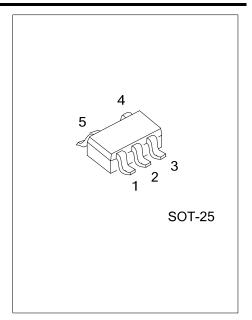


UNISONIC TECHNOLOGIES CO., LTD

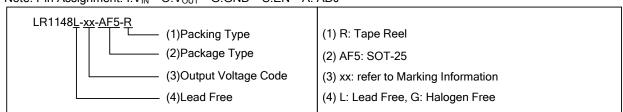
LR1148 cmos ic

600mA LOW DROPOUT LINEAR REGULATOR

■ DESCRIPTION


The UTC LR1148 belonged to lo w-noise, lo w-dropout, linear regulators op erate from 2.3V to 6V input and ar e guar anteed to deliver 60 0mA. W ide rang e of preset output voltage options are available. Built-in low on-resistance transistor provides low dropout voltage and large output current. The UTC LR1148 is designed and optimized for battery-powered systems to work with low noise.

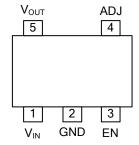
The UT C **LR1148** cons umes less than 0.01 $\,\mu\text{A}$ in shutdo wn mode. Other features i $\,$ nclude ultr a lo w dropout voltag e, current limiting protect ion, therma I shut down prote ction and high ripple rejection ratio.


■ FEATURES

- * 600mA Guaranteed Output Current
- * 0.01µA Shutdown Current
- * Ultra Low Dropout Voltage
- * Low Temperature Coefficient
- * Current Limiting Protection
- * Thermal Shutdown Protection
- * Excellent Line/Load Transient

ORDERING INFORMATION

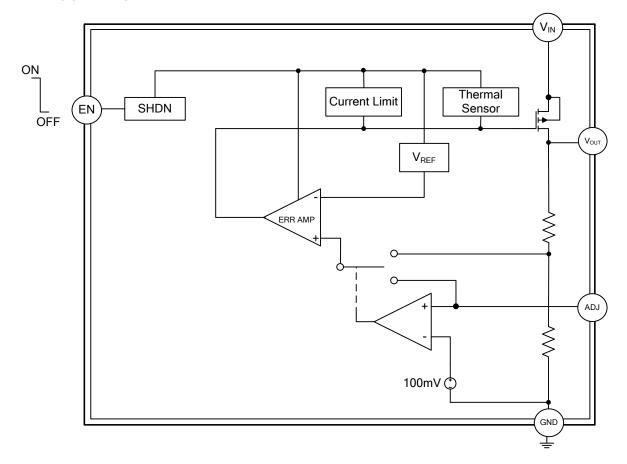
Ordering Number		Dookses	Pin Assignment					De alsia a	
Lead Free	Halogen Free	Package	1	2	3	4	5	Packing	
LR1148L-xx-AF5-R	LR1148G-xx-AF5-R	SOT-25	I	G	S	Α	0	Tape Reel	
Note: Pin Assignment: I:V _{IN}	O'VOUT G'GND S'EN	A· AD.I	·		·				


MARKING INFORMATION

PACKAGE VOL	T AGE CODE	MARKING
SOT-25	AD :ADJ	Voltage Code SRXXD L:Lead Free G: Halogen Free

<u>www.unisonic.com.tw</u> 1 of 4

LR1148 cmos ic


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NAME	DESCRIPTION
V _{IN}	Power Input Voltage. Supply voltage can range from 2.3V to 6V. Bypass with a 1µF capacitor to GND.
GND Ground	d
EN	Active-Low Shutdown Input. A logic low at EN reduces supply current to $0.01\mu A$. Connect EN to V_{IN} for normal operation.
V_{OUT}	Output Voltage
ADJ	Voltage-adjust Input. Connect ADJ to GND for preset output. Connect an external resistive voltage-divider from V _{OUT} to ADJ to set the output voltage between 0.8V and 5V.

■ BLOCK DIAGRAM

LR1148 cmos ic

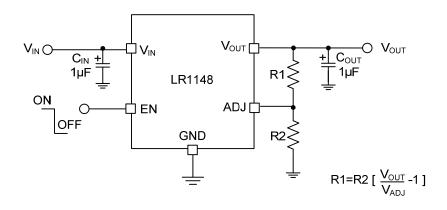
■ ABSOLUTE MAXIMUM RATING $(T_A=25^{\circ}C)$

PARAMETER SYMBOL		RATINGS	UNIT
Supply Voltage	V _{IN} 6.5		V
Power Dissipation	P _D 360		mW
Junction Temperature	T _J +	125	°C
Ambient Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER SYMBOL		RATINGS	UNIT
Junction to Ambient	θ_{JA}	260	°C/W
Junction to Case	θ_{JC}	81	°C/W


ELECTRICAL CHARACTERISTICS

 $(C_{IN} = 1\mu F, C_{OUT} = 1\mu F, T_A = 25^{\circ}C, unless otherwise specified)(Note 1)$

V _{IN} V _{OUT} I _{OUT} I _{LIMIT} I _{GND}	T _A =25°C , lout T _A =0~85°C, lout V _{OUT} =0V lout = 0mA	_{DUT} = 1mA~0.6A	MIN 2.3 -2 -3	600 1	6 2 3	UNIT V % mA
V _{OUT} I _{OUT} I _{LIMIT} I _{GND}	$T_A=0~85^{\circ}C$, I_C $V_{OUT}=0V$ $I_{OUT}=0$ mA	_{DUT} = 1mA~0.6A	-2	600	2	% % mA
I _{OUT} I _{LIMIT}	$T_A=0~85^{\circ}C$, I_C $V_{OUT}=0V$ $I_{OUT}=0$ mA	_{DUT} = 1mA~0.6A		600		% mA
I _{OUT} I _{LIMIT}	V _{OUT} =0V I _{OUT} = 0mA		-3	600	3	mA
I _{LIMIT}	I _{OUT} = 0mA	00mA		600 1		
I _{GND}	I _{OUT} = 0mA	00mA		1		
		00mA				Α
	I _{OUT} = 1mA to 6	00mA		70		μΑ
V_{D}		I _{OUT} = 1mA to 600mA		80		μΑ
V D	I -600m A	V _{OUT(NOM)} <=1.8V	500		1200	mV
	I _{OUT} =600mA	1.8V <v<sub>OUT(NOM)</v<sub>		200	450	IIIV
VOUT N × VOUT	$V_{IN}=V_{OUT}+V_{D}\sim 6V$			0.08	0.55	%/V
∆V _{OUT}	$V_{IN}=V_{OUT}+V_{D}$, $I_{OUT}=10$ mA \sim 60	0mA	0.25	5	1.0	%
eN	f=10Hz to100kHz, C _{BP} =0.1nF			24		μV _{RM} s
I _{OFF} EN=	GND			0.01	5	μA
V_{IH}			2			V
V_{IL}					0.4	V
T _{SHDN}				170		°C
T _{SHDN}				20		°C
V_{REF}	Measured on A	ADJ, I _{OUT} =10mA	0.774	8.0	0.826	V
				100		mV
		·	8.0	_		V
	eN IOFF EN= VIH VIL TSHDN	$\begin{array}{c c} V_{OUT} & V_{IN} = V_{OUT} + V_D \sim 6 \\ eN & I_{OUT} = 10 \text{mA} \sim 60 \\ eN & f = 10 \text{Hz} \text{ to} 100 \text{k} \\ I_{OFF} = EN = & GND \\ V_{IH} & V_{IL} & \\ V_{ISHDN} & OTS_{SHDN} & OTS_{SHDN} \\ \end{array}$	$\begin{array}{c c} & & & & & & & & & & \\ \hline N^{N}OUT & & & & & & & \\ \hline N^{N}OUT & & & & & & \\ \hline N^{N}OUT & & & & & & \\ \hline N^{N}OUT & & & \\ \hline N^{N}OUT & & &$	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.8V <v<sub>OUT 200 450 </v<sub>

- Note: 1. Specifications are production tested at T_A=25°C. Pecifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls(SQC).
 - 2. The minimum operating value for V_{IN} is equal to either $[V_{OUT(NOM)} + V_D]$ or 2.3V, whichever is greater
 - 3. Dropo ut voltage is d efined as the voltage from the inp ut to output when o utput is 2% below the nominal value.
 - 4. Output voltage lin e regulation is defined as the change i n output voltage from the nominal val ue resulting from a change in the inp ut line voltage. Output voltage load regulation is defined as the change in out put voltage from the nominal value as the load current increases from no load to full load.
 - 5. Regulation is measured at constant junction temperature by using a 20ms current pulse. Devices are tested for load regulation in the load range from 10mA to 600mA

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.