circ}\text{C}$ 2. Pulse test: Pulse width $\leq 80~\mu\text{s}$, Duty cycle $\leq 1\%$ 3. Switching time measurements performed on LEM TR-58 test equipment. #### Typical Performance Curves Figure 1 Output Characteristics Figure 3 Transfer Characteristics Figure 2 Static Drain to Source Resistance vs Drain Current Figure 4 Temperature Variation of Gate to Source Threshold Voltage