Altmel

Atmel SHMART

SAM4CP16B

Atmel | SMART Power Line Communications Device

DATASHEET

Description

The SAM4CP series belongs to Atmel® | SMART energy portfolio. It is based on SAM4C, a
high performance 32-bit, dual core ARM® Cortex®-M4 RISC processor embedding a PRIME
PLC [Power Line Communication] modem. The cores are able to operate at a maximum speed
of 120 MHz, featuring 1 Mbyte of embedded Flash, 128 kBytes of SRAM and on-chip cache for
each core.

SAMA4CP unique dual ARM Cortex-M4 architecture supports implementation of signal pro-
cessing, application and communications firmware in independent partitions. SAM4CP16B
system-on-chip includes a PRIME modem, being PRIME [PoweR line Intelligent Metering Evo-
lution] an open standard technology used for Smart Grid applications, mainly Smart Metering.
Atmel PRIME modem implementation includes enhanced PHY layer features such as addi-
tional robust modes and frequency band extension.

The peripheral set includes advanced cryptographic engine, anti-tamper, floating point unit
(FPU), 5x USARTS, 2x UARTSs, 2x TWIs, 6 x SPI, as well as 1 PWM timer, 2x three channel
general-purpose 16-bit timers an RTC, a 10-bit ADC, and a 46 x 5 Segmented LCD controller.

The SAM4CP series is a scalable platform providing, alongside Atmel’s industry leading SAM4
standard microcontrollers, unprecedented cost structure, performance and flexibility to smart
meter designers worldwide.

It operates from 1.62V to 3.6V and is available in 176-pin LQFP package.

43051E-ATPL-08/14

1. Features

e Application/Master Core (CM4P0)

ARM Cortex-M4 running at up to 120 MHz'")

Memory Protection Unit (MPU)

DSP Instruction

Thumb®-2 instruction set

Instruction and Data Cache Controller with 2 Kbytes Cache Memory
Memories

e 1024 Kbytes of Embedded Flash for Program Code (I-Code bus) and Program Data (D-Code bus)
with Built-in ECC (2-bit error detection and 1-bit correction per 128 bits)

128 Kbytes of Embedded SRAM (SRAMO) for Program Data (System bus)

8 Kbytes of ROM with embedded boot loader routines (UART) and In-Application Programming (IAP)
routines

e Co-processor (CM4P1), provides ability to separate application, communication or metrology functions
ARM Cortex-M4F running at up to 120 MHz

IEEE® 754 Compliant, Single precision Floating-Point Unit (FPU)

DSP Instruction

Thumb-2 instruction set

Instruction and Data Cache Controller with 2 Kbytes Cache Memory

Memories

e 16 Kbytes of Embedded SRAM (SRAM1) for Program Code (I-Code bus) and Program Data (D-Code
bus and System bus)

e 8 Kbytes of Embedded SRAM (SRAM2) for Program Data (System bus)
e Symmetrical/Asynchronous Dual Core Architecture
e |Interrupt-based Interprocessor Communication
e Asynchronous Clocking
e One Interrupt Controller (NVIC) for each core
e Each Peripheral IRQ routed to each NVIC Input
e Cryptography
e High-performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)
e TRNG (up to 38 Mbit/s stream, with tested Diehard and FIPS)
e Classical Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA
e Integrity Check Module (ICM) based on Secure Hash Algorithm (SHA1, SHA224, SHA256), DMA assisted
e Safety
e 4 Physical Anti-tamper Detection 1/0 with Time Stamping and Immediate Clear of General Backup Registers
e Security bit for Device Protection from JTAG accesses
e Shared System Controller
e Power Supply
e Embedded Core and LCD Voltage Regulator for single supply operation
e Power-on-Reset (POR), Brownout Detector (BOD) and Watchdog for safe operation
e Low Power Sleep and Backup modes
e Clock
e 3 to 20 MHz Quartz or ceramic resonator oscillators with Clock Failure Detection
e Optional low-power 32.768 kHz crystal oscillator for RTC
e High precision 4/8/12 MHz factory trimmed internal RC oscillator with on-the-fly trimming capability
[}

One High Frequency PLL up to 240 MHz, One 8 MHz PLL with internal 32 kHz input, as source for
High Frequency PLL

e Low power Slow Clock Internal RC oscillator as permanent clock

Atmel SAM4CP [DATASHEET] 2

43051E-ATPL-08/14

Atmel

Ultra low-power RTC with Gregorian and Persian Calendar, waveform generation in low-power modes and
clock calibration circuitry for 32.768 kHz crystal frequency compensation circuitry

Up to 23 peripheral DMA (PDC) channels

Shared Peripherals

One Segmented LCD Controller
e Display Capacity of 46 Segments and 5 Common Terminals
e Software Selectable LCD Output Voltage (Contrast)
e Low Current Consumption in Steady State Mode
e Can be used in Backup mode
Up to 5 USARTS with ISO7816, IrDA®, RS-485, SPI and Manchester Mode

Two 2-wire UARTSs with one UART (UART1) supporting optical transceiver providing an electrically isolated
serial communication with hand-help equipment, such as calibrators, compliant with ANSI-C12.18 or
IEC62056-21 norms

Two 400 kHz Master/Slave and Multi-Master Two-wire Interface (1°C compatible)
One SPI

Two 3-Channel 16-bit Timer/Counter with capture, waveform, compare and PWM mode. Quadrature
Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor

4-channel 16-bit Pulse Width Modulator
32-bit Real-time Timer

PRIME PLC

Modem
e Power Line Carrier Modem for 50 Hz and 60 Hz mains
e 97-carriers OFDM PRIME compliant
e DBPSK, DQPSK, D8PSK modulation schemes available
[]

Additional enhanced modes available: DBPSK Robust, DQPSK Robust, named “PRIME + Robust” in
this datasheet

Eight selectable channels between 42kHz to 472kHz available. Only one channel can be active at a
time
Baud rate Selectable: 5.4 to 128.6 kbps
Four dedicated buffers for transmission/reception
Up to 124.6 dBuVrms injected signal against PRIME load
e Up to 79.6 dB of dynamic range in PRIME networks
Automatic Gain Control and continuous amplitude tracking in signal reception
Class D switching power amplifier control
Integrated 1.2V LDO regulator to supply analog functions

Medium Access Control co-processor features
e Viterbi soft decoding and PRIME CRC calculation
e 128-bit AES encryption
e Channel sensing and collision pre-detection

Analog Conversion Block

8-channel, 500 kS/s, Low Power, 10-Bit SAR ADC with Digital averager providing 12-bit resolution at 30
kS/s

Software Controlled On-Chip Reference ranging from 1.6V to 3.4V
Temperature Sensor and Backup Battery Voltage Measurement Channel

SAMA4CP [DATASHEET] 3

43051E-ATPL-08/14

e Debug

e Star Topology AHB-AP Debug Access Port Implementation with common SW-DP / SWJ-DP providing
higher performance than daisy-chain topology

e Debug Synchronization between both Cores (cross triggering to/from each core for Halt and Run Mode)

e Up to 69 I/O lines with external interrupt capability (edge or level sensitivity), Schmitt Trigger, Internal Pull-
up/pull-down, Debouncing, Glitch Filtering and On-die Series Resistor Termination

e Three Parallel Input/Output Controllers
e Packages
e 176-lead LQFP, 24 x 24 mm, pitch 0.5 mm
Note: 1. 120 MHz: -40/+85°C, VDDCORE = 1.2V or using internal voltage regulator.

1.1 Configuration Summary
Table 1-1 summarizes the configurations of the device family.

Table 1-1. Configuration Summary

Feature SAM4CP16B
Flash 1024 Kbytes
SRAM 128 + 16 + 8 Kbytes
Package LQFP 176
Number of PIOs 69
16-bit Timer 6 ch.
16-bit PWM 4 ch.
UART / USART 2/5
sPI (M 6
TWI 2
10-bit ADC Channels® 7
Crypto AES, CPKCC, ICM (SHA), TRNG
Segmented LCD 46x5
Flash Page Size 512
Flash Pages 2048
Flash Lock Region Size 8192
Flash Lock Bits 128

Notes: 1. Using SPI mode of USART.
2. One channel is reserved for internal temperature sensor, one for battery voltage measurement on VDDBU.

Atmel SAMACP [DATASHEET] 4

43051E-ATPL-08/14

1.2 SAMACP application block diagram

Figure 1-1. SAMA4CP application block diagram

Slow Clock
Crystal

|

20MHz
Crystal

l

PLC Coupling PLC

l

Zero Crossing

RECTIFIER

DC/DC

MAINS 3Vv3

115/230 VAC

RESET

FWUP & TMPO

BACK-UP BATTERY

TWI
2 kB EEPROM

SAMACP16B

SPI1 & USART1 I
1 Xplained PRO
JTAG I
I JTAG
RS485
Transceiver ~| RS485
I USARTO I
| BN /MIMO
UARTO & UART1 [
| UARTs CMOS
UART
to -l B Micro USB Port
usB
SEGs
LCD
COMs
GPIOs
f User LED’s

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

2.

Figure 2-1.

TST —>»} System Controller
pek02) <> |€——
PLLA [Serial Wire and JTAG Debug Port (SW-DP / SWJ-DP)]
8 MHz
VDDPLL —3> PMC ¢ ¢
PLLB
High Freq. Instr./Data ICM (SHA) ALIB AT | ALIB AR Instr./Data
ache ! Cache
RCOSC (ntegrity = Cortex-M4F
bMA© 2KkBCache | f == ===~ L il Y] 2«8 cache DAY
XTAL OSC [DMA < Memory
3-20 MHz DsP
CM4PO CMA4P1
Automatic ICode / DCode bus System bus I ICode / DCode bus System bus
Power Switch ‘ ‘
Backup Zone Master Master/Slave Master Master Master Master Master Master/Slave Master
XOUT32 <€
XIN32 High Speed AHB Multilayer Bus Matrix O High Speed AHB Multilayer Bus Matrix 1
ERASE. <4 D > Slave Slave Slave Slave Slave Slave/Master Slave/Master Slave Slave Slave
SHDN <& i Supply
FWUP | Controller
RTCOUTO <—>D<—
Backup Reg (16) oo ROM CPKCC Asynchronous soue Voeus
AHB to APB
™P 13 € RS SRAM 0 (Classical Public AHB to AHB Bridge 1 SRAM 2 SRAM 1
TMPO > 1024 kB " (SAM-BA Key Cryptography Bridge
o 128 kB CPKCL) Controller) 8kB 16 kB
Dual Watchdog —
VDDCORE =3 [_puaviachios | > (<> F
Supp.Mon PDC1 SPIT_NPCS[1:3]
— o - <> SPIT_NPCSO
ese -+ Bl - SPI1_MISO1
NRST <——> < »{ [« spi_mosit
<> SPCK1
PIO Controller AHsto APB PDC1 O <> uTXD1
Bridge 0 > UART1 f«— <} urxD1
VDDOUT Core Voltage Optical Port
Regulator
VDDIN >
LCD Voltage |«—> PWM PWM[0:3]
< >
VDDLCD <& = Regulator
Interprocessor
A Communication
TWCKO & e URST)
TWDO [PDCO |
TWCKT ¢ PDCO| [TAnalog VDDIN AN
- TWIT <> —
TWD1 neouiter 3> VDDOUT AN
s
URXDO & L W . Digital VDDIN PLC
UTxDO > PDCO S A M4(P Eo | s 3> VDDOUT PLC
RXDO < > .
™00 <+——> |[—> o L PLL |« VDDPLL PLC
SCko <+ < > USARTO > -
RTSO & <
cTS0 < >| [Poco) e M
v VRC
RXD1 > o <1 — VIMA
o1 <) > ! IFALE < — vieA
SCK1 < USART1 <> e —— > cLKouT
RTS1 <& <+ ' ~<—————— CLKEA
TS -+ I »] PDCO ~<~———1 > ClKkes
— B — PLLINIT
RXD2 & > > -1 SRer
TXD2 - . <——————]— VZCROSS
Sﬁﬁg - > :—> USART2 ———— INTEST [0:9]
- > > EMIT[0:11
cTs2 PDCO > Aecion)
» TXRX [0:1]
RXD3 & > <
TXD3 B <
SCK3 [———>| USART3
RTS3 & b
1S3 4———» |——> PDCO _
RXD4 g e »| <> comio.4]
- > > egment
TXD4 ¢ < > I ey > SEGI3.47)
7 T P Contoler Dl b
T4 = > > PDCO (IPCO) —
TCLK[0:2] »[Timer Counter A TrUeRanGom poco| [Temp.Sensor) . |,
TIOA[0:2] [Number Generator |~ i b g r“ » ADTRG
TioB[02] % : 0 I LOLLARC - <} AD01)
— - AD[3.5]
TCLK[3:5] —= > > Timer Counter B Digital Averager L
TIOA[3:5] —a >
TC[3.5]
TIOB[3:5] — >

Block Diagram

SAM4CP16B 176-pin Block Diagram

o5y

(O3

S &
| S &

QO Ny

Atmel

Sub-system 0

Sub-system 1

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

3. Signal Description

Table 3-1 gives details on signals names classified by peripheral.

Table 3-1. Signal Description List
_) Type Active Voltage
Signal Name Function Level reference Comments
Power Supplies
VDDIO Power 3.0V to 3.6V
VDDBU Power 1.6V to 3.6V
VDDIN Power 2.5V to 3.6V
VDDLCD Power 2.5V to 3.6V®@
VDDOUT Power 1.2V
VDDPLL Power 1.08V to 1.32V
VDDCORE Power 1.08V to 1.32V
See Table 5-1 on page 13
VDDPLL PLC Power 1.2V
VDDIN PLC Power 3.0V to 3.6V
VDDOUT PLC Power 1.2V
VDDIN AN Power 3.0V to 3.6V
VDDOUT AN Power 1.2V
GND Power
AGND Power
Clocks, Oscillators and PLLs
XIN Main Crystal Oscillator Input Analo
XOUT Main Crystal Oscillator Output Digita? vbblo
XIN32 Slow Clock Crystal Oscillator Input Analo
XOUT32 Slow Clock Crystal Oscillator Output Digita? VDDBU
PCKO - PCK2 Programmable Clock Output Output VDDIO
CLKEA PLC External Clock Input Input VDDIO
CLKEB PLC External Clock Input/Output 110 VDDIO
CLKOUT 10MHz External Clock Output Output VDDIO
Real Time Clock
To use this pin, the JTAG
RTCOUTO Programmable RTC waveform output OQutput VDDIO interface must be used in
SWD Mode
FWUP Force Wake-up input Input Low VDDBU External Pull-up needed
TMPO Anti-tampering Input 0 Input VDDBU
TMP1 - TMP3 Anti-tampering Inputs 1 to 3 Input VDDIO
0: The device is in
SHDN Active Low Shut-down Control Output VDDBU Backup mode
1: The device is running
(not in Backup mode)
Serial Wire / JTAG Debug Port - SWJ-DP
JTAGSEL JTAG Selection Input | High | VDDBU EjﬁTjinT(SI)ntemal

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

7

Table 3-1. Signal Description List (Continued)

Tvpe Active Voltage
Signal Name Function yp Level reference Comments
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO (T)iit Data Out / Trace Asynchronous Data Output VDDIO
Test Mode Select Input /
TMS/SWDIO P Input/
Serial Wire Input/Output 110
Flash Memory
Flash and NVM Configuration Bits Erase .
ERASE Input High VDDIO
Command
Reset / Test
NRST Synchronous Microcontroller Reset 1/0 Low VDDIO ESI:TI?)nth Internal
TST Test Select Input vDDBU | ermanent Intermal
pull-down.
ARST PLC Asynchronous Reset Input Low VDDIO Ejﬁszna?t Internal
SRST PLC Synchronous Reset Input Low VDDIO ESI?T:?)ng‘Tt Internal
PLL INIT PLC PLL Initialization Signal Input | Low VDDIO Ejﬁf‘;?’”ﬁ’)‘t Internal
PPLC (PRIME Power Line Communications) Transceiver
Different configurations
EMITO - EMIT11 PLC Transmission ports® Output VDDIO allowed depending on
external topology and
net behaviour
AGCO - AGC5 PLC Automatic Gain Control Output VDDIO
TXRXO0 - TXRX1 PLC Ext. coupling TxRx control Output VDDIO
VIMA Negative Differential Voltage Input Input VDDOUT AN
VIPA Positive Differential Voltage Input Input VDDOUT AN
VRP Internal Reference “Plus” Voltage Output VDDOUT AN
VRM Internal Reference “Minus” Voltage Output VDDOUT AN
VRC Common-mode Voltage Output VDDOUT AN
VZ CROSS Mains Zero-Cross Detection Signal® Input VDDIO Zg\r,vﬂar&?nt Internal pull-
Permanent Internal
pull-up. @
INTESTO PLC Internal Test Input VDDIO This pin must be
connected to INTEST5
(pin 144).
Permanent Internal
pull-up.)
INTEST1 PLC Internal Test Input VDDIO This pin must be
connected to INTEST6
(pin 45).

Atmel SAM4CP [DATASHEET] 8

43051E-ATPL-08/14

Table 3-1. Signal Description List (Continued)

Type Active Voltage

Signal Name Function Level reference Comments
Permanent Internal
pull-up. @

INTEST2 PLC Internal Test Input VDDIO This pin must be
connected to INTEST7
(pin 176).

This pin must be

INTEST3 PLC Internal Test Output VDDIO connected to INTEST8
(pin 111).

This pin must be

INTEST4 PLC Internal Test Output VDDIO connected to INTEST9
(pin 20).

This pin must be

INTESTS PLC Internal Test Qutput VDDIO connected to INTESTO
(pin 94).

This pin must be

INTEST6 PLC Internal Test Qutput VDDIO connected to INTEST1
(pin 95).

This pin must be

INTEST7 PLC Internal Test Output VDDIO connected to INTEST2
(pin 97).

This pin must be

INTESTS8 PLC Internal Test Input VDDIO connected to INTEST3
(pin 99).

This pin must be

INTEST9 PLC Internal Test Input VDDIO connected to INTEST4
(pin 4).

PIO Controller - PIOA - PIOB - PIOC

PAO - PA4,

Parallel 10 Controller A
PA9 - PA31

Digital

PBO - PB29, VDDIO

Parallel 10 Controller B 110
PB31
PCO - PC9 Parallel 10 Controller C

Universal Asynchronous Receiver Transceiver - UARTx

URXDx UART Receive Data Input Analog Mode for Optical

vDDIO Receiver

UTXDx UART Transmit Data Output

Universal Synchronous Asynchronous Receiver Transmitter - USARTx

SCKXx USARTX Serial Clock 110

TXDx USARTx Transmit Data 1/0

RXDx USARTXx Receive Data Input VDDIO

RTSx USARTx Request To Send Output

CTSx USARTXx Clear To Send Input

Timer/Counter - TC

TCLKx TC Channel x External Clock Input Input

TIOAX TC Channel x I/0O Line A 110 VvVDDIO

TIOBXx TC Channel x I/0O Line B 110

Atmel SAM4CP [DATASHEET] 9

43051E-ATPL-08/14

Table 3-1. Signal Description List (Continued)

_) Type Active Voltage
Signal Name Function Level reference Comments
Pulse Width Modulation Controller - PWMC
PWMx PWM Waveform Output for channel x \ Output \ \ VDDIO
Serial Peripheral Interface - SPI
SPI1_MISO Master In Slave Out 110
SPI1_MOSI Master Out Slave In 110
SPI1_SPCK SPI Serial Clock I/0
SPI1_NPCS0 SPI Peripheral Chip Select 0 o | Low vbbio NPeSO s also NSS for
SPI1_NPCS1 -
- SPI Peripheral Chip Select Output Low
SPI1_NPCS3
Segmented LCD Controller - SLCDC
COM[4:0] Common Terminals Qutput
SEG49 VDDIO
Segment Terminals Output
SEG[47:3]
Two-Wire Interface - TWI
TWDx TWIx Two-wire Serial Data 110
TWCKx TWIx Two-wire Serial Clock 110 vbblo
Analog
ADVREF External Voltage Reference for ADC ‘ Analog ‘ ‘
10-bit Analog-to-Digital Converter - ADC
ADO - AD1 Analog ADC input range limited
AD3 - AD5 Analog Inputs Digital VDDIO | to [0 - ADVREF]
ADTRG ADC Trigger Input
Fast Flash Programming Interface - FFPI
PGMENO-PGMEN"1 Programming Enabling
PGMMO0-PGMM3 Programming Mode Input
PGMDO-PGMD15 Programming Data /0
PGMRDY Programming Ready Output High VDDIO
PGMNVALID Data Direction Low
PGMNOE Programming Read Input Low
PGMNCMD Programming Command Low
Notes: 1. VDDLCD must be inferior or equals to (VDDIO/VDDIN - 100mv) if VDDLCD is powered externally.
2. See “Typical Powering Schematics” Section for restrictions on voltage range of Analog Cells.
3. See Table 45-5 on page 1009.
4. See Table 45-11 on page 1018.
5. Different configurations allowed depending on external topology and net behavior.
6. Depending on whether an isolated or a non-isolated power supply is being used, isolation of this pin should
be taken into account in the circuitry design. Please refer to the Reference Design for further information.
AtmeL SAM4CP [DATASHEET] 10

43051E-ATPL-08/14

4. Package and Pinout

41 SAMACP Package and Pinout
411 176-Lead LQFP Package Outline

Figure 4-1. Orientation of the 176-lead LQFP Package

132 89

1] 1]
133 —1 88
176 4
\ = %

u u

1 44

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

11

41.2 176-lead LQFP Pinout

Table 4-1. SAMA4CP 176-lead LQFP Pinout
1 VDDIO 45 INTEST6 89 PA30/XOUT 133 PA15
2 PA2 46 TDI/PBO 90 VDDIO 134 PA16
3 PB6 47 NC 91 NC 135 PA17
4 INTEST4 48 TCK/SWCLK/PB3 92 PA31/XIN 136 VDDIO
5 PB7 49 TMS/SWDIO/PB2 93 CLKOUT 137 ADVREF
6 PB18 50 ERASE/PC9 94 INTESTO 138 GND
7 GND 51 TDOITRACESWOT 95 INTEST1 139 VvVDDIO

PB1/RTCOUTO

8 PB19 52 PC1 96 GND 140 PB31/AD5
9 PB8 53 NC 97 INTEST2 141 PB23/AD4
10 AGND 54 NC 98 GND 142 PB13/AD3
11 VDDOUT AN 55 NC 99 INTEST3 143 GND
12 VIMA 56 ARST 100 VDDPLL 144 INTESTS
13 VIPA 57 PLL INIT 101 PC8 145 PA4/AD1
14 VDDOUT AN 58 PC6 102 PC5 146 EMIT8
15 AGND 59 VDDIO 103 PC4 147 PA12/ADO
16 VRP 60 GND 104 PC3 148 VDDIN
17 VRM 61 CLKEA 105 VDDIO 149 EMIT9
18 VRC 62 VDDIO 106 PC2 150 VDDIN
19 PB22 63 CLKEB 107 PA29 151 EMIT10
20 INTEST9 64 VDDIO 108 PA28 152 VDDOUT
21 PB25 65 VDDBU 109 GND 153 EMIT11
22 VDDIN AN 66 FWUP 110 PA27 154 PB21
23 PB24 67 JTAGSEL 111 INTEST8 155 PB20
24 VDDCORE 68 SHDN 112 VDDCORE 156 VDDIO
25 AGND 69 TST 113 EMITO 157 VDDCORE
26 PB29 70 VDDPLL PLC 114 PA3 158 PAO
27 PB9 71 TMPO 115 PA21 159 VDDOUT PLC
28 PB10 72 GND 116 PA22 160 TXRX0
29 PB11 73 XIN32 117 EMIT1 161 TXRX1
30 VDDIN AN 74 VDDIN PLC 118 EMIT2 162 AGC2
31 PB12 75 VDDIN PLC 119 EMIT3 163 PB27/TMP2
32 PB14 76 XOUT32 120 VDDIO 164 AGC5
33 PB15 77 GND 121 GND 165 VDDLCD
34 PA26 78 VDDOUT PLC 122 EMIT4 166 AGC1
35 GND 79 GND 123 EMITS 167 AGC4
36 PA25 80 NC 124 PA23 168 AGCO
37 VDDIO 81 PB4 125 EMIT6 169 AGC3
38 PA24 82 VDDCORE 126 PA9 170 PB26
39 VZ CROSS 83 PB5 127 PA10 171 VDDIO
40 PA20 84 SRST 128 PA11 172 PB28/TMP3
41 NC 85 PC7 129 EMIT7 173 PB16/TMP1
42 PA19 86 PCO 130 PA13 174 PA1
43 PA18 87 NRST 131 PA14 175 PB17
44 NC 88 VDDIO 132 GND 176 INTEST7

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

12

5. Power Supply and Power Control

5.1 Power Supplies

The SAM4CP has several types of power supply pins. In most cases, a single supply scheme for all power supplies
(except VDDBU) is possible. Figure 5-1 below shows power domains according to the different power supply pins.

Figure 5-1. Power Domains

VDDIN AN

VDDBU VvDDIO VDDPLL VDDCORE

AUTOMATIC POWER i PLLA, Fast RC Osc Cortex-M4 Cortex-M4

v ¢

SWITCH PLLB 4/8/12 MHz (CM4P0) (CM4P1)

PLC Analog

VDDOUT AN <

VDDIN PLC —>
VDDOUT PLC <«

VDDPLL PLC —

VDDOUT

VDDIN H

RC OSC 32 kHz | SRAM, ROM |

PLC Digital I
Voltage Reggulator XTAL OSC 32 kHz . Flash Logic | - .

RTC, RTT, RSTC Peripherals

(SPI, USART, ...)
PIO Controller

v

Input / Output
Buffers

i

PLC PLL Backup, Reg, ...

LCD Analog Buffers
+ Switch Array

;

vDDLCD ADVREF VvDDIO

I

Table 5-1. Power Supply Voltage Ranges

Power Supplies Ranges Comments
Input/Output buffers supply
VDDIO 3.0V to 3.6V Oscillator pads supply
Flash memory charge pumps supply for erase and program operations, and read
operation
Backup area power supply
VDDB 1.6V to 3.6V
v bVio 3.6 VDDBU is automatically disconnected when VDDIO is present (>1.9V)
Core Voltage Regulator supply
VDDIN 2.5V to 3.6V LCD Regulator supply
ADC and Programmable Voltage Reference supply
LCD Voltage Regulator output
VDDLCD 2.5V to 3.6V External LCD power supply (LCD regulator not used)
VDDIO/VDDIN need to be supplied when the LCD Controller is used
VDDOUT 1.2V Core Voltage Regulator Output. 120mA output current
VDDPLL 1.08V to 1.32V | PLLA and PLLB supply
VDDCORE 1.08V to 1.32V | Core logic, processors, memories and analog peripherals supply
VDDPLL PLC 1.2v PLC PLL
VDDIN PLC 3.0V to 3.6V PLC Digital LDO Regulator input
VDDOUT PLC 1.2v PLC Digital LDO Regulator output

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

13

Table 5-1. Power Supply Voltage Ranges (Continued)

Power Supplies Ranges Comments

VDDIN AN 3.0V to 3.6V PLC Analog LDO Regulator input
VDDOUT AN 1.2V PLC Analog LDO Regulator output
GND - Digital Ground

AGND - Analog Ground

Separate pins are provided for GND and AGND grounds. Layout considerations should be taken into account to reduce
interference. Ground pins should be connected as shortly as possible to the system ground plane.

5.1.1 Core Voltage Regulator
The SAM4CP embeds a core voltage regulator that is managed by the Supply Controller.This internal regulator is
designed to supply the internal core of SAM4CP.
It features two operating modes:
e In Normal mode, the quiescent current of the voltage regulator is less than 500 yA when sourcing maximum load
current, i.e. 120 mA. Internal adaptive biasing adjusts the regulator quiescent current depending on the required
load current. In Wait Mode quiescent current is only 5 pA.

e In Backup mode, the voltage regulator consumes less than 100 nA while its output (VDDOUT) is driven internally
to GND.
The default output voltage is 1.20V and the start-up time to reach Normal mode is less than 500 ps.

For adequate input and output power supply decoupling/bypassing, refer to the “Voltage Regulator” section in the
“Electrical Characteristics” section of the datasheet.

5.1.2 LCD Voltage Regulator

The SAM4CP embeds an adjustable LCD voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the Segment LCD outputs. The LCD regulator output voltage is software
selectable with 16 levels to adjust the display contrast.

If not used, its output (VDDLCD) can be bypassed (Hi-z mode) and an external power supply can be provided onto the
VDDLCD pin. In this case, VDDIO still needs to be supplied.

The LCD voltage regulator can be used in every power modes (Backup, Wait, Sleep and Active).

For adequate input and output power supply decoupling/bypassing, refer to the “Voltage Regulator” section in the
“Electrical Characteristics” section of the datasheet.

5.1.3 PLC Voltage Regulators

The SAM4CP embeds two PLC-dedicated voltage regulators, PLC Analog Voltage Regulator (VDDIN AN) and PLC
Digital Voltage Regulator (VDDIN PLC). These internal regulators are designed to supply the PLC peripheral block in an
efficient way trying to minimize noise coupling in power supply.

5.1.4 Automatic Power Switch

The SAM4CP features an automatic power switch between VDDBU and VDDIO. When VDDIO is present, the backup
zone power supply is powered by VDDIO and current consumption on VDDBU is close to zero (around 100 nA, typ.).
Switching between VDDIO and VDDBU is transparent to the user.

5.1.5 Typical Powering Schematics

The SAM4CP supports a 3.0V to 3.6V single supply operation. Restrictions on this range may apply depending on
enabled features. Refer to the section Electrical Characteristics.

Figure 5-2, Figure 5-3 and Figure 5-4 show simplified schematics of the power section.

Atmel SAMACP [DATASHEET] 14

43051E-ATPL-08/14

5.1.5.1 Single Supply Operation

Figure 5-2 below shows a typical power supply scheme with a single power source. VDDIO, VDDIN, VDDBU, VDDIN AN
and VDDIN PLC are derived from the main power source (typically a 3.3V regulator output) while VDDCORE, VDDPLL,
VDDLCD and VDDPLL PLC are fed by the embedded regulators outputs.

Figure 5-2. Single Power Supply

Main Supply N out

Voltage
Regulator

VDDBU

VDDIO

!

Main Supply , L

(3.0V-3.6V) ‘I

VDDLCD

PRIME PLC
Transceiver

L

&

VDDIN

“H

VDDOUT

VDDCORE
p——>

o

VDDPLL

;

VDDINAN
LéJ PLC Analog
' Voltage
VDDOUT AN (| Regulator
& U
e
VDDINPLC [T
L PLC Digital
H Voltage
VDDOUT PLC |_'_|: Regulator
L

T

VDDPLL PLC E]

LCD Buffers

+
LCD Switch Array

Note: 1. Internal LCD Voltage Regulator can be disabled to save its operating current. VDDLCD must then be pro-
vided externally.

Atmel

SAMA4CP [DATASHEET] 15

43051E-ATPL-08/14

5.1.5.2 Single Supply with Backup Battery

Figure 5-3 shows a typical single power supply scheme for VDDIO, VDDIN, VDDIN AN, VDDIN PLC, VDDCORE,
VDDPLL and VDDPLL PLC. VDDBU is supplied with a separate backup battery. In this supply scheme, the internal LCD
voltage regulator can be used. Note that if anti-tamper pins (TMP1 to TMP3) and the RTCOUTO output have to be used
in backup mode, VDDIO must be kept. The reference voltage of the TMP1 to TMP3 and RTCOUTO pins is VDDIO.

Note that PLC transceiver is not functional when working in backup mode.

Figure 5-3. Single Supply with Backup Battery

Backup

Batteru;

Main Supply N out

Voltage
Regulator

ON/OFF

Backup Power Supply i
(1.6V-3.6V) VDDBU |—:—|
lf I
VDDIO [:l“

Main Supply , L

(3.0V-3.6V) I'

VDDLCD

PRIME PLC
Transceiver

T

VDDIN

VDDOUT

}

T

VDDCORE
p——>]

EFEIER—E3

VDDPLL [~

E

LCD Buffers

+
LCD Switch Array

VDDINAN]
L PLC Analog
. Voltage
VDDOUT AN |—?—| Regulator
.i_, L
|
VDDINPLC 7]
| PLC Digital
! Voltage
VDDOUT PLC |_‘—|: Regulator
L

T

VDDPLL PLC | |

External Wa

|

ke-Up Signal A

Shutdown (SHDN)(1)

Force Wake-Up (FWUP)

Notes: 1. Example with the SHDN pin used to control the main regulator enable pin. SHDN defaults to VDDBU at
startup and when the device wakes up from a wake-up event (external pin, RTC alarm, etc.). When the
device is in backup mode, SHDN defaults to 0.

Atmel

SAMA4CP [DATASHEET] 16

43051E-ATPL-08/14

5.1.5.3 Single Power Supply using One Main Battery and LCD Controller in Backup Mode

Figure 5-4 below shows a typical power supply scheme when the system needs to continue working and/or has to

maintain display in backup mode when the main voltage is not present.

In this power supply scheme, the SAM4CP can wake up both from an internal wake-up source, such as RTT, RTC and

VDDIO Supply Monitor, and from an external source, such as generic wake-up pins (WKUPX), anti-tamper inputs (TMPx)

or force wake-up (FWUP).

Note that PLC transceiver is not functional when working in backup mode.

Note: The VDDIO supply monitor only wakes up the device from Backup mode on a negative-going VDDIO supply (as
system alert). Thus, the supply monitor cannot be used to wake up the device when the VDDIO supply is rising
at power cycle. See the Supply Controller section for more information about the VDDIO supply monitor.

Figure 5-4. Single Power Supply using Battery and LCD Controller in Backup Mode

,,,

VDDINPLC [
! PLC Digital

VDDOUT PLC [el
‘I' VDDPLL PLC
VDDINAN 7]
i PLC Analog
o . Voltage
VDDOUT AN n Regulator
VBDIO (1 PRIME PLC
L Transceiver
VDDBU
Main Supply |
Main Supply (3.0V-3.6V) VDDIO (2) —
———7 [N out [:I_"_’
1==J
Voltage
Regulator v Automatic H
Power Switch !
ON/OFF VDDLCD :
STATE
Battery + II,I Ij
- VDDIN_ [~
= v
VDDOUT
D:l. - LCD Buffers
' +
VDDCORE LCD Switch Array
T
VDDPLL Ej
Lo

m Generic Wake-Up pin (WKUPx)

E Force Wake-Up (FWUP)(4)

STATE = 0 when main supply is OFF

"] shutdown (SHDN) ()

to PLLINIT 4—|I| NRST(6)

Notes: 1. VDDIO corresponds to the following pins: 37, 64, 90, 105, 120, 139, 156 and 171.
2. VDDIO corresponds to the following pins: 1, 59, 62, 88 and 136.
3. Internal LCD Voltage Regulator can be disabled to save its operating current. VDDLCD must then be pro-
vided externally.
4. The STATE output of the power switch indicates to the MCU that the main supply is back and forces the sys-
tem to wake up.

SAMA4CP [DATASHEET] 17
A t m eL 43051E-ATPL-08/14

5. Example with the SHDN pin used to control the main regulator enable pin. SHDN defaults to VDDBU at
startup and when the device wakes up from a wake-up event (external pin, RTC alarm, etc). When the
device is in backup mode, SHDN defaults to 0.

6. The NRST pin integrates a permanent pull-up resistor to VDDIO of typical 100 k. When used to control
PLL INIT as in the example, external design should take into account minimizing leakage currents.

5.1.5.4 Wake-up, Anti-tamper and RTCOUTO Pins

In all power supply figures shown above, if generic wake-up pins other than WKUPO/TMPO are used either as a wake-up
or a fast startup input, or as anti-tamper inputs, VDDIO must be present. This also applies to the RTCOUTO pin.

5.1.5.5 General Purpose IO (GPIO) State in Low-power Modes

In dual power supply schemes shown in Figure 5-4, where backup or wait mode has to be used, configuration of the
GPIO lines is kept in the same state as before entering backup or wait mode. Thus, to avoid extra current consumption
on the VDDIO power rail, the user must configure the GPIOs either as an input with pull-up or pull-down enabled, or as
output low or high levels corresponding to the external on-board devices.

5.1.5.6 Default General Purpose 10 (GPIO) State after Reset

The reset state of the GPIO lines after reset is given in Table 11-5, “Multiplexing on PIO Controller A (PIOA)”, Table 11-
6, “Multiplexing on PIO Controller B (PIOB)” and Table 11-7, “Multiplexing on PIO Controller C (PIOC)”. For further
details about the General Purpose IO and System lines, wake-up sources and wake-up time, and typical power
consumption in different low-power modes, refer to Table 5-2, “Low-power Mode Configuration Summary”.

Atmel SAM4CP [DATASHEET] 18

43051E-ATPL-08/14

. m H Jajjonuod
w0 ' A00[D JeiseN sng H Juswabeuepy
H ' 13MO,
m ; Jossaooudoy K SoWgdo : d
5 s L oot s ¢ L omooy s o,
— = H) ' i T
=R a | 10ssa001d0) N : " :
m m Q . 01D PILSAS J40/NO =4OWEdD m m m
Q 5 () : | < ¥AOSAIZ0S ONd i : H
o n < ! 10559201d0D + HDILSASAD 8/43pNia : : [cnasnd] [E :
- = H ! H :
=5 0z e m T,
H i ' Xo811d |
>0 M i+ 0[D JossaooidoD <€ sajl0nu0D i %00 gTd ! '
O — o ' A1OHAO #0010 STAddO [ssod0] ! H H
o) [] & H J10ss3901d0D 440/NO =¥0dD H ' '
= .W.u - O ' ¥ADS/HIOS OWd =5 H H
DD 35 O : H : :
£ QO 2 - H [z+whiio yduad - 9T 01 T4q 3piip Soamta ! MoV Tid | !
) N < ..m H 440INO J19[edsald ' 300[0 VI H
o N =38 : PR oV : :
m H _ t : H
W = O = ' spesayduad waishs (DIOW"ONd) JONVW . H
= o L H 1055300102 BU} 10} 121[011U0D %001 J2ISE EEL ' :
[o] © o H Xapul e SI W AIBYM : H 107€[19S0 '
m m — Q m [whioyduad ! ' J01eU0SaY ' Lnox
o *+ ”__ |0 ' 3440/NO : ' ¢ u_E_M_wo :
- U [&) H H : H
w O QA fe1skio :
> = ZHIN 0z-€
n X 2F o R RRRRLLLLOL LR EELEEEELEEEELLE R EEELLEELEEE : :
o 0O ' ' ' H
x 6 ¢ E {(wa1sAs 59010 0d-¥IND) 0 8100 " : :
O = H ! § H
[S] [' _ H MONIVIN l01eI0sO O |
b > © m : [z+uDjoyduad H Moo ! 0 [— 1584 '
(&} % w % 8 440/NO H uew ! N TR | b
o) m = °© —W’ : H Pappaqui3 '
m % £ % »n " (rrtcied 440INO " m m
(=} ' H H
= [=) nkh H sfesayduad waisks ' H 73SOSOW T
A N [0} o H Jossaooud auy) 10} ' H 107e||19SO !
0w = O 5 - Xaput ue s uaseum [ulyjo yduad o H ! [e1skio '
o £ O 340INO Hod oNd ! zH89sze | +
O 85 * c H /%4304 ONd) H T & '
2 b = : <--f--- 13]0U0D Y0 H T
= c o ©O) H sfesayduad ' . ;
Wy w O m o ! 0|0 JeIsep sng : h]
b - Jossaooly € [53ad] SS9 . : 1 ZENIX
ke 5 € O o . MOW : VoS :
m - % o m m %000 Buuuny 881y p— D BEEIT m PO Mmols 101211950 O m
= ©o josseood € ———————————————————————————————————— 11| .o 0 ! 0 fe— zmnze '
=) H 8/'vI'€/'2/ T/ MOVTld ! :
E‘_u [&] w ..hl N H 14 Ja[eosald ' H pappaqu3 | |+
% % m 5 o #0010 HILsAS 8/19pNG YONIVAW ! :
H 10SS9201d (AMOW ONd) v '
m = W N o W : MOILSAS - O O st o : i (l0nu0D Addns)
=] ' apoi daals H ' *:
.m D = L Qo < W ———>f H ' ' 13STVAX
" L AN = =) 0 oo (< : : Jo1eJ3URD X}D0|D ;
H 0|0 10SS800)d €— %0010 H : H
>y E M © o . oo d S1OH 108580014 ! e,
N v 00 O 0 . '
 C C , i ecc o mssENEdSEsNNcceNNCNCNES NN NANESSNSANSSEENCEeNNENSEENNNGGEENSSSNNSSeNASESsENAdSaSNNcsSENCseREsEesan
Ie}
x 3 FFF
o)
QO ¢ —
o w =}
-, ®© e o K=l
O < ic
N
Te]

19

43051E-ATPL-08/14

SAMA4CP [DATASHEET]

Atmel

5.3 System State at Power-up

5.3.1 Device Configuration after the First Power-up

After the fist power up, the SAM4CP boots from the ROM. The device configuration is defined by SAM-BA® boot
program.

5.3.2 Device Configuration after a Power Cycle when Booting from Flash Memory
After a power cycle of all the power supply rails, the system peripherals, such as the Flash Controller, the Clock
Generator, the Power Management Controller and the Supply Controller, are in the following state:
e Slow Clock (SLCK) source is the internal 32 kHz RC Oscillator (32 kHz crystal oscillator is disabled)
Main Clock (MAINCK) source is set to the 4 MHz internal RC Oscillator
3 - 20 MHz crystal oscillator and PLLs are disabled
Core Brownout detector and Core reset are enabled
Backup Power-on-reset is enabled
VDDIO Supply Monitor is disabled
Flash Wait state (FWS) bit in the EEFC Flash Mode Register is set to 0
Core 0 Cache Controller (CMCCO) is enabled (only used if application link address for the Core 0 is 0x11000000)
Sub-system 1 is in reset state and not clocked

5.3.3 Device Configuration after a Reset
After a reset or a wake-up from Backup mode, the following system peripherals default to the same state as after a power
cycle:
e Main Clock (MAINCK) source is set to the 4 MHz internal RC Oscillator
e 3 -20 MHz crystal oscillator and PLLs are disabled
e Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0
[]

Core 0 Cache Controller (CMCCO) is enabled (only used if the application link address for the Core O is
0x11000000)

e Sub-system 1 is in the reset state and not clocked

The states of the other peripherals are saved in the backup area managed by the Supply Controller as long as VDDBU is
maintained during device reset:

e Slow Clock (SLCK) source selection is written in SUPC_ CR.XTALSEL.

e Core Brownout Detector enable/disable is written in SUPC_MR.BODDIS.

e Backup Power-on-reset enable/disable is written in the SUPC_MR.BUPPOREN.
e VDDIO Supply Monitor mode is written in the SUPC_SMMR.

5.4 Active Mode

Active mode is the normal running mode with single or dual core executing code. The system clock can be the fast RC
oscillator, the main crystal oscillator or the PLLs. The power management controller (PMC) can be used to adapt the
frequency and to disable the peripheral clocks when not used.

Atmel SAMA4CP [DATASHEET] 20

43051E-ATPL-08/14

5.5 Low-power Modes

The various low-power modes (backup, wait and sleep modes) of the SAM4CP are described below. Note that the

Segmented LCD Controller can be used in all low-power modes.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes,
however this may add complexity in the design of application state machines. This is due to the fact that the
WEFE instruction goes along with an event flag of the Cortex core (cannot be managed by the software applica-
tion). The event flag can be set by interrupts, a debug event or an event signal from another processor. Since it
is possible for an interrupt to occur just before the execution of WFE, WFE takes into account events that hap-
pened in the past. As a result, WFE prevents the device from entering low-power mode if an interrupt event has
occurred. Atmel has made provision to avoid using the WFE instruction. The work arounds to ease application
design are given in the following description of the low-power modes sequence. Using the WFE instruction is
given as well.

5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest possible power consumption in a system that executes periodic
wake-ups to perform tasks but which does not require fast start-up time.

The Supply Controller, power-on reset, RTT, RTC, backup registers and the 32 kHz oscillator (RC or crystal oscillator
selected by software in the Supply Controller) are running. The regulator and the core supplies are off. The power-on-
reset on VDDBU can be deactivated by software.

The SAM4CP can be awakened from backup mode through the Force Wake-up (FWUP) pin, WKUPO, WKUP1 to
WKUP15 pins, the VDDIO Supply Monitor (SM) if VDDIO is supplied, or through an RTT or RTC wake-up event. Wake-
up pins multiplexed with anti-tampering functions are possible sources of wake up as well in case if an anti-tampering
event is detected. The TMPO pad is supplied by the backup power supply (VDDBU). Other anti-tamper input pads are
supplied by VDDIO.

The LCD Controller can be used in this mode. The purpose is to maintain the displayed message on the LCD display
after entering the backup mode. The current consumption on VDDIN to maintain the LCD is 10 pA typical.

In case if the VDDIO power supply is kept on with VDDBU when entering backup mode, it is up to the application to
configure all PI1O lines in a stable and known state to avoid extra power consumption or possible current path with the
input/output lines of the external on-board devices.

5.5.1.1 Entering and Exiting Backup Mode

To enter backup mode, follow the steps in the sequence below:
1. Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-down,
output low or high levels).

2. Disable the Main Crystal Oscillator (enabled by SAM-BA boot if device is booting from ROM).
Configure PA30/PA31 (XIN/XOUT) into PIO mode according to their use.
Disable JTAG lines via the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled on JTAG
lines).
Enable RTT in 1 Hz mode.
Disable Normal Mode of RTT (RTT will run in 1 Hz mode).
Disable POR backup if not needed (provides power-saving).
Disable Core brownout detector.
Select one of the following methods to complete the sequence:
a. To enter backup mode using the VROFF bit:
e Write a 1 to the VROFF bit of SUPC_CR.
b. To enter backup mode using the WFE instruction:
e Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
e Execute the WFE instruction of the processor.

> oW

© © N oo

Atmel SAM4CP [DATASHEET] 21

43051E-ATPL-08/14

After this step, the Core voltage regulator is shut down and the SHDN pin goes low. All the digital internal logic (cores,
peripherals and memories) is not powered. The LCD controller can be enabled if needed before entering backup mode.
Whether the VROFF bit or the WFE instruction was used to enter backup mode, the system exits backup mode if one of
the following enabled wake-up events occurs:

e WKUP[0-15] pins

e Force Wake-up pin

e VDDIO Supply Monitor (if VDDIO is present, and VDDIO Supply falling)

e Anti-tamper event detection

e RTC alarm

e RTT alarm
After exiting backup mode, the device is in the reset state. Only the configuration of the backup area peripherals remains
unchanged.

Note that the device does not automatically enter backup mode if VDDIN is disconnected, or if it falls below minimum
voltage. The Shutdown pin (SHDN) remains high in this case.

For current consumption in backup mode, refer to the section “Electrical Characteristics”.

5.5.2 Wait Mode

The purpose of wait mode is to achieve very low power consumption while maintaining the whole device in a powered
state for a start-up time of less than 10 ys. For current consumption in wait mode, refer to the electrical characteristics of
this datasheet.

In this mode, the bus and peripheral clocks of Sub-system 0 and Sub-system 1 (MCK/CPBMCK), the clocks of Core 0
and Core 1 (HCLK/CPHCLK) are stopped when the Entering Wait Mode sequence is performed (see Section 5.5.2.1).
However, the power supply of core, peripherals and memories is maintained using the standby mode of the core voltage
regulator.

The SAM4CP is able to handle external and internal events in order to perform a wake-up. This is done by configuring
the external WKUPX lines as fast startup wake-up pins (refer to Section 5.7 “Fast Start-up”). RTC alarm, RTT alarm and
anti-tamper events can wake the device up as well.

The Wait mode can be used together with the Flash in Read-Idle mode, Standby mode or Deep Power mode to further
reduce the current consumption. Flash in Read-Idle mode provides a faster start-up and the Standby mode offers a lower
power consumption. For further details, see the “Low-power Wake-up Time” section of the product electrical
characteristics.

5.5.2.1 Entering and Exiting Wait Mode
1. Stop Sub-system 1.
2. Select the 4/8/12 MHz fast RC Oscillator as Main Clock".

3. Depending on the application, set the PIO lines in the correct mode and configuration (input pull-up or pull-down,
output low or high level).

4. Disable the Main Crystal Oscillator (enabled by SAM-BA boot if device is booting from ROM).
5. Configure PA30/PA31 (XIN/XOUT) into PIO mode according to their use.
6. Disable JTAG lines via SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled on JTAG
lines).
7. Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)?).
8. Set the Flash Wait State (FWS) bit in the EEFC Flash Mode Register to 0.
9. Select one of the following methods to complete the sequence:
a. To enter wait mode using the WAITMODE bit:
e Set the WAITMODE bit to 1 in the PMC Main Oscillator Register (CKGR_MOR).
e Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR).

Atmel SAM4CP [DATASHEET] 22

43051E-ATPL-08/14

b. To enter wait mode using the WFE instruction:

Select the 4/8/12 MHz fast RC Oscillator as Main Clock.

Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR).
Set Flash Wait State at 0.

Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR).
Write a 0 to the SLEEPDEEP bit of the Cortex-M4 processor.

e Execute the Wait-For-Event (WFE) instruction of the processor.

Notes: 1. Any frequency can be chosen. The 12 MHz frequency will provide a faster start-up compared to the 4 MHz,
but with the increased current consumption (in the yA range). See electrical characteristics of the product.
2. Depending on the Flash Low-power Mode (FLPM) value, the flash enters three different modes:
* If FLPM = 0, the flash enters Stand-by mode (Low consumption)
* If FLPM = 1, the flash enters Deep Power-down mode (Extra low consumption)
* If FLPM = 2, the flash enters Idle mode. Memory is ready for Read access

Whether the WAITMODE bit or the WFE instruction was used to enter wait mode, the system exits wait mode if one of
the following enabled wake-up events occurs:

e WKUP[0-15] pins in Fast wake-up mode
e Anti-tamper event detection

e RTC alarm

e RTT alarm

After exiting wait mode, the PI1O controller has the same configuration state as before entering wait mode. The SAM4CP
is clocked back to the RC oscillator frequency which was used before entering wait mode. The core will start fetching
from flash at this frequency. Depending on configuration of the Flash Low-power Mode (FLPM) bits used to enter wait
mode, the application has to reconfigure it back to read idle mode.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the
core clocks of CM4P0 and/or CM4P1 are stopped. Some of the peripheral clocks can be enabled depending on the
application needs. The current consumption in this mode is application dependent. This mode is entered via Wait for
Interrupt (WFI) or Wait for Event (WFE) instructions of the Cortex-M4.

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used to enter sleep mode, or
from an event if the WFE instruction is used. The WFI instruction can also be used to enter sleep mode with the
SLEEPONEXIT bit set to 1 in the System Control Register (SCB_SCR) of the Cortex-M. If the SLEEPONEXIT bit of the
SCB_SCRiis set to 1, when the processor completes the execution of an exception handler it returns to thread mode and
enters immediately sleep mode. This mechanism can be used in applications that require the processor to run only when
an exception occurs. Setting the SLEEPONEXIT bit to 1 enables an interrupt-driven application in order to avoid
returning to an empty main application.

Atmel SAMA4CP [DATASHEET] 23

43051E-ATPL-08/14

5.5.4 Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Table 5-2 below provides a configuration summary of the low-
power modes.

Table 5-2. Low-power Mode Configuration Summary
SUPC,
32 kHz
Oscillator,
RTC, RTT
Backup Core
Registers, | Regulator PIO State
POR / Core 0/1 Core in Low- | PIO State
(Backup LCD Memory Potential at power at Current Wake-up
Mode Region) | Regulator | Peripherals Mode Entry'" Wake-up Sources | Wake-up | Mode Wake-up Consumption Time®
VROFF bit = 1 - mﬂié’i:s .
- -15 pins .
Backup OFF / OFF or - Supply Monit Previous @ ®)
Mode ON OFF/OFF (Not powered) |SLEEPDEEP = 1 AUPPV 0n'_0l' o Reset state saved Reset state <1,5ms
- Anti-tamper inputs
+ WFE - RTC or RTT alarm
. - FWUP pin
VROFF bit = 1 Unchanged
Backup - WKUPO0-15 pins(®))
Mode with [ON oFFion |OFF/OFF - or - Supply Monitor Reset |LreVioUs (LCD Pins)/ <1,5ms
LCD (Not powered) |SLEEPDEEP =1 - Anti-Tamper inputs® state saved |Inputs with
+ WFE pull ups
- RTC or RTT alarm
WAITMODE = 1 +
Wait Mode Core0and1, | -FM=0 Any Event from:
memories and |OF - Fast start-up through)
Flash in ON ON/7) peripherals: SLEEPDEEP =0 WKUPO0-15 pins E;%iked :t;et\gz:?/ed Unchanged <10 yus
Standby Powered, but |+ LPM =1 - Anti-Tamper inputs®)
Mode® Not clocked +FLPM =0 _RTC or RTT alarm
+ WFE
: WAITMODE = 1 +
Wait Mode
Core 0 and 1, FLPM =1 Any Event from:
Flash in memories and |Or - Fast start-up through X
Deep ON ON/® peripherals: |[SLEEPDEEP =0 |WKUP0-15 pins E;‘;‘I’(ked ;ﬁ‘é‘%‘;ﬁle 4 |Unchanged <75ps
Power- Powered, but |+ LPM =1 - Anti-Tamper inputs®®)
down(s) Not clocked +FLPM = 1 -RTC or RTT alarm
Mode + WFE
Entry mode = WFI
Any Enabled Interrupts;
Core 0 and/or
Entry mode = WFE
Sleep ON ON/? Core 1: SLEEPDEEP =0 AnyryEnabIed Events: Clocked |Previous Unchanged | © ©)
Mode Powered +LPM=0 Fast start-uo th .h back state saved
Not clocked)® - Fast start-up throug
() |+ WFE or WFI WKUPO-15 pins
- Anti-Tamper inputs'®
- RTC or RTT alarm
Notes: 1. Refer to the note in Section 5.5 “Low-power Modes”.

2. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the
device works either from the 4, 8 or 12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is
needed in the system. The wake-up time is defined as the time taken for wake-up until the first instruction is fetched.

3. Refer to Table 3-1, “Signal Description List”. Some anti-tamper pin pads are VDDIO powered.

4. See PIO Controller Multiplexing tables in Section 11.4 “Peripheral Signal Multiplexing on I/O Lines”.

5. Refer to the section Electrical Characteristics.

6. Fast RC Oscillator set to 4 MHz Frequency.

7. LCD voltage regulator can be OFF if VDDLCD is supplied externally thus saving current consumption of the LCD
voltage regulator.

In this mode, the core is supplied and not clocked but some peripherals can be clocked.

9. Depends on MCK frequency.

Atmel

SAMA4CP [DATASHEET] 24

43051E-ATPL-08/14

5.6 Wake-up Sources

Wake-up events allow the device to exit backup mode. When a wake-up event is detected, the Supply Controller
performs a sequence which automatically reenables the device.

5.7 Fast Start-up

The SAM4CP allows the processor to restart in a few microseconds while the processor is in wait mode or in sleep mode.
A fast start-up occurs upon detection of one of the wake-up inputs.

The fast restart circuitry is fully asynchronous and provides a fast start-up signal to the Power Management Controller.
As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz Fast RC
oscillator, switches the master clock on this 4 MHz clock and reenables the processor clock.

Atmel SAMACP [DATASHEET] 25

43051E-ATPL-08/14

6. Input/Output Lines
The SAM4CP has two types of input/output (I/O) lines: general purpose 1/Os (GPIO) and system 1/Os. GPIOs have
alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in
I/0 mode or by the multiplexed peripheral. System 1/Os include pins such as test pins, oscillators, erase or analog inputs.
6.1 General Purpose I/O Lines
GPIO lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-down,
input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these
modes is performed independently for each 1/O line through the PIO controller user interface. For more details, refer to
the “Parallel Input/Output (P1O) Controller” section of this datasheet.
The input/output buffers of the PIO lines are supplied through VDDIO power supply rail when used as general purpose
IOs (GPIOs). When used as extra functions like LCD or analog modes, GPIO lines have either VDDLCD or VDDIN
voltage range.
Each I/O line embeds an ODT (On-die Termination) shown in Figure 6-1 below. ODT consists of an internal series
resistor termination scheme for impedance matching between the driver output (SAM4CP) and the PCB trace impedance
preventing signal reflection. The series resistor helps to reduce I0s switching current (di/dt) thereby reducing EMI. It also
decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or between boards.
Finally, ODT helps diminish signal integrity issues.
Figure 6-1. On-die Termination
TTTTTTTToTTTTTToTToTToTooomee 1 Z0 ~ Zout + Rodt
E obT |
E 36 Ohms Typ. !
w0 >
E i - - Receiver
! SAM4 Driver with :
| Zout - 10 Ohms | poBTace
6.2 System I/O Lines
System /O lines are pins used by oscillators, test mode, reset and JTAG, to name but a few. Described below in Table 6-
1 are the SAM4CP system I/O lines shared with PIO lines.
These pins are software configurable as general purpose I/O or system pins. At start-up, the default function of these
pins is always used.
Table 6-1. System I/O Configuration Pin List
SYSTEM_IO Default Function Other Constraints
Bit Number after Reset Function for Normal Start Configuration
0 TDI PBO -
1 TDO/TRACESWO PB1 - In Matrix User Interface Registers
2 TMS/SWDIO PB2 _ (Refer to the System /0
Configuration Register in the “Bus
3 TCK/SWCLK PB3 - Matrix” section of this datasheet)
4 ERASE PC9 Low level at Start-up'"
- PA31 XIN - @
- PA30 XOuT -
Notes: 1. If PC9 is used as PIO input in user applications, a low level must be ensured at start-up to prevent Flash
erase before the user application sets PC9 into PIO mode.
2. Refer to the section “3 to 20 MHz Crystal Oscillator”.
SAM4CP [DATASHEET 26
Atmel [1

43051E-ATPL-08/14

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) and Serial Wire Debug Port (SW-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/TRACESWO, TDI and commonly provided on a standard 20-pin
JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table 11-6,
“Multiplexing on P10 Controller B (PIOB)”.

At start-up, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Refer to the
“Debug and Test” section of this datasheet.

SWJ-DP pins can be used as standard 1/Os to provide users with more general input/output pins when the debug port is
not needed in the end application. Mode selection between SWJ-DP mode (System 10 mode) and general IO mode is
performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up,
triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent
pull-down resistor of about 15 kQ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must
provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the
SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used
with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, refer to the “Debug and Test”
section of this datasheet. The SW-DP/SWJ-DP pins are used for debug access to both cores.

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4CP
series. For details on entering fast programming mode, see the “Fast Flash Programming Interface (FFPI)” section of this
datasheet. For more information on the manufacturing and test modes, refer to the “Debug and Test” section of this
datasheet.

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal
to the external components or asserted low externally to reset the microcontroller. It resets the core and the peripherals
except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse and
the Reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to
VDDIO of about 100 kQ. By default, the NRST pin is configured as an input.

6.5 TMPx Pins: Anti-tamper Pins

Anti-tamper pins detect intrusion, for example, into a smart meter case. Upon detection through a tamper switch,
automatic, asynchronous and immediate clear of registers in the backup area, and time stamping in the RTC will be
performed. Anti-tamper pins can be used in all modes. Date and number of tampering events are stored automatically.
Anti-tampering events can be programmed so that half of the General Purpose Backup Registers (GPBR) are erased
automatically. TMP1 to TMP3 signals are shared with a PIO pin meaning that VDDIO must be supplied, whereas TMPO
is in the VDDBU domain.

6.6 RTCOUTO Pin

The RTCOUTO pin shared in the PIO (supplied by VDDIO) can be used to generate waveforms from the RTC in order to
take advantage of the RTC inherent prescalers while the RTC is the only powered circuitry (low-power mode of
operation, backup mode) or in any active mode. Entering backup or low-power operating modes does not affect the
waveform generation outputs (VDDIO needs still to be supplied). Anti-tampering pin detection can be synchronised with
this signal.

Note: To use the RTCOUTO signal during application development via JTAG-ICE interface, the programmer must use
Serial Wire Debug (SWD) mode. In this case, the TDO pin is not used as a JTAG signal by the ICE interface.

Atmel SAMA4CP [DATASHEET] 27

43051E-ATPL-08/14

6.7 Shutdown (SHDN) Pin

The SHDN pin reflects the MCU backup mode of operation: when the MCU is in backup mode, SHDN = 0, otherwise
SHDN = 1 (VDDBU). This pin is designed to control the enable pin of the main external voltage regulator. When the MCU
enters backup mode, the SHDN pin disables the external voltage regulator and, upon wake-up event, it re-enables the
voltage regulator. The SHDN pin is used to control an external main voltage regulator and/or power switch when entering
backup mode.

The SHDN pin is asserted low when the VROFF bit in the Supply Controller Control Register (SUPC_CR) is set to 1.

6.8 Force Wake-up (FWUP) Pin

The FWUP pin can be used as a wake-up source in all low-power modes as it is supplied by VDDBU.

6.9 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as
logic level 1). The ERASE pin integrates a pull-down resistor of about 100 kQ into GND, so that it can be left
unconnected for normal operations.

This pin is debounced by SLCK to improve the glitch tolerance. When the ERASE pin is tied high during less than
100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase
operation.

The ERASE pin is a system I/O pin and can be used as a standard 1/O. At start-up, the ERASE pin is not configured as
a PIO pin. If the ERASE pin is used as a standard 1/O, the start-up level of this pin must be low to prevent unwanted
erasing. Refer to Section 11.3 “APB/AHB Bridge” on page 44. If the ERASE pin is used as a standard 1/0 output,
asserting the pin to low does not erase the Flash.

To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in the AC
Flash Characteristics in the Electrical Characteristics.

The erase operation is not performed when the system is in Wait mode with the Flash in Deep-power-down mode.

To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE pin as
GPIO or enter Wait mode with Flash in Deep-power-down mode before the ERASE pin assertion time has elapsed.

With the following sequence, in any case, the erase operation is performed:
1. Assert the ERASE pin (High).
2. Assert the NRST pin (Low).
3. Power cycle the device.
4. Maintain the ERASE pin high for at least the minimum assertion time.

Atmel SAMA4CP [DATASHEET] 28

43051E-ATPL-08/14

7. Product Mapping and Peripheral Access

Figure 7-1.

0x20000000
0x20080000
0x20100000
0x20180000
0x20190000
0x20191000
0x20192000
0x20200000
0x3FFFFFFF
0xA0000000
0xA1000000
0xA2000000
0xA3000000
0xA4000000

0xDFFFFFFF

offset

Internal SRAM

SRAMO

SRAM1

SRAM2

CPKCC ROM

Reserved

CPKCC SRAM

Reserved

Undefined (Abort)

External devices

Reserved

Reserved

Reserved

Reserved

Undefined (Abort)

block .
peripheral

ID

Notes: 1.

(+ : wired-or)

Boot Memory for Core 0.

0x00000000

0%20000000

0x40000000

Memory Mapping of Code and SRAM area

Address memory space

Code

Internal SRAM

Peripherals

Reserved

OxFFFFFFFF

External devices

Cortex-M
Private Peripheral Bus

Reserved

2. Boot Memory for Core 1 at 0x00000000.

Atmel

0x00000000
0x01000000

B 0x02000000
' 0x03000000

s 0x04000000
B 0x05000000

' 0x06000000

| 0x07000000

% 0x10000000

. 0x11000000

012000000

[
‘.

0%x13000000

'
'

OXIQOOOOOO

'

0x15000000

0x16000000

[

0x17000000

'

Ox1FFFFFFF

Code

Boot Memory
(Code - Non Cached)

Internal Flash
(Code - Non Cached)

Internal ROM

Reserved

Reserved

Reserved

Reserved

Undefined (Abort)

Undefined (Abort)

Internal Flash
(Code - Cached)

Undefined (Abort)

Reserved

Reserved

Reserved

Reserved

Undefined (Abort)

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

29

Figure 7-2. Memory Mapping of the Peripherals Area

Peripherals
0240000009 System Controller
AES 0x400E0000
0%40004000 36 b Reserved
T 0x400E0200;
,+"0x40008000 ; MATRIX0
Add L, PPLC 0X4OOEO40?
ress memory space '
0x00000000 AL o 0x4000C000 21 : PMC s
Reserved 0x400E0600
Code 0x40010000 5 : UARTO 8
‘ TC
TCO OX4OOEO7?1O
0x20000000 +0x40 23 : CHIPID
T
co T 0x400E0800
Internal SRAM +0x80 24 Reserved
- TCO
c TC2 0x400E0A00
0x40000000 ‘ 0x40014000 25 : EFC ¢
TC1l
TC3 0x400E0£00
Peripherals +0x40 26 Reserved
TCl TCa 0x400E(E00
0x60000000 40x80 27 : PIOA .
TC1
c TC5 0x400E1000
Reserved [0x40018000 28 : PIOB .
. TWIO 0x400E1200
0x20000000 0x4001C000 e : Reserved
: TWI 0x400:El4OO -
External devices |1 0x40020000 20 : RSTC)
: Reserved 10x10 Svse
0xE0000000 ' 0x40024000 : SUPC
: USARTO §Ox30——
Pri tcgmthM B : 0x40028000 14 ; RTT ,
rivate Peripheral bus ' '
) : USART1 e
0xE£0100000 : 0%4002C000 15 : WDT \
' USART2 A
Reserved : 0x40030000 16 RTC ,
: USART3 FI e v
OXFFFFFFFF 0x40034000 17 : GPBR
: USART4 [Ox100F
: 0x40038000 18 : RSWDT
: ADC Ox':4OOE1600
: 0x4003C000 29 H reserved
: sLepe 0540084000
' 040040000 2
:o CPKCC : :
0x480040D0 35| ! ;
‘ ! 0x40044000 : !
' UART1 P : ;
: 38| IcM : E
0x48008000 40048000 2| ;
I' P L TRNG ':
0x4800C000 41 : 0440040000 33|
' PIOC P]
; 37 : IPCO ; /
OxEB0T0000 ! 0x40050000 sifi
: MATRIX1 P .
H : Reserved h /
0x48014000 044007C000 .
: IPC1 P I
. 39 H CMCCO -
0x48018000 40080000 .
: cMccH i L
. H Reserved -
0x4801C000 : ;
. i 0x400E0000 !
' Reserved ! .
. : System Controller |-
0x48020000} : A
] ! 0x400E4000
Reserved '
' Reserved
OxS5FFFFFFF H
! 0x48000000
: SPI1 20
- 0x48004000

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

In Figure 7-1, ‘Code’ means ‘Program Code over |-Code bus’ and ‘Program Data over D-Code bus’.

SRAM1 shown in the mapping above can be seen at the address 0x20080000 (through S-bus) and the address
0x00000000 (through I/D Bus) for Core 1. Instruction fetch from Core 1 to the SRAM address range is possible but leads
to reduced performance due to the fact that instructions and read/write data go through the System Bus (S-Bus).
Maximum performance for Core 1 is obtained by mapping the instruction code to the address 0x00000000 (SRAM1
through 1/D-Code) and read/write data from the address 0x20100000 (SRAM2 through S-Bus).

For Core 0 (Application Core), maximum performance is achieved when the instruction code is mapped to the flash
address and read/write data is mapped into SRAMO.

Each cores can access the following memories and peripherals:
e Core 0 (Application Core):
e Allinternal memories
e Allinternal peripherals
e Core 1 (Coprocessor Core):
e Allinternal memories
e Allinternal peripherals

Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2, Peripheral DMA 1 on Matrix 1 cannot access
SRAMO, SRAMZ2 or SRAMO can be the Data RAM for Inter-core Communication.

If the Core 1 is not to be used (Clock Stopped and Reset active), all the peripherals, SRAM1 and SRAM2 of the Sub-
system 1 can be used by the Application Core (Core 0) as long as the peripheral bus clock and reset are configured.

Detailed Memory Mapping and Memory Access versus Matrix Masters/Slaves is given in the “Bus Matrix (MATRIX)”
section of this datasheet.

Atmel SAM4CP [DATASHEET] 31

43051E-ATPL-08/14

8. Memories
The memory map shown in Figure 7-1, “Memory Mapping of Code and SRAM area” is global to both Cortex-M4
processors except the “Boot Memory” block. For more information on Boot Memory please refer to Section 8.1.5 “Boot
Strategy” on page 36.
Each processor uses its own ARM private bus memory map for the NVIC and other system functions.

8.1 Embedded Memories

8.1.1 Internal SRAM
The SAM4CP embeds a total of 152 Kbytes high-speed SRAM with zero wait state access time.
SRAMO on Matrix0 is 128 Kbytes. It is dedicated to the application processor (CM4P0) or other peripherals on Matrix0
but can be identified and used by masters on Matrix1. Please refer to “Bus Matrix (MATRIX)” section of this datasheet for
more details.
SRAM1 on Matrix1 is 16 Kbytes. It is mainly dedicated to be the code region of the CM4P1 processor but can be
identified and used by on Matrix0. Please refer to “Bus Matrix (MATRIX)” section of this datasheet for more details.
SRAM2 on Matrix1 is 8 Kbytes. It is mainly dedicated to be the data region of the CM4P1 processor or other peripherals
on Matrix1 but can be identified and used by masters on Matrix0. Please refer to “Bus Matrix (MATRIX)” section of this
datasheet for more details.
If the CM4P1 processor is in the reset state and not used, the application core can use it.
The SRAM is located in the bit band region. The bit band alias region is from 0x2200 0000 to 0x23FF_FFFF.

8.1.2 System ROM
The SAM4CP embeds an Internal ROM for the master processor (CM4P0), which contains the SAM Boot Assistant
(SAM-BA), In Application Programming routines (IAP), and Fast Flash Programming Interface (FFPI).
The ROM is always mapped at the address 0x02000000.

8.1.3 CPKCC ROM
The ROM contains a Cryptographic Library using the CPKCC Cryptographic accelerator peripheral (CPKCC) to provide
support for Rivest Shamir Adleman (RSA), Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA).

8.1.4 Embedded Flash

8.1.4.1 Flash Overview
The embedded Flash is the boot memory for the Cortex-M4 Core 0 (CM4PO0).
The flash memory can be accessed through the Cache Memory Controller (CMCCO0) of the CM4P0 and can also be
identified by the Cortex-M4F Core 1 (CM4P1) through its Cache Memory Controller (CMCC1).
The memory plane is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is divided
into 3 smaller sectors.
The three smaller sectors are organized into 2 sectors of 8 Kbytes and 1 sector of 48 Kbytes. Refer to Figure 8-1 below.
The Flash Memory has a Built-in Error Code Correction provides 2-bit error detection and 1-bit correction per 128 bits.

SAM4CP [DATASHEET] 32
/ItmeL 43051E-ATPL-08/14

Figure 8-1. Memory Plane Organization

Flash Organization

Sector size Sector name

8 KBytes Small Sector 0

8 KBytes Small Sector 1 Sector 0
48 KBytes Larger Sector

64 KBytes Sector 1

64 KBytes Sector n

Each sector is organized in pages of 512 Bytes.

For sector O:
e The smaller sector 0 has 16 pages of 512 Bytes, 8 Kbytes in total.
e The smaller sector 1 has 16 pages of 512 Bytes, 8 Kbytes in total.
e The larger sector has 96 pages of 512 Bytes, 48 Kbytes in total.

From Sector 1 to n:

The rest of the array is composed of 64-Kbyte sector where each sector comprises 128 pages of 512 bytes. Refer to
Figure 8-2, “Flash Sector Organization” below.

Figure 8-2. Flash Sector Organization
Flash Sector Organization

A sector size is 64 Kbytes

16 pages of 512 Bytes Smaller sector 0

Sector 0 16 pages of 512 Bytes Smaller sector 1

96 pages of 512 Bytes Larger sector

Sector n 128 pages of 512 Bytes

In SAM4CP16B the flash size is 1024 Kbytes.

Atmel SAM4CP [DATASHEET] 33

43051E-ATPL-08/14

Figure 8-3 illustrates the organization of the Flash depending on Flash size.

Figure 8-3. Flash Size
Flash 1 MBytes

2 * 8 KBytes

1 * 48 KBytes

15 * 64 KBytes

The following erase commands can be used depending on the sector size:
e 8 Kbyte small sector
e Erase and write page (EWP).
e FErase and write page and lock (EWPL).
e Erase sector (ES) with FARG set to a page number in the sector to erase.
e Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.
FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.
e 48 Kbyte and 64 Kbyte sectors
One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1.
One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2.
One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3.
e One sector with the command Erase sector (ES) and FARG set to a page number in the sector to erase.
e Entire memory plane
e The entire Flash, with the command Erase all (EA).

8.1.4.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by masters of the system. It enables reading
the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block. It manages the programming,
erasing, locking and unlocking sequences of the Flash using the full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.
8.1.4.3 Flash Speed
The user needs to set the number of wait states depending on the frequency used on the SAM4CP.
For more details, refer to the “AC Characteristics” section of the product electrical characteristics.

Atmel SAMACP [DATASHEET] 34

43051E-ATPL-08/14

8.1.4.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several
consecutive pages, and each lock region has its associated lock bit.

Table 8-1. Lock bit number

Product Number of Lock Bits Lock Region Size
SAM4CP16B 128 8 Kbytes

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables the
protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

8.1.4.5 Security Bit Feature

The SAM4CP features a security bit based on a specific General Purpose NVM bit (GPNVM bit 0). When the security is
enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals, either through the SW-DP/JTAG-DP
interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code
programmed in the Flash.

This security bit can only be enabled through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal Peripherals
are permitted.
8.1.4.6 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the
user. The ERASE pin has no effect on the unique identifier.
8.1.4.7 User Signature
The memory has one additional reprogrammable page that can be used as page signature by the user. It is accessible
through specific modes, for erase, write and read operations. Erase pin assertion will not erase the User Signature page.
8.1.4.8 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through
a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

8.1.4.9 SAM-BA Boot

The SAM-BA Boot is a default Boot Program for the master processor (CM4P0) which provides an easy way to program
in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UARTO.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

8.1.4.10 GPNVM Bits

The SAM4CP features two GPNVM bits. These bits can be cleared or set respectively through the commands “Clear
GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

Table 8-2. General-purpose Nonvolatile Memory Bits

GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection
SAM4CP [DATASHEET] 35
AtmeL 43051E-ATPL-08/14

8.1.5 Boot Strategy

Figure 8-4 below shows a load view of the memory at boot time.

Figure 8-4. Simplified Load View at Boot Time

AT MReh N

ICode / DCode Bus
Core 0 Core 1
ICode / DCode Bus Application Coprocessor Core
Core 0 Corel (Cortex-M4F)
Application Core Application
(Cortex-M4) (Binary Img.)
SRAM2

—Pp SRAMO] \)

&

—P Clock & Reset | T
Control I

| Sub-system 0 | | Sub-system 1 |

Note: Matrices, AHB and APB Bridges are not represented.

8.1.5.1 Application Core (Core 0) Boot Process

The application processor (CM4P0) always boots at the address 0x0. To ensure maximum boot possibilities, the memory
layout can be changed via GPNVM. A General Purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or
from the Flash. The GPNVM bit can be cleared or set through the commands “Clear General-purpose NVM Bit” and “Set
General-purpose NVM Bit” of the EEFC User Interface respectively. Setting GPNVM Bit 1 selects the boot from the Flash
whereas clearing this bit selects the boot from the ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the
boot from the ROM by default.

8.1.5.2 Coprocessor Core (Core 1) Boot Process

After reset, the Sub-system 1 is hold in reset and with no clock. It is up to the Master Application (Core 0 Application)
running on the Core 0 to enable the Sub-system 1. Then the application code can be downloaded into the CM4P1 Boot
memory (SRAM1), and CM4P0 can afterwards deassert the CM4P1 reset line. The secondary processor (CM4P1)
always identifies SRAM1 as “Boot memory”.

8.1.5.3 Sub-system 1 Startup Sequence
After the Core 0 is booted from Flash, the Core 0 Application must perform the following steps:

1. Enable Core 1 System Clock (Bus and peripherals).

Enable Core 1 Clock.

Release Core 1 System Reset (Bus and peripherals).

Enable SRAM1 and SRAM2 Clock.

Copy Core 1 Application from Flash into SRAM1.

6. Release Core 1 Reset.

After Step 6, the Core 1 boots from SRAM1 Memory.

ok wbd

Atmel SAMA4CP [DATASHEET] 36

43051E-ATPL-08/14

Pseudo-code
1- // Enable Coprocessor Bus Master Clock in PMC System Clock Enable Register
(CPBMCK bit)

2- // Enables Coprocessor Clocks
e PMC System Clock Enable Register (CPCK bit)
// Set Coprocessor Clock Prescaler and Source
e In PMC MCKR: Coprocessor Programmable Clock Prescaler (CPPRES bit fields)
// Choose coprocessor main clock source

e In PMC MCKR: Coprocessor Master Clock Selection (CPCSS bit fields)

w
|

// Release coprocessor peripheral reset
e In Reset Controller Coprocessor Mode Register (CPEREN bit)

// Enable Core 1 SRAM1 and SRAM2 Memories
e In PMC PCER: Peripheral ID 42 (SRAM)

i
1

5- // AT THIS POINT Core 1 application code must be loaded from Flash into SRAM1.

6- // Release coprocessor reset
e In Reset Controller Coprocessor Mode Register (CPROCEN bit)

8.1.5.4 Sub-system 1 Start-up Time

Table 8-3 provides the start-up time of sub-system 1 in terms of the number of clock cycles for different CPU speeds. The
figures in this table take into account the time to copy 16 Kbytes of code from Flash into SRAM1 using the ‘memcopy’
function from the standard C library and to release Core 1 reset signal. The start-up time of the device from power-up is
not taken into account.

Table 8-3. Sub-system 1 start-up time

Core Clock (MHz) Flash Wait State Core Clock cycles Time
21 0 44122 21 ms
42 1 45158 1.07 ms
63 2 46203 735 ps
85 3 47242 55 ps
106 4 48284 455 ps
120 5 49329 411 ps
Atmel e B

8.1.5.5 Typical Execution View

Figure 8-5 below provides the code execution view for both Cortex-M4 cores. AHB to APB, AHB to AHB and Matrices are

not represented in this view.

Figure 8-5. Execution View

Atmel

S-Bus

-
Sub-system 0

Note: 1. SRAMO can also be used as Message Buffer Exchange.
Note: Matrices, AHB and APB Bridges are not represented.

Core 1,
RW Data,
Stack, Heap

Core 0 <> Core 1
Msg. Buffer (1)

RO Flash
Core 0, S-Bus >
RW Data, Core 0
Stack, Heap ICode / DCode Bus A 4 Cache Code, Cache
Ctrl. RO Data Ctrl.
(CMCCO) (cmcc)

Core 1
Core 0 Gogls,

RO Data
Application Core

Core Application
(Cortex-M4) Binary
-
—

)

ICode / DCode Bus

ICode / DCode Bus

Core 1
Coprocessor

Core
(Cortex-M4F)

[~PU I NVIC]

S-Bus

N
Sub-system 1

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

38

9. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these events
without processor intervention. Peripherals receiving events contain logic to select the required event.

9.1 Embedded Characteristics
e Timers generate event triggers which are directly routed to event managers, such as ADC, to start
measurement/conversion without processor intervention.

e UART, USART, SPI, TWI, and PIO generate event triggers directly connected to Peripheral DMA controller (PDC)
for data transfer without processor intervention.

e PMC Security Event (Clock Failure Detection) can be programmed to switch the MCK on reliable main RC internal
clock.

9.2 Real-time Event Mapping List

Table 9-1. Real-time Event Mapping List

Event Generator Event Manager Function
Anti-tamper Inputs (TMPx) General Purp(cg;;;;:kup Register iﬁgig%p/e:nggzgizts tﬁgﬁ; ;Iiﬁzr (asynchronous) on
Power Management Controller PMC Safety / Automatic Switch to Rel[able Main RC oscillator
(PMC) in case of Main Crystal Clock Failure

10 (ADTRG) ADC Trigger for measurement. Selection in ADC module

TC Output 0 ADC Trigger for measurement. Selection in ADC module

TC Output 1 ADC Trigger for measurement. Selection in ADC module

TC Output 2 ADC Trigger for measurement. Selection in ADC module

TC Output 3 ADC Trigger for measurement. Selection in ADC module

TC Output 4 ADC Trigger for measurement. Selection in ADC module

TC Output 5 ADC Trigger for measurement. Selection in ADC module

Atmel SRR e

10.

The System Controller comprises a set of peripherals. It handles key elements of the system, such as power, resets,

System Controller

clocks, time, interrupts, watchdog, reinforced safety watchdog, etc.
See the system controller block diagram in Figure 10-1.

Figure 10-1. System Controller Block Diagram

VDDIO

VDDBU

Automatic
Power Switch

Backup Power Supply

—

ON
Zero-Power
Power-on Reset

FWKUP TMPO

SHDN

ON
Supply
Monitor out
(Backup)

WKUPO - WKUP15 1|

Gene ral Pu rpose

vopout |

vr_mode

Core

Voltage Regulator

D VDDIN

VDDIO

PIOA/B/C
Input/Output Buffers

PIOx

Ba ckup Registers Supply — ADC Analog
° Controller Circuitry D ADVREF
rtc_nreset
SLCK RTC
rtc_alari
LCD Controller
e rtt_nreset VDDLCD
RTT rtt_alarm
LCD Voltage
osc32k_xtal_en = Regulator
XTALSEL vddcore_nreset
anzz [H s e
XOUT32 D— Oscillator bod_core_on ?:;Z:;::’;r‘ D P R ———
|core_brown_out
(Core) VDDCORE
Embedded
32 kHz RC K
Oscillator |«23632kreen <> | SRAMO/1/2 [
<>
vddcore_nreset Peripherals
—> ¢
Reset p'°_c-meset Matrix
Controller Penph_nreset x2 <> Peripheral _—
NRST D —> ice_nreset Bridge x2
Gelpy| COTrtex-M4
FsTTo-FsTT15 [} = 2
Embedded SLCK —> PR
12/8/4 MHz <> Flash —
BC Main Clock
Oscillator MAINCK Power
XIN Management Master Clock
X;\fg "’I‘I“Z > Controller MCKO / MCK1
XOUT scillator
MAINCK PLLB PLLBCK
SLCK Wat‘chdog
VDDIO I Timer
SLCK PLLACK
PLLA
Core Power Supply

FSTTO - FSTT15 are possible Fast Startup sources, generated by WKUPO - WKUP15 pins, but are not physical pins.

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

10.1 System Controller and Peripheral Mapping

Refer to “Memory Mapping of Code and SRAM area” .
All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power Supply Monitoring

The SAM4CP embeds Supply Monitor, Power-on-Reset and Brownout detectors for power supplies monitoring allowing
to warn and/or reset the chip.

10.2.1 Power-on-Reset on VDDCORE

The Power-on-Reset monitors VDDCORE. It is always activated and monitors voltage at start-up but also during power-
down. If VDDCORE goes below the threshold voltage, the entire chip (except VDDBU domain) is reset. For more
information, refer to the “Electrical Characteristics” section of the product datasheet.

10.2.2 Brownout Detector on VDDCORE
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply
Controller (SUPC_MR).
If VDDCORE goes below the threshold voltage, the reset of the core is asserted.

10.2.3 Power-on-Reset on VDDIO

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start-up but also during power-
down. If VDDIO goes below the threshold voltage, the 10s are reset but the core continues to run. Voltage detection is
fixed.

10.2.4 Supply Monitor on VDDIO

The supply monitor on VDDIO is fully programmable with 16 steps for the threshold (between 1.6V to 3.4V). It provides
the user the flexibility to set a voltage level detection higher then the power-on-reset on VDDIO. Either a reset or an
interrupt can be generated upon detection. It can be activated by software and it is controlled by the Supply Controller
(SUPC). A sample mode is possible. It divides the supply monitor power consumption by a factor of up to 2048.

The supply monitor is used as “system alert” in case VDDIO supply is falling. It can be used while the device is in backup
mode to wake up the device if VDDIO is falling.

10.2.5 Power-on-Reset and Brownout Detector on VDDBU

The Power-on-Reset monitors VDDBU. It is active by default and monitors voltage at start-up but also during power-
down. It can be deactivated by software through the Supply Controller (SUPC_MR). If VDDBU goes below the threshold
voltage, the entire chip is reset.

10.3 Reset Controller

The Reset Controller uses the Power-on-Reset supply monitor, and brownout detector cells.

The Reset Controller returns to the software either the source of the last reset, or of a general reset, a wake-up reset, a
software reset, a user reset, a watchdog or reinforced watchdog reset.

The Reset Controller controls the internal resets of the system (or independent reset of CM4P1 processor) and the NRST
pin input/output. It shapes a reset signal for the external devices, simplifying to a minimum connection of a push-button
on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as its is supplied by VDDBU.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage
Regulator, then it generates the proper reset signals to the core power supply.

It also sets the system in different low-power modes, wakes it up from a wide range of events.

Atmel SAM4CP [DATASHEET] 41

43051E-ATPL-08/14

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM4CP. A peripheral identifier is required for the control of the

peripheral interrupt with the Nested Vectored Interrupt Controller, and for the control of the peripheral clock with the

Power Management Controller.

The two ARM Cortex-M4 processors share the same interrupt mapping, and thus, they share all the interrupts of the

peripherals.

Note: Note some peripherals are on the Bus Matrix O/AHB to ABP Bridge 0 and other peripherals are on the Bus
Matrix 1/AHB to ABP Bridge 1. If Core 0 needs to access a peripheral on the Bus Matrix 1/AHB to ABP Bridge 1,
the Core 0 application must enable the Core 1 System Clock (Bus and peripherals) and release Core 1 System
Reset (Bus and peripherals). Peripherals on Sub-system 0 or Sub-system 1 are mentioned in the Instance
description table that follows.

Table 11-1. Peripheral Identifiers
PMC

Instance ID Instance Name NVIC Interrupt Clock Control Instance Description
0 SUPC X - Supply Controller
1 RSTC X - Reset Controller
2 RTC X - Real-time Clock
3 RTT X - Real-time Timer
4 WDT X - Watchdog Timer/Reinforced Watchdog Timer
5 PMC X - Power Management Controller
6 EFC X - Enhanced Embedded Flash Controller O
7 - - - Reserved
8 UARTO X X UART 0 (Sub-system 0 Clock)
9 - - - Reserved
10 - - - Reserved
11 PIOA X X Parallel I/O Controller A (Sub-system 0 Clock)
12 PIOB X X Parallel /0 Controller B (Sub-system 0 Clock)
13 - - - Reserved
14 USARTO X X USART 0 (Sub-system 0 Clock)
15 USART1 X X USART 1 (Sub-system 0 Clock)
16 USART2 X X USART 2 (Sub-system 0 Clock)
17 USART3 X X USART 3 (Sub-system 0 Clock)
18 USART4 X X USART 4 (Sub-system 0 Clock)
19 TWIO X X Two Wire Interface 0 (Sub-system 0 Clock)
20 TWI1 X X Two Wire Interface 1 (Sub-system 0 Clock)
21 PPLC X X Power Line Communication (Sub-system 0 Clock)
22 - - - Reserved
23 TCO X X Timer/Counter 0 (Sub-system 0 Clock)
24 TC1 X X Timer/Counter 1 (Sub-system 0 Clock)
25 TC2 X X Timer/Counter 2 (Sub-system 0 Clock)

Atmel it S

Table 11-1. Peripheral Identifiers (Continued)

Instance ID Instance Name NVIC Interrupt Cloc:“ggntrol Instance Description
26 TC3 X X Timer/Counter 3 (Sub-system 0 Clock)
27 TC4 X X Timer/Counter 4 (Sub-system 0 Clock)
28 TC5 X X Timer/Counter 5 (Sub-system 0 Clock)
29 ADC X X Analog To Digital Converter (Sub-system 0 Clock)
30 ARM X) FPU signals (only on CM4P1 core): FPIXC, FPOFC,
FPUFC, FPIOC, FPDZC, FPIDC, FPIXC
31 IPCO X X Icr;lt:éE;ocessor communication 0 (Sub-system 0
32 SLCDC X X Segment LCD Controller (Sub-system 0 Clock)
33 TRNG X X True Random Generator (Sub-system 0 Clock)
34 ICM X X Integrity Check Module (Sub-system 0 Clock)
35 CPKCC X X gl:ts:rlsaol (I:Dll;glllc): Key Cryptography Controller (Sub-
36 AES X X Advanced Enhanced Standard (Sub-system 0 Clock)
37 PIOC X X Parallel 1/0O Controller C (Sub-system 1 Clock)
38 UART1 X X UART 1 (Sub-system 1 Clock)
39 IPC1 X X Igl’t:éﬁ)rocessor communication 1 (Sub-system 1
40 SPI1 X X Serial Peripheral Interface 1 (Sub-system 1 Clock)
41 PWM X X Pulse Width Modulation (Sub-system 1 Clock)
o | s - K| o i ok m o g, SRAKE Sy
43 - - - Reserved

11.2 Peripheral DMA Controller
Two Peripheral DMA Controllers (PDC) are available:
e PDCO: dedicated to peripherals on APB0O
e PDCH1: dedicated to peripherals on APB1
Features of the PDC include:
e Data transfer handling between peripherals and memories
e Low bus arbitration overhead
e One Master Clock cycle needed for a transfer from memory to peripheral
e Two Master Clock cycles needed for a transfer from peripheral to memory
e Next Pointer management for reducing interrupt latency requirement

Note that Peripheral DMA 0 on Matrix 0 cannot access SRAM1 or SRAM2. Peripheral DMA 1 on Matrix 1 cannot access
SRAMO.

Atmel SAM4CP [DATASHEET] 43

43051E-ATPL-08/14

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to
High priorities):

Table 11-2. Peripheral DMA Controller (PDCO0)

Instance name Channel T/R
AES Transmit
TWIO Transmit

UARTO Transmit
USART1 Transmit
USARTO Transmit
USART2 Transmit
USART3 Transmit
USART4 Transmit

PPLC Transmit

AES Receive
TWIO Receive

UARTO Receive
USART4 Receive
USART3 Receive
USART2 Receive
USART1 Receive
USARTO Receive

ADC Receive
PPLC Receive
Table 11-3. Peripheral DMA Controller (PDC1)

Instance name Channel T/IR

UART1 Transmit

SPI1 Transmit
UART1 Receive
SPI1 Receive

11.3 APB/AHB Bridge

The SAM4CP embeds two peripheral bridges: one on each Matrix (Matrix 0 for CM4P0 and Matrix 1 for CM4P1).

The peripherals of the bridge corresponding to CM4P0 (APBO) are clocked by MCK, and the peripherals of the bridge
corresponding to CM4P1 (APB1) are clocked by CPBMCK.

11.4 Peripheral Signal Multiplexing on 1/O Lines

The SAM4CP can multiplex the I/O lines of the peripheral set.

The SAM4CP PIO Controllers control up to 32 lines. Each line can be assigned to one of two peripheral functions: A or B.
The multiplexing tables in the paragraphs that follow define how the I/O lines of the peripherals A and B are multiplexed
on the PIO Controllers. The column “Comments” has been inserted in this table for the user's own comments; it may be
used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

Atmel SAMACP [DATASHEET] 44

43051E-ATPL-08/14

11.4.1 Pad Features

In Table 11-5 to Table 11-7, the column “Feature” indicates whether the corresponding 1/O Line has programmable Pull-
up, Pull-Down and/or Schmitt Trigger. Table 11-4 provides the key to the abbreviations used.

Table 11-4. 1/O Line Features Abbreviations

Abbreviation Definition

PUP (P) Programmable Pull-up

PUP (NP) Non-programmable Pull-up

PDN (P) Programmable Pull-down

PDN (NP) Non-programmable Pull-down

ST (P) Programmable Schmitt trigger

ST (NP) Non-programmable Schmitt trigger
LDRYV (P) Programmable Low Drive

LDRV (NP) Non-programmable Low Drive
HDRYV (P) Programmable High Drive

HDRYV (NP) Non-programmable High Drive
MaxDRYV (P) Programmable Maximum Drive
MaxDRYV (NP) Non-programmable Maximum Drive

11.4.2 Reset State

In Table 11-5 to Table 11-7, the column “Reset State” indicates the reset state of the line.
e PIO or signal name: Indicates whether the PIO Line resets in I/O mode or in peripheral mode.
If “P1O” is mentioned, the PIO Line is in general purpose I/O (GPIO). If a signal name is mentioned in the “Reset
State” column, the PIO Line is assigned to this function.

| or O: Indicates whether the signal is input or output state.
PU or PD: Indicates whether Pull-up, Pull-down or nothing is enabled.
ST: Indicates if Schmitt Trigger is enabled.

Atmel SAM4CP [DATASHEET] 45

43051E-ATPL-08/14

11.4.3 PIO Controller A Multiplexing

Table 11-5. Multiplexing on PIO Controller A (PIOA)

Extra System
1/0 Line | Peripheral A | Peripheral B | Peripheral C Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PAO RTS3 PCK2 COMO WKUP5 -ST(P)
- MaxDRV(NP)
PA1 CTS3 COM1
PA2 SCK3 COM2 - PUP(P) / PDN(P)
- ST(P)
PA3 RXD3 COM3 WKUP6 - LDRV(P) / HDRV(P)
PA4 TXD3 COM4/AD1
PA9 RXD2 SEG3 WKUP2
PA10 TXD2 SEG4
PA11 RXD1 SEG5 WKUP9
PA12 TXD1 SEG6/AD0
PA13 SCK2 TIOAO SEG7
PA14 RTS2 TIOBO SEG8 WKUP3
PA15 CTS2 TIOA4 SEG9
PA16 SCK1 TIOB4 SEG10
PIO, I, PU
PA17 RTS1 TCLK4 SEG11 WKUP7
PA18 CTS1 TIOA5 SEG12 - PUP(P) / PDN(P)
- ST(P)
PA19 RTSO TCLK5 SEG13 WKUP4 -LDRV(P) / HDRV(P)
PA20 CTSO TIOB5 SEG14
PA21 SEG15
PA22 SEG16
PA23 SEG17
PA24 TWDO SEG18 WKUP1
PA25 TWCKO SEG19
PA26 CTS4 SEG20
PA27 SEG21
PA28 SEG22
- PUP(P) / PDN(P)
PA29 PCK1 SEG23 -ST(P)
- MaxDRV(NP)
- PUP(P) / PDN(P)
PA30 PCK1 XOouT - ST(P) XOouT
- LDRV(P) / HDRV(P)
- PUP(P)/ PDN(P)
PA31 PCKO XIN - ST(P) XIN
- LDRV(P) / HDRV(P)
AtmeL SAM4CP [DATASHEET] 46

43051E-ATPL-08/14

11.4.4 PIO Controller B Multiplexing

Table 11-6. Multiplexing on PIO Controller B (PIOB)
110 Extra System
Line Peripheral A Peripheral B Peripheral C Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PBO TWD1 TDI - ST(P) JTAG, |
- LDRV(P) / HDRV(P)
TDO/ - PUP(P)/PDN(P)
PB1 TWCK1 RTCOUTO TRACESWO -LDRV(NP) JTAG, O
PB2 TMS/SWDIO
JTAG, |
PB3 TCK/SWCLK
PB4 URXDO TCLKO WKUP8
PB5 UTXDO
PB6 SEG24 - PUP(P) / PDN(P)
PB7 TIOA1 SEG25 -ST(P)
PB8 TIOBA1 SEG26 - LDRV(P)/ HDRV(P)
PB9 TCLK1 SEG27
PB10 TIOA2 SEG28 PIO, I, PU
PB11 TIOB2 SEG29
PB12 TCLK2 SEG30
- PUP(P) / PDN(P)
PB13 PCKO SEG31/AD3 - ST(P)
- MaxDRV(NP)
PB14 SEG32
PB15 SEG33
WKUP10/
PB16 RXDO SEG34 T™P1
PB17 TXDO SEG35
PB18 SCKO PCK2 SEG36 PIO. | PD
PB19 RXD4 SEG37
PB20 TXD4 SEG38
PB21 SCK4 SEG39 WKUP11 -PUP(P) / PDN(P)
PB22 RTS4 SEG40 - ST(P)
- LDRV(P) / HDRV(P)
PB23 ADTRG SEG41/AD4
PB24 TIOA3 SEG42
PB25 TIOB3 SEG43
PB26 TCLK3 SEG44 WKUP13
WKUP14/ PIO. 1, PU
PB27 SEG45 T™P2
WKUP15/
PB28 SEG46 T™P3
PB29 SEG47
PB31 SEG49/AD5

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

47

11.4.5 PIO Controller C Multiplexing

Table 11-7. Multiplexing on PIO Controller C (PIOC)

110 Extra System

Line Peripheral A Peripheral B Peripheral C Function Function Feature Reset State Comments
- PUP(P)

PCO UTXD1 PWMO - MaxDRV(NP)

PC1 URXD1 PWM1 WKUP12

PC2 SPI1_NPCS0 PWM2 - PUP(P) / PDN(P)
- ST(P)

PC3 SPI1_MISO PWM3 - LDRV(P) / HDRV(P)

PC4 SPI1_MOSI PIO, I, PU
-PUP(P)

PC5 SPI1_SPCK - MaxDRV(NP)

PC6 PWMO SPI1_NPCS1

PC7 PWM1 SPI1_NPCS2 - PUP(P) / PDN(P)
- ST(P)

PC9 PWM3 ERASE ERASE, PD

Atme

L

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

48

12. ARM Cortex-M4 Processor

12.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt handling,
enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core, system and memo-
ries, ultra-low power consumption with integrated sleep modes, and platform security robustness, with integrated
memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an
efficient instruction set and extensively optimized design, providing high-end processing hardware including IEEE754-
compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication and multiply-with-
accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system compo-
nents that reduce processor area while significantly improving interrupt handling and system debug capabilities. The
Cortex-M4 processor implements a version of the Thumb instruction set based on Thumb-2 technology, ensuring high
code density and reduced program memory requirements. The Cortex-M4 instruction set provides the exceptional perfor-
mance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt performance. The
NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight integration of the
processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt
latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and store-
multiple operations. Interrupt handlers do not require wrapping in assembler code, removing any code overhead from the
ISRs. A tail-chain optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

12.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling appli-
cations to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis. Such
requirements are becoming critical in many embedded applications such as automotive.

12.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a
profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire Viewer
(SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to 8 hardware breakpoint comparators that debuggers can use.
The comparators in the FPB also provide remap functions of up to 8 words in the program code in the CODE memory
region. This enables applications stored on a non-erasable, ROM-based microcontroller to be patched if a small pro-
grammable memory, for example flash, is available in the device. During initialization, the application in ROM detects,
from the programmable memory, whether a patch is required. If a patch is required, the application programs the FPB to
remap a number of addresses. When those addresses are accessed, the accesses are redirected to a remap table
specified in the FPB configuration, which means the program in the non-modifiable ROM can be patched.

Atmel SAM4CP [DATASHEET] 49

43051E-ATPL-08/14

12.2 Embedded Characteristics

Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
IEEE754-compliant single-precision FPU

Code-patch ability for ROM system updates

Power control optimization of system components

Integrated sleep modes for low power consumption

Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing

Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications

Extensive debug and trace capabilities:

e Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and
code profiling.

12.3 Block Diagram

Figure 12-1. Typical Cortex-M4F Implementation

Cortex-M4F
Processor FPU
NvIC O Processor
Core
Debug Serial
H——P Access Pro:gi;?oor:)bni X Wire —onp
Port ¢ ¢ Viewer
Flash Data
Patch Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
i i
SAM4CP [DATASHEET] 50
Atmel

43051E-ATPL-08/14

12.4 Cortex-M4 Models

12.41 Programmers Model
This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it con-
tains information about the processor modes and privilege levels for software execution and stacks.
12.4.1.1 Processor Modes and Privilege Levels for Software Execution
The processor modes are:
e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.

e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception processing.

The privilege levels for software execution are:
e Unprivileged
The software:
e Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
e Cannot access the System Timer, NVIC, or System Control Block
e Might have a restricted access to memory or peripherals
Unprivileged software executes at the unprivileged level.
e Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at the
privileged level.
In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see “Control
Register”. In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in Thread
mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to privileged
software.

12.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item in
memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item
to the new memory location. The processor implements two stacks, the main stack and the process stack, with a pointer
for each held in independent registers, see “Stack Pointer”.

In Thread mode, the Control register controls whether the processor uses the main stack or the process stack, see “Con-
trol Register”.

In Handler mode, the processor always uses the main stack.

The options for processor operations are:

Table 12-1. Summary of processor mode, execution privilege level, and stack use options

Processor Mode Used to Execute Privilege Level for Stack Used

Software Execution
Thread Applications Privileged or unprivileged " Main stack or process stack(")
Handler Exception handlers Always privileged Main stack

Note: 1. See “Control Register”.

Atmel SAM4CP [DATASHEET] 51

43051E-ATPL-08/14

12.4.1.3 Core Registers

Figure 12-2. Processor Core Registers

- RN

RO
R1
R2
R3
R4
R5

Low registers

R6 General-purpose registers
R7
R8
R9
High registers R10

R11
R12

Stack Pointer SP (R13) psP* || wmsp? *Banked version of SP
Link Register LR (R14)

Program Counter PC (R15)

PSR Program status register
PRIMASK

FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register

Table 12-2. Core Processor Registers

Register Name Access'" Required Reset
Privilege®
General-purpose registers R0O-R12 Read/Write Either Unknown
Stack Pointer MSP Read/Write Privileged See description
Stack Pointer PSP Read/Write Either Unknown
Link Register LR Read/Write Either OxFFFFFFFF
Program Counter PC Read/Write Either See description
Program Status Register PSR Read/Write Privileged 0x01000000
Application Program Status Register APSR Read/Write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read/Write Privileged 0x00000000
Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000
Control Register CONTROL Read/Write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

Atmel SAMA4CP [DATASHEET] 52

43051E-ATPL-08/14

12.4.1.4 General-purpose Registers
R0-R12 are 32-bit general-purpose registers for data operations.

12.4.1.5 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control register indicates the stack pointer to use:
e 0= Main Stack Pointer (MSP). This is the reset value
e 1= Process Stack Pointer (PSP)
On reset, the processor loads the MSP with the value from address 0x00000000.

12.4.1.6 Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions. On
reset, the processor loads the LR value OxFFFFFFFF.

12.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the
PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at
reset and must be 1.

Atmel SAM4CP [DATASHEET] 53

43051E-ATPL-08/14

12.4.1.8 Program Status Register

Name: PSR

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| N z C Vv Q ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:

 Application Program Status Register (APSR).
* Interrupt Program Status Register (IPSR).
» Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register name as an
argument to the MSR or MRS instructions. For example:

* Read of all the registers using PSR with the MRS instruction.
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read/Write!"?) APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read/Write!" APSR and IPSR
EAPSR Read/Write® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

Atmel SAMACP [DATASHEET] 54

43051E-ATPL-08/14

12.4.1.9 Application Program Status Register

Name: APSR

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| N z C Y | Q - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

* N: Negative Flag
0: Operation result was positive, zero, greater than, or equal.

1: Operation result was negative or less than.

e Z: Zero Flag
0: Operation result was not zero.

1: Operation result was zero.

e C: Carry or Borrow Flag
Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit.

1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

¢ V: Overflow Flag
0: Operation did not result in an overflow.

1: Operation resulted in an overflow.

* Q: DSP Overflow and Saturation Flag
Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero.
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

¢ GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

Atmel SAM4CP [DATASHEET] 55

43051E-ATPL-08/14

12.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read/Write
Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 = NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug
13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

56 = IRQ40

See “Exception Types” for more information.

Atmel SAM4CP [DATASHEET] 56

43051E-ATPL-08/14

12.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8

| ICUIT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If~-Then (IT) instruction, or the Interruptible-
Continuable Instruction (ICl) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to write
the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR value in the
stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”.

¢ ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction, the
processor:

— Stops the load multiple or store multiple instruction operation temporarily.
— Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

— Returns to the register pointed to by bits[15:12].
— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

¢ [IT: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The con-
ditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more information.

e T: Thumb State
The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:

— Instructions BLX, BX and POP{PC}.
— Restoration from the stacked xPSR value on an exception return.
— Bit[0] of the vector value on an exception entry or reset.
Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

12.4.1.12 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they might
impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the value
of PRIMASK or FAULTMASK. See “MRS”, “MSR”, and “CPS” for more information.

Atmel SAMA4CP [DATASHEET] 57

43051E-ATPL-08/14

12.4.1.13 Priority Mask Register

Name: PRIMASK
Access: Read/Write
Reset: 0x00000000

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| - PRIMASK |
The PRIMASK register prevents the activation of all exceptions with a configurable priority.
* PRIMASK
0: No effect.
1: Prevents the activation of all exceptions with a configurable priority.

SAM4CP [DATASHEET 58

Atmel []

43051E-ATPL-08/14

12.4.1.14 Fault Mask Register

Name: FAULTMASK

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).
¢ FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

Atmel SAM4CP [DATASHEET] 59

43051E-ATPL-08/14

12.4.1.15 Base Priority Mask Register

Name: BASEPRI
Access: Read/Write
Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it
prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

¢ BASEPRI
Priority mask bits:

0x0000: No effect.
Nonzero: Defines the base priority for exception processing.
The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher priority field
values correspond to lower exception priorities.

Atmel SAM4CP [DATASHEET] 60

43051E-ATPL-08/14

12.4.1.16 Control Register

Name: CONTROL

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
7 6 5 4 3 2 1 0

| - FPCA SPSEL nPRIV |

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread
mode and indicates whether the FPU state is active.

* FPCA: Floating-point Context Active
Indicates whether the floating-point context is currently active:

0: No floating-point context active.
1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

e SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception return.

* nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:

0: Privileged.
1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control Register
when in Handler mode. The exception entry and return mechanisms update the Control register based on the EXC_RETURN
value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:

» Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”.
» Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 12-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This
ensures that instructions after the ISB execute using the new stack pointer. See “ISB”.

Atmel SAM4CP [DATASHEET] 61

43051E-ATPL-08/14

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt
Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The pro-
cessor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry” and “Exception Return”
for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more information.

12.4.1.18 Data Types
The processor supports the following data types:
e 32-bit words.
e 16-bit halfwords.
e 8-bit bytes.
e The processor manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus
(PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for more information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)
For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
e Access peripheral registers.
e Define exception vectors.
e The names of:
e The registers of the core peripherals.
e The core exception vectors.
e A device-independent interface for RTOS kernels, including a debug channel.
The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to include
their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions
that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the archi-
tectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 12.5.3 "Power Management Programming Hints”
e Section 12.6.2 "CMSIS Functions”

e Section 12.8.2.1 "NVIC Programming Hints”

Atmel SAM4CP [DATASHEET] 62

43051E-ATPL-08/14

12.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features. The
processor has a fixed memory map that provides up to 4GB of addressable memory.

Figure 12-3.

Memory Map

Ox43FFFFFF

0x42000000

Ox400FFFFF
0x40000000

Vendor-specific

32 MB Bit band alias

1 MB Bit Band region

Ox23FFFFFF

0x22000000

0x200FFFFF
0x20000000

32 MB Bit band alias

| 1 MB Bit Band region

511MB
memory
Private peripheral 1.0MB
bus
External device 1.0GB
External RAM 1.0GB
Peripheral 0.5GB
SRAM 0.5GB
Code 0.5GB

OXFFFFFFFF

0xE0100000
OXEOOFFFFF

0XE0000000
OXDFFFFFFF

0xA0000000
OX9FFFFFFF

0x60000000
OXSFFFFFFF

0x40000000
OX3FFFFFFF

0x20000000
Ox1FFFFFFF

0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data, see
“Bit-banding”.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product, refer
to the Memories section of the datasheet.

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

63

12.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types

e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.
e Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.
e Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can buffer a
write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

e Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data coherency
between the bus masters.

e Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

12.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that
the order in which the accesses complete matches the program order of the instructions, providing this does not affect
the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses
completing in program order, the software must insert a memory barrier instruction between the memory access
instructions, see “Software Ordering of Memory Accesses”.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory. For
two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of the memory
accesses is described below.

Table 12-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Normal Device Access

A1 Access Non-shareable Shareable Strongly-ordered Access
Normal Access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:

- Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, A1 is always observed before A2.

/ItmeL SAM4CP [DATASHEET] 64

43051E-ATPL-08/14

12.4.2.3 Behavior of Memory Accesses

The following table describes the behavior of accesses to each region in the memory map.

Table 12-4. Memory Access Behavior

Address Range Memory Region Memory XN | Description
Type

000000000 - Ox1FFEFFEF Code Normal® | - Executable region for program code. Data can
also be put here.
Executable region for data. Code can also be
put here.

0x20000000 - 0x3FFFFFFF SRAM Normal™ | -) o , ,
This region includes bit band and bit band
alias areas, see Table 12-6.

0x40000000 - OX5FFFFFFF Peripheral Device() | xN | [T region includes bit band and bit band
alias areas, see Table 12-6.

0x60000000 - OX9FFFFFFF External RAM Normal") | - Executable region for data.

0xA0000000 - OXDFFFFFFF External device Device(" XN | External Device memory.

0XE0000000 - OXEOOFFFFF Private Peripheral Strongly(—ﬂ XN This region includes the NVIC, System timer,

Bus ordered and system control block.
0xE0100000 - OxFFFFFFFF Reserved Device!” | XN | Reserved.

Note: 1.

See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs always use
the Code region. This is because the processor has separate buses that enable instruction fetches and data accesses to
occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see “Memory
Protection Unit (MPU)”".

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access constraints, and some regions
are subdivided, as Table 12-5 shows:

Table 12-5. Memory Region Shareability Policies
Address Range Memory Region Memory Type Shareability
0x00000000 - 0x1FFFFFFF Code Normal (") -
0x20000000 - Ox3FFFFFFF SRAM Normal (") -
0x40000000 - 0OX5FFFFFFF Peripheral Device(" -
0x60000000 - 0x7FFFFFFF
External RAM Normal (") -
0x80000000 - 0X9FFFFFFF
0xA0000000 - OXBFFFFFFF Shareable("
External device Device("
0xC0000000 - OXDFFFFFFF Non-shareable ("
0xE0000000 - OXEOOFFFFF Private Peripheral Bus Strongly- ordered" Shareable!"
0xE0100000 - OxFFFFFFFF Vendor-specific device Device(" -

Notes: 1.

Atmel

See “Memory Regions, Types and Attributes” for more information.

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

65

Instruction Prefetch and Branch Prediction
The Cortex-M4 processor:

e Prefetches instructions ahead of execution.
e Speculatively prefetches from branch target addresses.

12.4.2.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e The processor has multiple bus interfaces.

e Memory or devices in the memory map have different wait states.

e Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the order of
memory accesses. Otherwise, if the order of memory accesses is critical, the software must include memory barrier
instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent
memory transactions. See “DMB”.

DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before
subsequent instructions execute. See “DSB”.

I1SB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB”.

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

12.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions
occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 12-6.
e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in Table 12-7.

Table 12-6. SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as SRAM
0x20000000 - 0x200FFFFF SRAM bit-band region memory accesses, but this region is also bit-addressable
through bit-band alias.

Data accesses to this region are remapped to bit-band
0x22000000 - 0x23FFFFFF SRAM bit-band alias region. A write operation is performed as read-modify-
write. Instruction accesses are not remapped.

Atmel SAMA4CP [DATASHEET] 66

43051E-ATPL-08/14

Table 12-7. Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as
0x40000000 - 0x400FFFFF Peripheral bit-band alias peripheral memory accesses, but this region is also bit-
addressable through bit-band alias.

Data accesses to this region are remapped to bit-band
0x42000000 - 0x43FFFFFF Peripheral bit-band region | region. A write operation is performed as read-modify-
write. Instruction accesses are not permitted.

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or
peripheral bit-band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer
size of the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:

bit_word_offset = (byte_offset x 32) + (bit_number x 4)
bit_word_addr = bit_band_base + bit_word_offset
where:

e Bit word_offset is the position of the target bit in the bit-band memory region.

Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bit_band_base is the starting address of the alias region.

Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.
Bit_number is the bit position, 0-7, of the targeted bit.

Figure 12-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band
region:
e The alias word at 0x23FFFFEO maps to bit [0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEO = 0x22000000 +
(OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit [7] of the bit-band byte at 0x200FFFFF: O0x23FFFFFC = 0x22000000 +
(OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit [0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 +
(0*32) + (0*4).
e The alias word at 0x2200001C maps to bit [7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000 +
(0*32) + (7*4).

Atmel SAMA4CP [DATASHEET] 67

43051E-ATPL-08/14

Figure 12-4. Bit-band Mapping

32 MB alias region

I 0x23FFFFFC I O0x23FFFFF8 || 0x23FFFFF4 | 0x23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 I 0x23FFFFEO I

°o o o

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

0O 7 6 5 4 3 2 1

‘7654321 0O 7 6 5 4 3 2 1 0

0’7654321

-
OXZOOFFFFF‘ ‘ I ‘
A

I [[
0x200FFFFE ‘ ‘
| | |

I [[
0x200FFFFD ‘ ‘ I ‘
| | |

I [[
0x200FFFFC ‘ ‘ I
| | |

0 0 0 f—

765432107654321076543210‘7654321

>

I 1 1 I 1 | I 1 |
I ‘ ‘ 0x20000003 ‘ ‘ I ‘ ‘ 0x20000002 ‘ ‘ I ‘ ‘ 0x20000001 ‘ ‘ I ‘ ‘ O%ZOOFOO#}O ‘ ‘ I
| | | | | | | | |

Directly Accessing an Alias Region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band
region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0 writes a 0 to
the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF. Writing
0x00 has the same effect as writing 0x0E.

Reading a word in the alias region:
e (0x00000000 indicates that the targeted bit in the bit-band region is set to 0.

e (0x00000001 indicates that the targeted bit in the bit-band region is set to 1.
Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

12.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes
0-3 hold the first stored word, and bytes 4-7 hold the second stored word. “Little-endian Format” describes how words of
data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the most
significant byte at the highest-numbered byte. For example:

Figure 12-5. Little-endian Format
Memory Register
7 0
31 2423 1615 7
Address A BO [Isbyte B3 B2 B1 BO

A+1 B1
A+2 B2
A+3 B3 |[msbyte

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

68

12.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking mechanism that
a thread or process can use to obtain exclusive access to a memory location. The software can use them to perform a
guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a register.
If this bit is:

e (: Itindicates that the thread or process gained exclusive access to the memory, and the write succeeds.

e 1:Itindicates that the thread or process did not gain exclusive access to the memory, and no write is performed.
The pairs of Load-Exclusive and Store-Exclusive instructions are:

e The word instructions LDREX and STREX.

e The halfword instructions LDREXH and STREXH.

e The byte instructions LDREXB and STREXB.
The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location.

4. Test the returned status bit. If this bit is:
0: The read-modify-write completed successfully.
1: No write was performed. This indicates that the value returned at step 1 might be out of date. The software must
retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore address.

3. Ifthe returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the software has
claimed the semaphore. However, if the Store-Exclusive instruction failed, another process might have claimed the
semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-Exclu-
sive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory locations
addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

e |t executes a CLREX instruction.

e |t executes a Store-Exclusive instruction, regardless of whether the write succeeds.

e An exception occurs. This means that the processor can resolve semaphore conflicts between different threads.
In a multiprocessor implementation:

e Executing a CLREX instruction removes only the local exclusive access tag for the processor.

e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all global
exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX".

Atmel SAMA4CP [DATASHEET] 69

43051E-ATPL-08/14

12.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for generation
of these instructions:

Table 12-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uint16_t _ LDREXH (uint16_t *addr)

LDREXB uint8_t _ LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t _ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:

__Idrex((volatile char *) OxFF);

12.4.3 Exception Model
This section describes the exception model.
12.4.3.1 Exception States
Each exception is in one of the following states:
Inactive
The exception is not active and not pending.
Pending
The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.
Active
An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the
active state.

Active and Pending
The exception is being serviced by the processor and there is a pending exception from the same source.
12.4.3.2 Exception Types
The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When
reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is
deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as
privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest priority
exception other than reset. It is permanently enabled and has a fixed priority of -2.

Atmel SAMA4CP [DATASHEET] 70

43051E-ATPL-08/14

NMIs cannot be:

e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.
Hard Fault
A hard fault is an exception that occurs because of an error during exception processing, or because an exception

cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have higher
priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU or the
fixed memory protection constraints determines this fault, for both instruction and data memory transactions. This fault is
used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory transaction.
This might be from an error detected on a bus in the memory system.

Usage Fault
A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:

e An undefined instruction.
e Anillegal unaligned access.
e Aninvalid state on instruction execution.
® An error on exception return.
The following can cause a Usage Fault when the core is configured to report them:

e An unaligned address on word and halfword memory access.
e Adivision by zero.
SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can
use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching
when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a
SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor.

Atmel SAM4CP [DATASHEET] 71

43051E-ATPL-08/14

Table 12-9. Properties of the Different Exception Types

Exception Irq Exception Type Priority Vector Address | Activation
Number(" Number(" or Offset®

1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -

4 -12 Memory Configurable® | 0x00000010 Synchronous

management fault

Synchronous when precise,

5 -11 Bus fault Configurable® | 0x00000014 asynchronous when imprecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 Svcall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

;goa:lned 0 and above | Interrupt (IRQ) Configurable® %30232\5)64((5)) Asynchronous

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for
exceptions other than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status
Register”.

See “Vector Table” for more information.
See “System Handler Priority Registers”.
See “Interrupt Priority Registers”.
Increasing in steps of 4.

o kN

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:
e “System Handler Control and State Register”.
e ‘“Interrupt Clear-enable Registers”.
For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault Handling”.

12.4.3.3 Exception Handlers
The processor handles exceptions using:
e Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ40 are the exceptions handled by ISRs.
e Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.
e System Handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system
handlers.

Atmel SAMA4CP [DATASHEET] 72

43051E-ATPL-08/14

12.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for
all exception handlers. Figure 12-6 shows the order of the exception vectors in the vector table. The least-significant bit
of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 12-6. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 SysTick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SvCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR regis-
ter to relocate the vector table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80,
see “Vector Table Offset Register”.

12.4.3.5 Exception Priorities
As Table 12-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority.
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see “System Handler Priority Registers”, and “Interrupt Priority
Registers”.

Note: Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and NMI exceptions,
with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher
priority than IRQIO]. If both IRQ[1] and IRQ[O0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes pre-
cedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed
before IRQ[1].

Atmel SAM4CP [DATASHEET] 73

43051E-ATPL-08/14

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception
occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted,
irrespective of the exception number. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:
e An upper field that defines the group priority.
e Alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt
exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ
number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application Interrupt and
Reset Control Register”.

12.4.3.7 Exception Entry and Return
Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is
higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more information about
preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.

Return
This occurs when the exception handler is completed, and:

e There is no pending exception with sufficient priority to be serviced.
e The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See
“Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception
that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception
handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception,
the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State
saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore the state saving
continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception
handler of the original exception enters the execute stage of the processor. On return from the exception handler of the
late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread
mode, or the new exception is of a higher priority than the exception being handled, in which case the new exception
preempts the original exception.

Atmel SAMACP [DATASHEET] 74

43051E-ATPL-08/14

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see “Exception
Mask Registers”. An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor

pushes information onto the current stack. This operation is referred as stacking and the structure of eight data words is
referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state on

exception entry. Figure 12-1 shows the Cortex-M4 stack frame layout when floating-point state is preserved on the stack
as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU.Figure 12-1 shows this stack frame also.

Figure 12-7. Exception Stack Frame

{ali(_:-;.r:.er} PR Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10

S9
S8
S7
S6
S5
S4
S3
S2
S1 L h
S0 | {aligner} - I
xPSR Decreasing xPSR
PC memory PC
R address R
R12 R12
R3 R3
R2 v R2
R1 R1
RO -« IRQ top of stack RO < IRQ top of stack

Pre-IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the stack
frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program. This
value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address
from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same
time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack
frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception handler and
automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.

Atmel SAMA4CP [DATASHEET] 75

43051E-ATPL-08/14

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load
the EXC_RETURN value into the PC:

® An LDM or POP instruction that loads the PC.
e An LDR instruction with the PC as the destination.
e A BXinstruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to
detect when the processor has completed an exception handler. The lowest five bits of this value provide information on
the return stack and processor mode. Table 12-10 shows the EXC_RETURN values with a description of the exception
return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the processor
that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 12-10. Exception Return Behavior

EXC_RETURN[31:0] Description
Return to Handler mode, exception return uses non-floating-point state from the MSP and

OxFFFFFFF1 .
execution uses MSP after return.

OXFFEEEEE9 Return to Thread mode, exception return uses state from MSP and execution uses MSP after
return.

OXFFFEFFED Return to Thread mode, exception return uses state from the PSP and execution uses PSP after
return.

OXFFEFFFE1 Return to Handler mode, exception return uses floating-point-state from MSP and execution uses
MSP after return.

OXFEFEEFE9 Return to Thread mode, exception return uses floating-point state from MSP and execution uses
MSP after return.

OXFFFEFFED Return to Thread mode, exception return uses floating-point state from PSP and execution uses
PSP after return.

12.4.3.8 Fault Handling
Faults are a subset of the exceptions, see “Exception Model”. The following generate a fault:
e Abus erroron:
e Aninstruction fetch or vector table load.
e A data access.
e Aninternally-detected error such as an undefined instruction.
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.
Fault Types
Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the regis-

ter bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information about the
fault status registers.

Table 12-11. Faults

Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED
SAM4CP [DATASHEET 76
Atmel [1

43051E-ATPL-08/14

Table 12-11. Faults (Continued)

Fault Handler Bit Name Fault Status Register
MPU or default memory map mismatch: - -
on instruction access IACcvIOL™
on data access Memory DACCVIOL®
during exception stacking gilr:agement MSTKERR "‘:I\:thgtI:;usMSeungcr)%istl\élra”nagement
during exception unstacking MUNSTKERR
during lazy floating-point state preservation MLSPERR®
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR “BFSR: Bus Fault Status
during lazy floating-point state preservation LSPERR®) Subregister”
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state INVSTATE “UFSR: Usage Fault Status
Invalid EXC_RETURN value Usage fault INVPC Subregister”
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is

disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple

instruction with ICI continuation.

3. Only present in a Cortex-M4F device.

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority Registers”.
The software can disable the execution of the handlers for these faults, see “System Handler Control and State Register”.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model”.

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the
fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because
a fault handler cannot preempt itself; it must have the same priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler
for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.

e A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault.

This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler
failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than

Reset, NMI, or another hard fault.

SAMA4CP [DATASHEET] 77

43051E-ATPL-08/14

Atmel

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address
register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

Table 12-12. Fault Status and Fault Address Registers

Handler Status Register Address Register Register Description
Name Name
Hard fault SCB_HFSR - “Hard Fault Status Register”

‘MMFSR: Memory Management Fault Status
MMFSR SCB_MMFAR Subregister”
“MemManage Fault Address Register”

“BFSR: Bus Fault Status Subregister”

Memory
management fault

Bus fault BFSR SCB_BFAR)
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”
Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the pro-
cessor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:

e ltisreset.
e An NMI occurs.
e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the
lockup state.

12.5 Power Management
The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock.
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register”.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

12.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. Therefore,
the software must be able to put the processor back into sleep mode after such an event. A program might have an idle
loop to put the processor back to sleep mode.

12.5.1.1 Wait for Interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI
instruction it stops executing instructions and enters sleep mode. See “WFI|” for more information.

12.5.1.2 Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event register.
When the processor executes a WFE instruction, it checks this register:

e If the register is 0, the processor stops executing instructions and enters sleep mode.

e If the register is 1, the processor clears the register to 0 and continues executing instructions without entering
sleep mode.

See “WFE” for more information.

Atmel SAMA4CP [DATASHEET] 78

43051E-ATPL-08/14

12.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception handler, it
returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that only require the
processor to run when an exception occurs.

12.5.2 Wakeup from Sleep Mode
The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

12.5.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.
Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt
arrives that is enabled and has a higher priority than the current exception priority, the processor wakes up but does not
execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK and
FAULTMASK, see “Exception Mask Registers”.

12.5.2.2 Wakeup from WFE
The processor wakes up if:
e It detects an exception with sufficient priority to cause an exception entry.
e |t detects an external event signal. See “External Event Input”.
e In a multiprocessor system, another processor in the system executes an SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up the
processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more information
about the SCR, see “System Control Register”.

12.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter sleep mode on a
later WFE instruction. See “Wait for Event” for more information.

12.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for these
instructions:

void _ WFE(void) // Wait for Event
void _ WFI(void) // Wait for Interrupt

Atmel SAMA4CP [DATASHEET] 79

43051E-ATPL-08/14

12.6 Cortex-M4 Instruction Set

12.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.

Angle brackets, <>, enclose alternative forms of the operand.

Braces, {}, enclose optional operands.
The Operands column is not exhaustive.

Op2 is a flexible second operand that can be either a register or a constant.

Most instructions can use an optional condition code suffix.
For more information on the instructions and operands, see the instruction descriptions.

Table 12-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C.V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C.V
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear -

BFI Rd, Rn, #Isb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -

CBNz Rn, label Compare and Branch if Non Zero -

CBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C.V
CMP Rn, Op2 Compare N,Z,C,V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

Atmel

SAMA4CP [DATASHEET] 80

43051E-ATPL-08/14

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,C\V
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,Z,C
NOP - No Operation -
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDSUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QSsuB {Rd,} Rn, Rm Saturating Subtract Q

Atmel

SAMA4CP [DATASHEET] 81

43051E-ATPL-08/14

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
QSuUB16 {Rd,} Rn, Rm Saturating Subtract 16 -
QSUB8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C.V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -

SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS8 {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS {Rd,} Rn, Rm Signed Halving Subtract 8 -
gm::ﬁ_?g gmtﬁ_ﬂ— Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt$g gmtﬁtﬂ- RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual -
SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

Atmel

SAMA4CP [DATASHEET] 82

43051E-ATPL-08/14

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
2mgt$g gll\\/l/ltJJll:'ll?:lr {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{!}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C.V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C.V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -

TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Atmel

SAMA4CP [DATASHEET] 83

43051E-ATPL-08/14

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIV {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm g:iiig:r:zgul:ilultiply Accumulate Accumulate Long (32 x 32 + 32 +32), ;
UMLAL RdLo, RdHi, Rn, Rm égs)i(ggze‘i“g:')fi%'}"_‘é"iittﬁeﬁﬁﬁum”'ate -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSuUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
UsuB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
USuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP F32 Sd, <Sm | #0.0> aC:r:)crjr1Zpearr0e two floating-point registers, or one floating-point register FPSCR
VCMPE F32 Sd, <Sm | #0.0> g:én;:rrsvcm?I::;alti:%zzirr:ﬁgig;tee;i, or one floating-point register FPSCR

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

84

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {8d,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFENMA.F32 {8d,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFEMS.F32 {8d,} Sn, Sm Floating-point Fused Multiply Subtract -
VENMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{!}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {8d,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate -
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C,V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{!}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -

WEFI - Wait For Interrupt -

/ItmeL SAM4CP [DATASHEET] 85

43051E-ATPL-08/14

12.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can generate
these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, the user might have to use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly access:

Table 12-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irq(void)

CPSID | void __disable_irg(void)

CPSIEF void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __ DMB(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t _ RBIT(uint32_t int value)
SEV void __SEV/(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 12-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register | Access | CMSIS Function
Read uint32_t __ get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t _ get FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t _ get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get MSP (void)
MSP
Write void __set_MSP (uint32_t TopOfMainStack)
Read uint32_t _ get PSP (void)
PSP
Write void __set PSP (uint32_t TopOfProcStack)
SAM4CP [DATASHEET] 86
AtmeL 43051E-ATPL-08/14

12.6.3 Instruction Descriptions

12.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination register. When there is a destination register in the instruction, it
is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand”.

12.6.3.2 Restrictions when Using PC or SP

Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands or des-
tination register can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct exe-
cution, because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb
instructions.

12.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand?2 in the descrip-
tions of the syntax of each instruction.

Operand?2 can be a:
e “Constant”.
e “Register with Optional Shift”.

Constant
Specify an Operand2 constant in the form:
#constant

where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word.
e Any constant of the form 0x00XYOOXY.
e Any constant of the form 0xXYO00XY00.
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in the indi-
vidual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or
TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by
shifting an 8-bit value. These instructions do not affect the carry flag if Operand?2 is any other constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is not
permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with Optional Shift
Specify an Operand?2 register in the form:

Rm {, shift}
where:

Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 <n < 32.
LSL #n logical shift left n bits, 1 <n < 31.

Atmel SAMA4CP [DATASHEET] 87

43051E-ATPL-08/14

LSR #n logical shift right n bits, 1 <n < 32.
ROR #n rotate right n bits, 1 <n < 31.
RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry flag
when used with certain instructions. For information on the shift operations and how they affect the carry flag, see
“Flexible Second Operand”
12.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register.

e During the calculation of Operand?2 by the instructions that specify the second operand as a register with shift. See
“Flexible Second Operand”. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0. The following subsections describe the
various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value
to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the right-hand
32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result. See Figure 12-
8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded towards
negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-8. ASR #3
Carry

REEER e

31 514(3]2|1]0

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.

The LSR #n operation can be used to divide the value in the register Rm by 27, if the value is regarded as an unsigned
integer.

When the instruction is LSRS or when LSR #n is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

e [f nis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to 0.

Atmel SAMA4CP [DATASHEET] 88

43051E-ATPL-08/14

Figure 12-9. LSR#3

Carry

| I
0 0O Fl
Y vy 9

31 51413(2]1(0

LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n
bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 12-10.
The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an unsigned
integer or a two’s complement signed integer. Overflow can occur without warning.
When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n], of the
register Rm. These instructions do not affect the carry flag when used with LSL #0.
e If nis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to 0.
Figure 12-10. LSL #3
-———-q Il
! I 000
! \ 2L 2 /
D 31 5143|210
Carry TEI:I—I L%I
Flag
ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n
bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure 12-11.

When the instruction is RORS or when ROR #n is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

e If nis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.
e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 12-11. ROR #3

Carry
| | Flag

31 5(413]12(1]|0

SAMACP [DATASHEET] 89
A t m eL 43051E-ATPL-08/14

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into bit[31] of
the result. See Figure 12-12.

When the instruction is RRXS or when RRX is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 12-12. RRX

Carry
Flag

31{30 1(0

FILALT

12.6.3.5 Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word access,
or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M4 processor supports unaligned access only for the following instructions:

e LDR, LDRT.

e LDRH, LDRHT.

e LDRSH, LDRSHT.

e STR, STRT.

e STRH, STRHT.
All other load and store instructions generate a usage fault exception if they perform an unaligned access, and therefore
their accesses must be address-aligned. For more information about usage faults, see “Fault Handling”.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned. To avoid acci-
dental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register to trap all
unaligned accesses, see “Configuration and Control Register”.

12.6.3.6 PC-relative Expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is represented
in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset from the
label and the address of the current instruction. If the offset is too big, the assembler produces an error.

For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4 bytes.
For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4 bytes,
with bit[1] of the result cleared to 0 to make it word-aligned.

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number,
or an expression of the form [PC, #number].

12.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status Register
(APSR) according to the result of the operation, see “Application Program Status Register”. Some instructions update all
flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the instruction descrip-
tions for the flags they affect.

An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags.
e After any number of intervening instructions that have not updated the flags.

Atmel SAMA4CP [DATASHEET] 90

43051E-ATPL-08/14

Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions. See
Table 12-16 for a list of the suffixes to add to instructions to make them conditional instructions. The condition code suffix
enables the processor to test a condition based on the flags. If the condition test of a conditional instruction fails, the
instruction:

e Does not execute.

e Does not write any value to its destination register.

e Does not affect any of the flags.

e Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for more
information and restrictions when using the IT instruction. Depending on the vendor, the assembler might automatically
insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.
This section describes:

e “Condition Flags”.
e “Condition Code Suffixes”.

Condition Flags
The APSR contains the following condition flags:
N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
Vv Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see “Program Status Register”.
A carry occurs:
e Ifthe result of an addition is greater than or equal to 232.
e If the result of a subtraction is positive or zero.
e As the result of an inline barrel shifter operation in a move or logical instruction.

An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation been
performed at infinite precision, for example:

e If adding two negative values results in a positive value.
e If adding two positive values results in a negative value.
e |If subtracting a positive value from a negative value generates a positive value.
e If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}. Condi-
tional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the condition
code flags in the APSR meet the specified condition. Table 12-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

Atmel SAM4CP [DATASHEET] 91

43051E-ATPL-08/14

Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.
Table 12-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CSorHS Cc=1 Higher or same, unsigned >
CCorlLO C=0 Lower, unsigned <

Mi N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0or Z= Lower or same, unsigned <

GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1andN!=V Less than or equal, signed <
AL Can have any value | Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = R1, setting flags
IT Ml ; IT instruction for the negative condition
RSBMI RO, R1, #0 ; 1T negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CMP RO, R1 ; Compare RO and R1l, setting flags

ITT GT : IT instruction for the two GT conditions

CMPGT R2, R3 ; If "greater than", compare R2 and R3, setting flags
MOVGT R4, R5 ; If still "greater than®, do R4 = R5

12.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the operands
and destination register specified. For some of these instructions, the user can force a specific instruction size by using
an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction
encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the
requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not auto-

matically generate the right size encoding.

SAMA4CP [DATASHEET] 92

43051E-ATPL-08/14

Atmel

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.

BCS.W label

;Creates
:branch

a 32-bit instruction

even

for a short

ADDS.W RO, RO, R1 ;creates a 32-bit instruction even though the same

;operation can be done by a 16-bit

12.6.4 Memory Access Instructions

The table below shows the memory access instructions:

Table 12-17. Memory Access Instructions

instruction

Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX({type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive
12.6.4.1 ADR
Load PC-relative address.
Syntax
ADR{cond} Rd, label

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

label is a PC-relative expression. See “PC-relative Expressions”.

Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination register.
ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated is set
to 1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned. See “Instruction Width Selection”.

SAMA4CP [DATASHEET] 93

43051E-ATPL-08/14

Atmel

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.
Examples

ADR R1, TextMessage Write address value of a location labelled as

TextMessage to R1

12.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}]

op{type}{cond} Rt, [Rn, #offset]!

op{type}{cond} Rt, [Rn], #offset

opD{cond} Rt, Rt2, [Rn {, #offset}]

opD{cond} Rt, Rt2, [Rn, #offset]!

opD{cond} Rt, Rt2, [Rn], #offset
where:

immediate offset
pre-indexed

post-indexed

immediate offset, two words
pre-indexed, two words
post-indexed, two words

op is one of:
LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]
Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode is:

[Rn, #offset]!

Atmel SAMACP [DATASHEET] 94

43051E-ATPL-08/14

Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is added to or
subtracted from the address, and written back into the register Rn. The assembly language syntax for this mode is:

[Rn], #offset
The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See “Address Alignment”.

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 12-18. Offset Ranges

Instruction Type

Immediate Offset

Pre-indexed

Post-indexed

Word, halfword,

signed

halfword, byte, or signed byte

-255 to 4095

-255 to 255

-255 to 255

Two words

multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

Restrictions

For load instructions:

e Rtcan be SP or PC for word loads only.
e Rt must be different from Rt2 for two-word loads.
® Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Atmel

When Rtis PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution.

e A branch occurs to the address created by changing bit[0] of the loaded value to 0.

e [f the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:

e Rtcan be SP for word stores only.

e Rtmustnot be PC.

® Rn must not be PC.

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
Condition Flags

These instructions do not change the flags.

Examples

LDR R8, [R10] ; Loads R8 from the address in R10.

LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
; 960 bytes above the address in R5, and
; Increments R5 by 960.

STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store R1 to

; a word 4 bytes above the address in RS,
; and then decrement R8 by 16.

SAMA4CP [DATASHEET] 95

43051E-ATPL-08/14

12.6.4.3 LDR and STR, Register Offset
Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rn is the register on which the memory address is based.
Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment”.

Restrictions
In these instructions:

® Rn must not be PC.
® Rm must not be SP and must not be PC.
e Rtcan be SP only for word loads and word stores.
e Rtcan be PC only for word loads.
When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address.
e [f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.
Examples

STR RO, [R5, R1] Store value of RO into an address equal to
sum of R5 and R1

Read byte value from an address equal to

sum of R5 and two times R1, sign extended it
to a word value and put it in RO

Stores RO to an address equal to sum of R1

and four times R2

LDRSB RO, [R5, R1, LSL #1]

STR RO, [R1, R2, LSL #2]

Atmel SAM4CP [DATASHEET] 96

43051E-ATPL-08/14

12.6.4.4 LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset,
see “LDR and STR, Immediate Offset”. The difference is that these instructions have only unprivileged access even
when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions
In these instructions:

e Rn must not be PC.
e Rt must not be SP and must not be PC.
Condition Flags

These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
; sum of R2 and 8 into R2, with unprivileged access
SAM4CP [DATASHEET 97
Atmel []

43051E-ATPL-08/14

12.6.4.5 LDR, PC-relative
Load register from memory.

Syntax

LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label ; Load two words
where:

type is one of:
B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution”.
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions”.
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or by
an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment”.

label must be within a limited range of the current instruction. The table below shows the possible offsets between /abel

and the PC.
Table 12-19. Offset Ranges
Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection”.
Restrictions
In these instructions:

e Rtcan be SP or PC only for word loads.
e Rt2 must not be SP and must not be PC.
e Rt must be different from Rt2.

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address.
e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.

Examples
LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled
; as localdata, sign extend it to a word
; value, and put it in R7
SAM4CP [DATASHEET 98
Atmel [)

43051E-ATPL-08/14

12.6.4.6 LDM and STM
Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist
where:
op is one of:

LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution”.
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range, see “Examples”.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte inter-
vals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in order of
increasing register numbers, with the lowest numbered register using the lowest memory address and the highest num-
ber register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is written
back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals ranging
from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of decreasing
register numbers, with the highest numbered register using the highest memory address and the lowest number register
using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.
Restrictions
In these instructions:

® Rn must not be PC.

® reglist must not contain SP.
e Inany STM instruction, reglist must not contain PC.
e In any LDM instruction, reglist must not contain PC if it contains LR.
e reglist must not contain Rn if the writeback suffix is specified.
SAM4CP [DATASHEET 99
Atmel [1

43051E-ATPL-08/14

When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address.
e [f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.
Examples

LDM R8,{RO,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}
Incorrect Examples

STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list

12.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{cond} reglist
POP{cond} reglist
where:
cond is an optional condition code, see “Conditional Execution”.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma

separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on SP,
and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these
cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register using
the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using the
lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions
In these instructions:

e reglist must not contain SP.
e For the PUSH instruction, reglist must not contain PC.
e For the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:
e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address.
e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.

/ltmeL SAMA4CP [DATASHEET] 100

43051E-ATPL-08/14

Examples

PUSH {RO,R4-R7}
PUSH {R2,LR}
POP {RO,R10,PC}

12.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.
Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The
address used in any Store-Exclusive instruction must be the same as the address in the most recently executed Load-
exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data size as the value
loaded by the preceding Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Synchronization Primitives”.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the store, it
writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is guaranteed
that no other process in the system has accessed the memory location between the Load-exclusive and Store-Exclusive
instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-Exclu-
sive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding Load-
Exclusive instruction is unpredictable.

Restrictions
In these instructions:

e Do notuse PC.

e Do notuse SP for Rd and Rt.

e For STREX, Rd must be different from both Rt and Rn.

e The value of offset must be a multiple of four in the range 0-1020.
Condition Flags

These instructions do not change the flags.

Atmel SAM4CP [DATASHEET] 101

43051E-ATPL-08/14

Examples
MOV R1, #O0x1 ; Initialize the “lock taken” value try
LDREX RO, [LockAddr] ; Load the lock value
CMP RO, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claim the lock
CMPEQ RO, #0 ; Did this succeed?
BNE try ; No — try again

; Yes — we have the lock

12.6.4.9 CLREX

Clear Exclusive.

Syntax
CLREX{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to per-
form the store. It is useful in exception handler code to force the failure of the store exclusive if the exception occurs
between a load exclusive instruction and the matching store exclusive instruction in a synchronization operation.

See “Synchronization Primitives” for more information.
Condition Flags
These instructions do not change the flags.

Examples
CLREX
SAM4CP [DATASHEET] 102
/I t m eL 43051E-ATPL-08/14

12.6.5 General Data Processing Instructions
The table below shows the data processing instructions:

Table 12-20. Data Processing Instructions

Mnemonic | Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword
REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange
SSAX Signed Subtract and Add with Exchange
SBC Subtract with Carry

SHADD16 | Signed Halving Add 16

SHADDS8 Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange
SHSUB16 | Signed Halving Subtract 16

SAMA4CP [DATASHEET] 103

43051E-ATPL-08/14

Atmel

Table 12-20. Data Processing Instructions (Continued)

Mnemonic | Description
SHSUBS8 Signed Halving Subtract 8
SSUB16 Signed Subtract 16

SSUBS8 Signed Subtract 8

SuB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADDS8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange

UHADD16 | Unsigned Halving Add 16

UHADDS8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 | Unsigned Halving Subtract 16

UHSUBS8 Unsigned Halving Subtract 8

USADS8 Unsigned Sum of Absolute Differences

USADAS8 Unsigned Sum of Absolute Differences and Accumulate
usuB16 Unsigned Subtract 16
UsuB8 Unsigned Subtract 8

12.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
where:

op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
SAM4CP [DATASHEET 104
Atmel []

43051E-ATPL-08/14

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
imm12 is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is reduced
by one.

The RSB instruction subtracts the value in Rn from the value of Operand?2. This is useful because of the wide range of
options for Operand?.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.
See also “ADR”.

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions
In these instructions:

e Operand2 must not be SP and must not be PC.
® Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
e Rn must also be SP.
e Any shift in Operand2 must be limited to a maximum of 3 bits using LSL.
Rn can be SP only in ADD and SUB.
Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
e The user must not specify the S suffix.
e Rm must not be PC and must not be SP.
e If the instruction is conditional, it must be the last instruction in the IT block.

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only with
the additional restrictions:

e The user must not specify the S suffix.
e The second operand must be a constant in the range 0 to 4095.

e Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to 0b00 before
performing the calculation, making the base address for the calculation word-aligned.

e Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

e Bit[0] of the value written to the PC is ignored.

e A branch occurs to the address created by forcing bit[0] of that value to 0.
Condition Flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

/ltmeL SAMA4CP [DATASHEET] 105

43051E-ATPL-08/14

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if C flag set and Z
ADCHI R11, RO, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer con-
tained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,

and R2.
96-bit Subtraction Example
SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R1l1 ; subtract the most significant words with carry

12.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2
where:
op is one of:

AND logical AND.

ORR logical OR, or bit set.

EOR logical Exclusive OR.

BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn and
Operand?2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

Restrictions

Do not use SP and do not use PC.

/ltmeL SAMA4CP [DATASHEET] 106

43051E-ATPL-08/14

Condition Flags
If S is specified, these instructions:

e Update the N and Z flags according to the result.
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”.
e Do not affect the V flag.

Examples
AND R9, R2, #OxFF0OO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC RO, R1, #Oxab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

12.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax

op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n

RRX{S}{cond} Rd, Rm
where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution”.

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least significant byte is used

and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on what
result is generated by the different instructions, see “Shift Operations”.

Atmel SAMA4CP [DATASHEET] 107

43051E-ATPL-08/14

Restrictions
Do not use SP and do not use PC.
Condition Flags
If S is specified:
e These instructions update the N and Z flags according to the result.
e The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations”.
Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits

ROR R4, R5, R6 Rotate right by the value in the bottom byte of R6
RRX R4, R5 Rotate right with extend.

12.6.5.4 CLZ
Count Leading Zeros.
Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result value
is 32 if no bits are set and zero if bit[31] is set.

Restrictions
Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLz R4,R9
CLZNE R2,R3

12.6.5.5 CMP and CMN
Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional Execution”.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result, but do
not write the result to a register.

Atmel SAMA4CP [DATASHEET] 108

43051E-ATPL-08/14

The CMP instruction subtracts the value of Operand?2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction, except that
the result is discarded.

Restrictions
In these instructions:
e Do notuse PC

e Operand2 must not be SP.
Condition Flags

These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

12.6.5.6 MOV and MVN
Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imml6
MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution”.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.

imm16 is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

e ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n.

e LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n != 0.

e LSR{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n.

e ROR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n.

e RRX{S}cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

e MOV{S¥cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs.

e MOV{S}cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs.

e MOV{SKcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs.

e MOV{SKcond} Rd, Rm, ROR Rs is a synonym for ROR{S}cond} Rd, Rm, Rs.
See “ASR, LSL, LSR, ROR, and RRX”.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places the
result into Rd.

Atmel SAMA4CP [DATASHEET] 109

43051E-ATPL-08/14

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:
e The second operand must be a register without shift.
e The S suffix must not be specified.
When Rd is PC in a MOV instruction:

e Bit[0] of the value written to the PC is ignored.
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruction
to branch for software portability to the ARM instruction set.

Condition Flags

If S is specified, these instructions:

e Update the N and Z flags according to the result.
e Can update the C flag during the calculation of Operand?2, see “Flexible Second Operand”.

e Do not affect the V flag.

Examples
MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated
MOV~ R1, #OxFAO5 ; Write value of OxFAO5 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated
MOV ~ R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, #OxF ; Write value of OXFFFFFFFO (bitwise inverse of OxF)
; to the R2 and update flags.
12.6.5.7 MOVT
Move Top.
Syntax
MOVT{cond} Rd, #imml6
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
imm16 is a 16-bit immediate constant.
Operation
MOVT writes a 16-bit immediate value, imm186, to the top halfword, Rd[31:16], of its destination register. The write does
not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MOVT R3, #O0xF123 ; Write OxF123 to upper halfword of R3, lower halfword
; and APSR are unchanged.

SAMA4CP [DATASHEET] 110
A t m eL 43051E-ATPL-08/14

12.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:
e 32-bit big-endian data into little-endian data.
e 32-bit little-endian data into big-endian data.
REV16 converts either:
e 16-bit big-endian data into little-endian data.
e 16-bit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data.
e 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples

REV R3, R7
REV16 RO, RO
REVSH RO, R5
REVHS R3, R7
RBIT R7, R8

Reverse byte order of value in R7 and write it to R3
Reverse byte order of each 16-bit halfword in RO

Reverse Signed Halfword

Reverse with Higher or Same condition

Reverse bit order of value in R8 and write the result to R7.

Atmel SAMA4CP [DATASHEET] 111

43051E-ATPL-08/14

12.6.5.9 SADD16 and SADD8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Writes the result in the corresponding halfwords of the destination register.
The SADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SADD16 R1, RO ;Adds the halfwords in RO to the corresponding
;halfwords of R1 and writes to corresponding halfword
;of R1.

SADD8 R4, RO, R5 ;Adds bytes of RO to the corresponding byte in R5 and
;writes to the corresponding byte in R4.

12.6.5.10 SHADD16 and SHADD38
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHADD16 Signed Halving Add 16.

SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.

/ItmeL SAM4CP [DATASHEET] 112

43051E-ATPL-08/14

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDBS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, RO ;Adds halfwords in RO to corresponding halfword of R1
;and writes halved result to corresponding halfword in
;R1

SHADD8 R4, RO, R5 ;Adds bytes of RO to corresponding byte in R5 and
;writes halved result to corresponding byte in R4.

12.6.5.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.

Atmel SAMA4CP [DATASHEET] 113

43051E-ATPL-08/14

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to the right
causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R4 and writes halved result to bottom halfword of R7
SHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
; of R3 and writes halved result to top halfword of RO
; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of RO.

12.6.5.12 SHSUB16 and SHSUBS
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:

The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the corresponding signed byte results in the destination register.

Atmel SAMACP [DATASHEET] 114

43051E-ATPL-08/14

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.
Examples

SHSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword

of R1 and writes to corresponding halfword of R1
Subtracts bytes of RO from corresponding byte in R5,
and writes to corresponding byte in R4.

SHSUB8 R4, RO, R5

12.6.5.13 SSUB16 and SSUB8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUBS8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand.
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand.
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples

SSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword
of R1 and writes to corresponding halfword of R1
Subtracts bytes of R5 from corresponding byte in

RO, and writes to corresponding byte of R4.

SSUB8 R4, RO, R5

Atmel SAMA4CP [DATASHEET] 115

43051E-ATPL-08/14

12.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.
3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
4. Writes the signed result of the subtraction to the bottom halfword of the destination register.
The SSAX instruction:
1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the condition code flags.
Examples

SASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of RO
; Subtracts bottom halfword of R5 from top halfword of R4
; and writes to bottom halfword of RO

SSAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
; and writes to bottom halfword of R7
; Adds top halfword of R3 with bottom halfword of R2 and
; writes to top halfword of R7.

12.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where
cond is an optional condition code, see “Conditional Execution”.
Rn is the register holding the first operand.
SAM4CP [DATASHEET] 116
/ItmeL 43051E-ATPL-08/14

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the options.
Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the result, but
do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the same as
the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand?2 constant that has that bit set to 1 and all
other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is the
same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the sign
bits of the two operands.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions:
e Update the N and Z flags according to the result.
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”.
e Do not affect the V flag.

Examples

TST RO, #0x3F8 Perform bitwise AND of RO value to Ox3FS8,

APSR is updated but result is discarded
Conditionally test if value in R10 is equal to
value in R9, APSR is updated but result is discarded.

TEQEQ R10, R9

12.6.5.16 UADD16 and UADD8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.

Atmel SAMA4CP [DATASHEET] 117

43051E-ATPL-08/14

The UADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UADD16 R1, RO Adds halfwords in RO to corresponding halfword of R1,
writes to corresponding halfword of R1
Adds bytes of RO to corresponding byte in R5 and

writes to corresponding byte in R4.

UADD8 R4, RO, R5

12.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.
The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Atmel SAMA4CP [DATASHEET] 118

43051E-ATPL-08/14

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of RO
; Subtracts bottom halfword of R5 from top halfword of RO
; and writes to bottom halfword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
; and writes to bottom halfword of R7
; Adds top halfword of R3 to bottom halfword of R2 and
; writes to top halfword of R7.

12.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

UHADD16 Unsigned Halving Add 16.

UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the destination
register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.

3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
; and writes halved result to corresponding halfword
; in R7
UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; writes halved result to corresponding byte in R4.
SAM4CP [DATASHEET 119
Atmel []

43051E-ATPL-08/14

12.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the subtraction in the top halfword of the destination register.
Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.
Restrictions

o~

o kv

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
and writes halved result to top halfword of R7
Subtracts top halfword of R2 from bottom halfword of
R7 and writes halved result to bottom halfword of R7
Subtracts bottom halfword of R5 from top halfword of
R3 and writes halved result to top halfword of RO
Adds top halfword of R5 to bottom halfword of R3 and

writes halved result to bottom halfword of RO.

UHSAX RO, R3, R5

/ltmeL SAMA4CP [DATASHEET] 120

43051E-ATPL-08/14

12.6.5.20 UHSUB16 and UHSUB8
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results, and writes the results to the
destination register.
UHSUBS8 Performs four unsigned 8-bit integer additions, halves the results, and writes the results to the
destination register.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUBS instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples

UHSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword of
R1 and writes halved result to corresponding halfword in R1
Subtracts bytes of R5 from corresponding byte in RO and

writes halved result to corresponding byte in R4.

UHSUB8 R4, RO, R5

Atmel SAM4CP [DATASHEET] 121

43051E-ATPL-08/14

12.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the values of
the GE flags.
Syntax

SEL{<c>}H{<q>} {<Rd>,} <Rn>, <Rm>
where:
C, q are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:

1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second
operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.
Examples

SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes from RO or R3, based on GE.

12.6.5.22 USADS8
Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Atmel SAMA4CP [DATASHEET] 122

43051E-ATPL-08/14

Examples

USAD8 R1, R4, RO ; Subtracts each byte in RO from corresponding byte of R4
; adds the differences and writes to R1

USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO
; adds the differences and writes to RO.

12.6.5.23 USADAS8
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm, Ra
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from corresponding halfword of R1
adds differences, adds value of R6, writes to R1

USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO
; adds differences, adds value of R2 writes to R4.

Atmel SAMA4CP [DATASHEET] 123

43051E-ATPL-08/14

12.6.5.24 USUB16 and USUB8
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:
USUB16 Unsigned Subtract 16.
USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:
The USUB16 instruction:
1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand
register.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUBS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.
Examples

USUB16 R1, RO Subtracts halfwords in RO from corresponding halfword of R1
and writes to corresponding halfword in R1USUB8 R4, RO, R5
Subtracts bytes of R5 from corresponding byte in RO and

writes to the corresponding byte in R4.

Atmel SAMACP [DATASHEET] 124

43051E-ATPL-08/14

12.6.6 Multiply and Divide Instructions
The table below shows the multiply and divide instructions:

Table 12-21. Multiply and Divide Instructions

Atmel

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result
MLS Multiply and Subtract, 32-bit result
MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX

Signed Multiply Accumulate Dual

SMLAL

Signed Multiply with Accumulate (32x32+64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAW[B|T] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMUL[B,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

ubIv

Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32x32+32+32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32x32+64), 64-bit result
UMULL Unsigned Multiply (32x32), 64-bit result

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

125

12.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.
Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see “Conditional Execution”.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant 32
bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places the
least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.
If the S suffix is used with the MUL instruction:
® Rd, Rn, and Rm must all be in the range RO to R7.
e Rd must be the same as Rm.
e The cond suffix must not be used.
Condition Flags
If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result.
e Does not affect the C and V flags.
Examples

MUL R10, R2, RS

MLA R10, R2, R1, R5
MULS RO, R2, R2
MULLT R2, R3, R2

MLS R4, R5, R6, R7

Multiply, R10 = R2 x R5

Multiply with accumulate, R10 (R2 x R1) + R5
Multiply with flag update, RO = R2 x R2
Conditionally multiply, R2 = R3 x R2

Multiply with subtract, R4 = R7 - (R5 X R6)

Atmel SAMA4CP [DATASHEET] 126

43051E-ATPL-08/14

12.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution”.
RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold the accumulating value.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:

e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.

The UMAAL instruction:

e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.
Restrictions
In these instructions:

e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.
Examples

UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, writes the top 32 bits to R4
; and the bottom 32 bits to RO

UMAAL R3, R6, R2, R7 ; Multiplies R2 and R7, adds R6, adds R3, writes the
; top 32 bits to R6, and the bottom 32 bits to R3

UMLAL R2, R1, R3, R5 ; Multiplies R5 and R3, adds R1:R2, writes to R1:R2.

Atmel SAMA4CP [DATASHEET] 127

43051E-ATPL-08/14

12.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax

op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm, Ra
where:

op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the first and second multiply
operand.

If X'is B, then the bottom halfword, bits [15:0], of Rn is used.
If Xis T, then the top halfword, bits [31:16], of Rn is used.

If Yis B, then the bottom halfword, bits [15:0], of Rm is used.
If Yis T, then the top halfword, bits [31:16], of Rm is used.

SMLAW Signed Multiply Accumulate (word by halfword).
Y specifies which half of the source register Rm is used as the second multiply operand.
If Yis T, then the top halfword, bits [31:16] of Rm is used.
If Yis B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:

e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
e The top signed halfword of Rm, T instruction suffix.
e The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product.
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No overflow
can occur during the multiplication.

Restrictions
In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

Atmel SAMA4CP [DATASHEET] 128

43051E-ATPL-08/14

Examples

SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
; R1 and writes to R5
SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom halfword
; of R4, adds R1 and writes to R5
SMLATT R5, R6, R4, R1 ; Multiplies top halfwords of R6 and R4, adds
; R1 and writes the sum to R5
SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top halfword
; of R4, adds R1 and writes to R5
SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top halfword of
; R3, adds R2 and writes to R4
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
; R3 to the result and writes top 32-bits to R10
SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1, adds R5
; and writes top 32-bits to R10.

12.6.6.4 SMLAD
Signed Multiply Accumulate Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm, Ra ;
where:
op is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.
X specifies which halfword of the source register Rn is used as the multiply operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register holding the values to be multiplied.
Rm the second operand register.
Ra is the accumulate value.
Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

e If Xis not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the bottom
signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and the
bottom signed halfword values in Rn with the top signed halfword of Rm.

e Add both multiplication results to the signed 32-bit value in Ra.
e Writes the 32-bit signed result of the multiplication and addition to Rd.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

/ltmeL SAMA4CP [DATASHEET] 129

43051E-ATPL-08/14

Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
; corresponding halfwords in R1, adds R5 and
; writes to R10

SMLALDX RO, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
; halfword of R4, multiplies bottom halfword of R2
; with top halfword of R4, adds R6 and writes to
; RO.

12.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate Long
Dual.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

op{XY}{cond} RdLo, RdHi, Rn, Rm

op{X}{cond} RdLo, RdHi, Rn, Rm
where:

op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as the first and second
multiply operand:

If X'is B, then the bottom halfword, bits [15:0], of Rn is used.
If X'is T, then the top halfword, bits [31:16], of Rn is used.

If Yis B, then the bottom halfword, bits [15:0], of Rm is used.
If Yis T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLALDX, they also hold the
accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHI.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

/ltmeL SAMA4CP [DATASHEET] 130

43051E-ATPL-08/14

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement signed
16-bit integers. These instructions:

e If Xis not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the bottom
signed halfword values of Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the
bottom signed halfword values of Rn with the top signed halfword of Rm.

e Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit product.
e Write the 64-bit product in RdLo and RdHi.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.
Examples

SMLAL R4, R5, R3, R8 Multiplies R3 and R8, adds R5:R4 and writes to
R5:R4

Multiplies bottom halfword of R6 with top
halfword of R7, sign extends to 32-bit, adds
R1:R2 and writes to R1:R2

Multiplies top halfword of R6 with bottom
halfword of R7,sign extends to 32-bit, adds R1:R2
and writes to R1:R2

Multiplies top halfwords in R5 and R1 and bottom
halfwords of R5 and R1, adds R8:R6 and writes to
R8:R6

Multiplies top halfword in R5 with bottom
halfword of R1, and bottom halfword of R5 with
top halfword of R1, adds R8:R6 and writes to
R8:R6.

SMLALBT R2, R1, R6, R7

SMLALTB R2, R1, R6, R7

SMLALD R6, R8, R5, R1

SMLALDX R6, R8, R5, R1

12.6.6.6 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm, Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Ra is the register holding the accumulate value.
AtmeL SAM4CP [DATASHEET] 131

43051E-ATPL-08/14

Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit halfword multiplications.

e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.

e Adds the signed accumulate value to the result of the subtraction.

e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.

This instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
e Writes the 64-bit result of the addition to the RdHi and RdLo.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications or
subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.
Examples

SMLSD RO, R4, R5, R6 Multiplies bottom halfword of R4 with bottom
halfword of R5, multiplies top halfword of R4
with top halfword of R5, subtracts second from
first, adds R6, writes to RO

Multiplies bottom halfword of R3 with top
halfword of R2, multiplies top halfword of R3
with bottom halfword of R2, subtracts second from
first, adds RO, writes to R1

Multiplies bottom halfword of R6 with bottom
halfword of R2, multiplies top halfword of R6
with top halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3

Multiplies bottom halfword of R6 with top
halfword of R2, multiplies top halfword of R6
with bottom halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3.

SMLSDX R1, R3, R2, RO

SMLSLD R3, R6, R2, R7

SMLSLDX R3, R6, R2, R7

/ltmeL SAMA4CP [DATASHEET] 132

43051E-ATPL-08/14

12.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, Rn, Rm, Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.
R is a rounding error flag. If R is specified, the result is rounded instead of being truncated. In this case the
constant 0x80000000 is added to the product before the high word is extracted.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second multiply operands.
Ra is the register holding the accumulate value.
Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.
e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Adds the value of Ra to the signed extracted value.
e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

e Multiplies the values in Rn and Rm.
e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.
Examples

SMMLA RO, R4, R5, R6 Multiplies R4 and R5, extracts top 32 bits, adds
R6, truncates and writes to RO

Multiplies R2 and R1l, extracts top 32 bits, adds
R4, rounds and writes to R6

Multiplies R6 and R2, extracts top 32 bits,
subtracts R7, rounds and writes to R3

Multiplies R5 and R3, extracts top 32 bits,

subtracts R8, truncates and writes to R4.

SMMLAR R6, R2, R1, R4
SMMLSR R3, R6, R2, R7

SMMLS R4, R5, R3, R8

/ltmeL SAMA4CP [DATASHEET] 133

43051E-ATPL-08/14

12.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm
where:
op is one of:
SMMUL Signed Most Significant Word Multiply.
R is a rounding error flag. If R is specified, the result is rounded instead of being truncated. In this case the
constant 0x80000000 is added to the product before the high word is extracted.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The SMMUL
instruction:

e Multiplies the values from Rn and Rm.

e Optionally rounds the result, otherwise truncates the result.

e Writes the most significant signed 32 bits of the result in Rd.
Restrictions

In this instruction:

e do not use SP and do not use PC.
Condition Flags

This instruction does not affect the condition code flags.
Examples

SMULL RO, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
; and writes to RO

SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and writes to R6.

12.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm
where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Atmel SHCP ETISHEST 4

Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed integers.
This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

e Writes the result of the subtraction to the destination register.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
Condition Flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.
Examples

SMUAD RO, R4, R5 ; Multiplies bottom halfword of R4 with the bottom
; halfword of R5, adds multiplication of top halfword
; of R4 with top halfword of R5, writes to RO

SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top halfword
; of R4, adds multiplication of top halfword of R7
; with bottom halfword of R4, writes to R3

SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom halfword
; of R6, subtracts multiplication of top halfword of R6
; with top halfword of R3, writes to R3

SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top halfword of
; R3, subtracts multiplication of top halfword of R5
; with bottom halfword of R3, writes to R4.

12.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword).
Syntax
op{XY}{cond} Rd,Rn, Rm

op{Y}{cond} Rd. Rn, Rm
For SMULXY only:

op is one of:
SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as the first and second multiply
operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X'is T, then the top halfword, bits [31:16] of Rn is used.If Yis B, then the bottom halfword, bits [15:0], of

Rm is used.
If Yis T, then the top halfword, bits [31:16], of Rm is used.
SMULW({Y} Signed Multiply (word by halfword).
SAM4CP [DATASHEET 135
Atmel [)

43051E-ATPL-08/14

Y specifies which halfword of the source register Rm is used as the second multiply operand.
If Yis B, then the bottom halfword (bits [15:0]) of Rm is used.
If Yis T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed 16-bit
integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.
Restrictions

In these instructions:

e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.
Examples

SMULBT RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; top halfword of R5, multiplies results and
: writes to RO

SMULBB RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and
: writes to RO

SMULTT RO, R4, R5 ; Multiplies the top halfword of R4 with the top
; halfword of R5, multiplies results and writes
; to RO

SMULTB RO, R4, R5 ; Multiplies the top halfword of R4 with the

; bottom halfword of R5, multiplies results and
; and writes to RO

SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,

; extracts top 32 bits and writes to R4.

12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
/ItmeL SAM4CP [DATASHEET] 136

43051E-ATPL-08/14

cond is an optional condition code, see “Conditional Execution”.

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
Rn, Rm are registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds the
64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHI.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

Restrictions
In these instructions:

e Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.
Condition Flags

These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

12.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm
uDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
ubniv R8, R8, R1 ; Unsigned divide, R8 = R8/R1

/ltmeL SAMA4CP [DATASHEET] 137

43051E-ATPL-08/14

12.6.7 Saturating Instructions
The table below shows the saturating instructions:

Table 12-22. Saturating Instructions

Mnemonic | Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuUB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange
QSAX Saturating Subtract and Add with Exchange
QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSuUB16 Unsigned Saturating Subtract 16

UQSUB8 Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:

e If the value to be saturated is less than -2, the result returned is -2"".
e If the value to be saturated is greater than 2™71.1, the result returned is 2'-1.
e Otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation, this means that:
e |[f the value to be saturated is less than 0, the result returned is 0.
e If the value to be saturated is greater than 2"-1, the result returned is 2"-1.
e Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the instruction
sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the MSR instruction
must be used; see “MSR”.

To read the state of the Q flag, the MRS instruction must be used; see “MRS”.

/ltmeL SAMA4CP [DATASHEET] 138

43051E-ATPL-08/14

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

where:

op

cond

Rd

n

n ranges from 1
to 32 for SSAT
Rm

shift #s

ASR #s

LSL #s
Operation

is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

is an optional condition code, see “Conditional Execution”.
is the destination register.

specifies the bit position to saturate to:

n ranges from 0 to 31 for USAT.

is the register containing the value to saturate.
is an optional shift applied to Rm before saturating. It must be one of the following:
where s is in the range 1 to 31.

where s is in the range 0 to 31.

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2"' < x < 2™'-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit value and
; write it back to R7
USATNE RO, #7, R5 ; Conditionally saturate value in R5 as an

Atmel

; unsigned 7 bit value and write it to RO.

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

12.6.7.1 SSAT and USAT

139

12.6.7.2 SSAT16 and USAT16
Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of:
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit position in n.
Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit position
inn.

Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 Saturates the top and bottom highwords of R2

as 9-bit values, writes to corresponding halfword
of R7

Conditionally saturates the top and bottom
halfwords of R5 as 13-bit values, writes to
corresponding halfword of RO.

USAT16NE RO, #13, RS

Atmel SAMACP [DATASHEET] 140

43051E-ATPL-08/14

12.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a signed
saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed range
-2 < x<2™'-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the QADD and
QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit and 16-bit QADD
and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR”.

To read the state of the Q flag, the MRS instruction must be used; see “MRS”.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
; R2, saturates to 16 bits and writes to
; corresponding halfword of R7

QADD8 R3, R1, R6 ; Adds bytes of Rl to the corresponding bytes of R6,
; saturates to 8 bits and writes to corresponding
; byte of R3

QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
; halfword of R2, saturates to 16 bits, writes to
; corresponding halfword of R4

QSuB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
; In R2, saturates to 8 bits, writes to corresponding
; byte of R4.

Atmel SAM4CP [DATASHEET] 141

43051E-ATPL-08/14

12.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2"% < x < 2'5 — 1, where x
equals 16, to the bottom halfword of the destination register.
4. Saturates the results of the sum and writes a 16-bit signed integer in the range —2'° < x < 2'% — 1, where x
equals 16, to the top halfword of the destination register.
The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range —2'° < x < 2" — 1, where x
equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range -2 < x < 2'% — 1, where x
equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
saturates to 16 bits, writes to top halfword of R7
Subtracts top highword of R2 from bottom halfword of
R4, saturates to 16 bits and writes to bottom halfword
of R7

Subtracts bottom halfword of R5 from top halfword of
R3, saturates to 16 bits, writes to top halfword of RO
Adds bottom halfword of R3 to top halfword of R5,

saturates to 16 bits, writes to bottom halfword of RO.

QSAX RO, R3, R5

Atmel SAMACP [DATASHEET] 142

43051E-ATPL-08/14

12.6.7.5 QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.
e Adds the result of the doubling to the signed saturated value in the first operand.
e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.
e Subtracts the doubled value from the signed saturated value in the first operand.
e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range
—-23" < x < 2%~ 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, writes to R7
QDSUB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits
; from R5, saturates to 32 bits, writes to RO.
SAM4CP [DATASHEET] 143
/ItmeL 43051E-ATPL-08/14

12.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm, Rn

where:
type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction:

1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.
3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the top halfword of the destination register.
4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 2'® — 1, where x
equals 16, to the bottom halfword of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,

; saturates to 16 bits, writes to top halfword of R7

; Subtracts top halfword of R2 from bottom halfword of

; R4, saturates to 16 bits, writes to bottom halfword of R7
UQSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of R3,

; saturates to 16 bits, writes to top halfword of RO

; Adds bottom halfword of R4 to top halfword of R5

; saturates to 16 bits, writes to bottom halfword of RO.

Atmel SAMACP [DATASHEET] 144

43051E-ATPL-08/14

12.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:
UQADDS8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the destination
register.

The UQADD16 instruction:

e Adds the respective top and bottom halfwords of the first and second operands.

e Saturates the result of the additions for each halfword in the destination register to the unsigned range
0 < x <261, where xis 16.

The UQADDS instruction:

e Adds each respective byte of the first and second operands.

e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 < x < 281,
where x is 8.

The UQSUB16 instruction:

e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
e Saturates the result of the differences in the destination register to the unsigned range 0 < x < 2'%-1, where x is 16.
The UQSUBS instructions:

e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.

e Saturates the results of the differences for each byte in the destination register to the unsigned range 0 < x < 28-1,
where x is 8.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UQADD16 R7,R4,R2 ; Adds halfwords in R4 to corresponding halfword in R2,
saturates to 16 bits, writes to corresponding halfword of R7
Adds bytes of R2 to corresponding byte of R5, saturates

to 8 bits, writes to corresponding bytes of R4

Subtracts halfwords in RO from corresponding halfword

in R3, saturates to 16 bits, writes to corresponding
halfword in R6

Subtracts bytes in R6 from corresponding byte of R5,
saturates to 8 bits, writes to corresponding byte of R1.

UQADD8 R4,R2,R5

UuQsSuB16 R6,R3,R0O

UQSUB8 R1,R5,R6

Atmel SAMACP [DATASHEET] 145

43051E-ATPL-08/14

12.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data:

Table 12-23. Packing and Unpacking Instructions

Mnemonic Description
PKH Pack Halfword
SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte
SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword
UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte
UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

/ItmeL SAM4CP [DATASHEET] 146

43051E-ATPL-08/14

12.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax

op{cond} {Rd}, Rn, Rm {, LSL #imm}
op{cond} {Rd}, Rn, Rm {, ASR #imm}

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32, a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.
Restrictions
Rd must not be SP and must not be PC.
Condition Flags
This instruction does not change the flags.
Examples

PKHBT R3, R4, R5 LSL #0 Writes bottom halfword of R4 to bottom halfword of
R3, writes top halfword of R5, unshifted, to top
halfword of R3

Writes R2 shifted right by 1 bit to bottom halfword
of R4, and writes top halfword of RO to top

halfword of R4.

PKHTB R4, RO, R2 ASR #1

Atmel SAMACP [DATASHEET] 147

43051E-ATPL-08/14

12.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax

op{cond} {Rd,} Rm {, ROR #n}
op{cond} {Rd}, Rm {, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.
UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.
SXTB16 extracts bits[7:0] and sign extends to 16 bits, and extracts bits [23:16] and sign extends to 16 bits.
e UXTB16 extracts bits[7:0] and zero extends to 16 bits, and extracts bits [23:16] and zero extends to 16 bits.
Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.
Examples

SXTH R4, R6, ROR #16 Rotates R6 right by 16 bits, obtains bottom halfword of
of result, sign extends to 32 bits and writes to R4
UXTB R3, R10 ; Extracts lowest byte of value in R10, zero extends, and

; writes to R3.

Atmel SAMACP [DATASHEET] 148

43051E-ATPL-08/14

12.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}
op{cond} {Rd,} Rn, Rm {, ROR #n}

where:

op

cond
Rd

Rn

Rm
ROR #n

Operation

is one of:

SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.
SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.
UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.

is an optional condition code, see “Conditional Execution”.
is the destination register.

is the first operand register.

is the register holding the value to rotate and extend.

is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.

SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits, and extracts bits [23:16] from Rm and sign
extends to 16 bits.

UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits, and extracts bits [23:16] from Rm and zero

extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTAH R4, R8, R6, ROR #16

UXTAB R3, R4, R10

Atmel

R8,and writes to R4

Rotates R6 right by 16 bits, obtains bottom
halfword, sign extends to 32 bits, adds

Extracts bottom byte of R10 and zero extends
to 32 bits, adds R4, and writes to R3.

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

149

12.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 12-24. Packing and Unpacking Instructions

Mnemonic Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

12.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lIsb, #width

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. /sb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-/sh.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are

unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit position /sb,
with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
; bit O to bit 11 from R2.

Atmel

SAMA4CP [DATASHEET] 150

43051E-ATPL-08/14

12.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lIsb, #width
UBFX{cond} Rd, Rn, #lIsb, #width

where:

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. /sb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-/sb.

Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.
UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 Extract bit 20 to bit 23 (4 bits) from R1 and sign

extend to 32 bits and then write the result to RO.
Extract bit 9 to bit 18 (10 bits) from R11l and zero
extend to 32 bits and then write the result to R8.

UBFX R8, R11, #9, #10

12.6.9.3 SXT and UXT
Sign extend and Zero extend.

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
/ItmeL SAM4CP [DATASHEET] 151

43051E-ATPL-08/14

Operation
These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.
e UXTB extracts bits[7:0] and zero extends to 32 bits.
e SXTH extracts bits[15:0] and sign extends to 32 bits.
e UXTH extracts bits[15:0] and zero extends to 32 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.
Examples

SXTH R4, R6, ROR #16 Rotate R6 right by 16 bits, then obtain the lower
halfword of the result and then sign extend to

32 bits and write the result to R4.

Extract lowest byte of the value in R10 and zero

extend it, and write the result to R3.

UXTB R3, R10

12.6.10 Branch and Control Instructions
The table below shows the branch and control instructions:

Table 12-25. Branch and Control Instructions

Mnemonic | Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNz Compare and Branch if Non Zero

CBz Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword
Atmel e

12.6.10.1 B, BL, BX, and BLX
Branch instructions.

Syntax

B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional Execution”.

label is a PC-relative expression. See “PC-relative Expressions”.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the address to
branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to /abel, or to the address indicated in Rm. In addition:

e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch instructions
must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT".

The table below shows the ranges for the various branch instructions.
Table 12-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MB to +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection”.

Restrictions
The restrictions are:

e Do not use PC in the BLX instruction.
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address created by
changing bit[0] to 0.
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.
Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer branch
range when it is inside an IT block.
Condition Flags
These instructions do not change the flags.

Atmel SAMA4CP [DATASHEET] 153

43051E-ATPL-08/14

Examples
B l1oopA ; Branch to loopA
BLE ng ; Conditionally branch to label ng

B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR
BX LR ; Return from function call
BXNE RO ; Conditionally branch to address stored in RO
BLX RO ; Branch with link and exchange (Call) to a address stored in RO

12.6.10.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ Rn, label
CBNZ Rn, label

where:

Rn is the register holding the operand.
label is the branch destination.
Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ l1abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

Restrictions

The restrictions are:
e Rn must be in the range of RO to R7.
e The branch destination must be within 4 to 130 bytes after the instruction.
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples

CBz R5, target
CBNz RO, target

Forward branch if R5 is zero
Forward branch if RO is not zero

Atmel SAMACP [DATASHEET] 154

43051E-ATPL-08/14

12.6.10.3IT
If-Then condition instruction.

Syntax

IT{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in the IT
block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some of
them can be the logical inverse of the others. The conditional instructions following the IT instruction form the /T block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so that the
user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and execution of
the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to branch to an
instruction in an IT block.

Restrictions
The following instructions are not permitted in an IT block:

e |T.
e (CBZand CBNZ.
e CPSID and CPSIE.
Other restrictions when using an IT block are:
e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last instruction
inside the IT block. These are:
e ADD PC, PC, Rm.
MOV PC, Rm.
B, BL, BX, BLX.
Any LDM, LDR, or POP instruction that writes to the PC.
TBB and TBH.
Do not branch to any instruction inside an IT block, except when returning from an exception handler.

All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an IT
block but has a larger branch range if it is inside one.

e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse as
for the other instructions in the block.

/ltmeL SAMA4CP [DATASHEET] 155

43051E-ATPL-08/14

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler directives

within them.

Condition Flags

This instruction does not change the flags.

Example

ITTE
ANDNE
ADDSNE
MOVEQ

CMP

ITE
ADDGT
ADDLE

IT
ADDGT

ITTEE
MOVEQ
ADDEQ
ANDNE
BNE W

IT
ADD

12.6.10.4 TBB and TBH

NE
RO, RO, R1
R2, R2, #1
R2, R3
RO, #9
GT
R1, RO, #55
R1, RO, #48
GT
R1, R1, #1
EQ
RO, R1
R2, R2, #10
R3, R3, #1
dloop

NE

RO, RO, R1

; Next 3 instructions are conditional

; ANDNE does not update condition flags
; ADDSNE updates condition flags

; Conditional move

; Convert RO hex value (0 to 15) into ASCII

(*0"="9", *A"—"F")

; Next 2 instructions are conditional
; Convert OxA -> "A*"
; Convert 0Ox0 -> "0O*F

IT block with only one conditional instruction
Increment R1 conditionally

; Next 4 instructions are conditional

; Conditional move

; Conditional add

; Conditional AND

; Branch instruction can only be used in the last

instruction of an IT block

; Next instruction is conditional
; Syntax error: no condition code used in IT block

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths.
If Rn is PC, then the address of the table is the address of the byte immediately following the TBB or TBH
instruction.

Rm is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the value
in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword offsets for
TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch offset is twice the
unsigned value of the byte returned from the table. and for TBH the branch offset is twice the unsigned value of the half-
word returned from the table. The branch occurs to the address at that offset from the address of the byte immediately
after the TBB or TBH instruction.

Atmel

SAMA4CP [DATASHEET] 156

43051E-ATPL-08/14

Restrictions
The restrictions are:

® Rn must not be SP.
® Rm must not be SP and must not be PC.

e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags

These instructions do not change the flags.

Examples

ADR.W RO, BranchTable_ Byte

TBB [RO, R1] ; R1 is the index, RO is the base address of the
; branch table

Casel

; an instruction sequence follows

Case2

; an instruction sequence follows

Case3

; an instruction sequence follows

BranchTable_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] R1 is the index, PC is used as base of the

branch table

BranchTable H
DCI ((CaseA - BranchTable H)/2)
DCI ((CaseB - BranchTable H)/2)
DCI ((CaseC - BranchTable H)/2)

; CaseA offset calculation
; CaseB offset calculation
; CaseC offset calculation

CaseA

; an instruction sequence follows
CaseB

; an instruction sequence follows
CaseC

; an instruction sequence follows

Atmel SAMA4CP [DATASHEET] 157

43051E-ATPL-08/14

12.6.11 Floating-point Instructions

The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU” for
information about enabling the floating-point unit.

Table 12-27. Floating-point Instructions

Mnemonic Description
VABS Floating-point Absolute
VADD Floating-point Add
VCMP Compare two floating-point registers, or one floating-point register and zero
VCMPE Compare two floating-point registers, or one floating-point register and zero with Invalid Operation check
VCVT Convert between floating-point and integer
VCVT Convert between floating-point and fixed point
VCVTR Convert between floating-point and integer with rounding
VCVTB Converts half-precision value to single-precision
VCVTT Converts single-precision register to half-precision
VDIV Floating-point Divide
VFMA Floating-point Fused Multiply Accumulate
VFENMA Floating-point Fused Negate Multiply Accumulate
VFMS Floating-point Fused Multiply Subtract
VENMS Floating-point Fused Negate Multiply Subtract
VLDM Load Multiple extension registers
VLDR Loads an extension register from memory
VLMA Floating-point Multiply Accumulate
VLMS Floating-point Multiply Subtract
VMOV Floating-point Move Immediate
VMOV Floating-point Move Register
VMOV Copy ARM core register to single precision
VMOV Copy 2 ARM core registers to 2 single precision
VMOV Copies between ARM core register to scalar
VMOV Copies between Scalar to ARM core register
VMRS Move to ARM core register from floating-point System Register
VMSR Move to floating-point System Register from ARM Core register
VMUL Multiply floating-point
VNEG Floating-point negate
VNMLA Floating-point multiply and add
VNMLS Floating-point multiply and subtract
VNMUL Floating-point multiply
VPOP Pop extension registers
VPUSH Push extension registers
VSQRT Floating-point square root
VSTM Store Multiple extension registers
VSTR Stores an extension register to memory
VSUB Floating-point Subtract
AtmeL SAM4CP [DATASHEET] 158

43051E-ATPL-08/14

12.6.11.1 VABS
Floating-point Absolute.

Syntax
VABS{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd, Sm are the destination floating-point value and the operand floating-point value.
Operation

This instruction:

1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.
Restrictions

There are no restrictions.
Condition Flags
The floating-point instruction clears the sign bit.
Examples
VABS.F32 S4, S6

12.6.11.2 VADD
Floating-point Add

Syntax
VADD{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd, is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.
Restrictions
There are no restrictions.
Condition Flags
This instruction does not change the flags.
Examples
VADD.F32 S4, S6, S7
12.6.11.3 VCMP, VCMPE
Compares two floating-point registers, or one floating-point register and zero.
Syntax

VCMP{E}{cond}.F32 Sd, Sm
VCMP{E}{cond}.F32 Sd, #0.0
where:

cond is an optional condition code, see “Conditional Execution”.

Atmel SAMA4CP [DATASHEET] 159

43051E-ATPL-08/14

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.
Sm is the floating-point operand that is compared with.
Operation

This instruction:

1. Compares:

e Two floating-point registers.

e One floating-point register and zero.
2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises an
Invalid Operation exception if either operand is a signaling NaN.

Condition Flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a sub-
sequent VMRS instruction.

Examples

VCMP . F32 S4, #0.0
VCMP .F32 S4, S2
12.6.11.4 VCVT, VCVTR between Floating-point and Integer
Converts a value in a register from floating-point to a 32-bit integer.
Syntax

VCVT{R}{cond}.Tm.F32 Sd, Sm
VCVT{cond}.F32.Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR. If R is omitted.
the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution”.

Tm is the data type for the operand. It must be one of:

832 signed 32- U32 unsigned 32-bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:
1. Either
e Converts a value in a register from floating-point value to a 32-bit integer.

e Converts from a 32-bit integer to floating-point value.
2. Places the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally use the
rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMA4CP [DATASHEET] 160

43051E-ATPL-08/14

12.6.11.5 VCVT between Floating-point and Fixed-point
Converts a value in a register from floating-point to and from fixed-point.

Syntax

vevT{cond}.Td.F32 Sd, Sd, #fbits
vevT{cond}.F32.Td Sd, Sd, #fbits

where:
cond is an optional condition code, see “Conditional Execution”.
Td is the data type for the fixed-point number. It must be one of:
S16 signed 16-bit value.
U16 unsigned 16-bit value.
S32 signed 32-bit value.
U32 unsigned 32-bit value.
Sd is the destination register and the operand register.
fbits is the number of fraction bits in the fixed-point number:
If Td is S16 or U16, fbits must be in the range 0-16.
If Td is S32 or U32, fbits must be in the range 1-32.
Operation

These instructions:

1. Either
e Converts a value in a register from floating-point to fixed-point.
e Converts a value in a register from fixed-point to floating-point.
2. Places the result in a second register.
The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-order
bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.
Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-point
operation uses the Round to Nearest rounding mode.

Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.
12.6.11.6 VCVTB, VCVTT
Converts between a half-precision value and a single-precision value.
Syntax

VCVT{y}{cond}.F32.F16 Sd, Sm
VCVT{y}{cond}.F16.F32 Sd, Sm

where:
y Specifies which half of the operand register Sm or destination register Sd is used for the operand or
destination:
- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.
- If yis T, then the top half, bits [31:16], of Sm or Sd is used.
cond is an optional condition code, see “Conditional Execution”.
SAM4CP [DATASHEET 161
Atmel []

43051E-ATPL-08/14

Sd is the destination register.
Sm is the operand register.
Operation

This instruction with the .F16.32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-precision.

2. Writes the result to a single-precision register.
This instruction with the .F32.F16 suffix:

1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the target

register.
Restrictions

There are no restrictions.
Condition Flags

These instructions do not change the flags.

12.6.11.7 VDIV
Divides floating-point values.

Syntax
VDIV{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.
Sn, Sm are the operand registers.
Operation

This instruction:

1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.
Restrictions

There are no restrictions.
Condition Flags
These instructions do not change the flags.
12.6.11.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.
Syntax

VFMA{cond}.F32 {Sd,} Sn, Sm
VFMS{cond}.F32 {Sd,} Sn, Sm

where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.
Sn, Sm are the operand registers.
SAM4CP [DATASHEET
Atmel []

43051E-ATPL-08/14

162

Operation
The VFMA instruction:
1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.
The result of the multiply is not rounded before the accumulation.
The VFMS instruction:
1. Negates the first operand register.
2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.
4. Places the results in the destination register.
The result of the multiply is not rounded before the addition.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.
12.6.11.9 VFNMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.
Syntax

VFNMA{cond}.F32 {Sd,} Sn, Sm
VFNMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFNMA instruction:
1. Negates the first floating-point operand register.
2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product.
4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VFNMS instruction:
1. Multiplies the first floating-point operand with second floating-point operand.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMA4CP [DATASHEET] 163

43051E-ATPL-08/14

12.6.11.10 VLDM
Floating-point Load Multiple

Syntax
VLDM{mode}{cond}{.size} Rn{!}, list
where:
mode is the addressing mode:
-IA Increment After. The consecutive addresses start at the address specified in Rn.
- DB Decrement Before. The consecutive addresses end just before the address specified in Rn.
cond is an optional condition code, see “Conditional Execution”.
size is an optional data size specifier.
Rn is the base register. The SP can be used.
| is the command to the instruction to write a modified value back to Rn. This is required if mode == DB,
and is optional if mode == IA.
list is the list of extension registers to be loaded, as a list of consecutively numbered doubleword or single
word registers, separated by commas and surrounded by brackets.
Operation

This instruction loads:

e Multiple extension registers from consecutive memory locations using an address from an ARM core
register as the base address.

Restrictions

The restrictions are:

If size is present, it must be equal to the size in bits, 32 or 64, of the registers in /ist.
e For the base address, the SP can be used.
In the ARM instruction set, if ! is not specified the PC can be used.
e list must contain at least one register. If it contains doubleword registers, it must not contain more than 16
registers.

e If using the Decrement Before addressing mode, the write back flag, /, must be appended to the base
register specification.

Condition Flags

These instructions do not change the flags.

12.6.11.11 VLDR
Loads a single extension register from memory

Syntax

VLDR{cond}{.64} Dd, [Rn{#imm}]
VLDR{cond}{.64} Dd, label
VLDR{cond}{.64} Dd, [PC, #imm}]
VLDR{cond}{-32} Sd, [Rn {, #imm}]
VLDR{cond}{.32} Sd, label
VLDR{cond}{-32} Sd, [PC, #imm]

where:
cond is an optional condition code, see “Conditional Execution”.
64, 32 are the optional data size specifiers.
Dd is the destination register for a doubleword load.
Sd is the destination register for a singleword load.
Rn is the base register. The SP can be used.
/ItmeL SAM4CP [DATASHEET] 164

43051E-ATPL-08/14

imm is the + or - immediate offset used to form the address. Permitted address values are multiples of 4 in the
range 0 to 1020.

label is the label of the literal data item to be loaded.

Operation

This instruction:

e Loads a single extension register from memory, using a base address from an ARM core register, with an

optional offset.
Restrictions

There are no restrictions.
Condition Flags
These instructions do not change the flags.
12.6.11.12 VLMA, VLMS
Multiplies two floating-point values, and accumulates or subtracts the results.
Syntax

VLMA{cond}.F32 Sd, Sn, Sm
VLMS{cond}.F32 Sd, Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:
1. Multiplies two floating-point values.
2. Adds the results to the destination floating-point value.
The floating-point Multiply Subtract instruction:
1. Multiplies two floating-point values.
2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.

12.6.11.13 VMOV Immediate
Move floating-point Immediate

Syntax
VMOV{cond}.F32 Sd, #imm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the branch destination.
imm is a floating-point constant.
/ItmeL SAM4CP [DATASHEET]

43051E-ATPL-08/14

165

Operation
This instruction copies a constant value to a floating-point register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.
12.6.11.14 VMOV Register
Copies the contents of one register to another.
Syntax

VMOV{cond}.F64 Dd, Dm
VMOV{cond}.F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Dd is the destination register, for a doubleword operation.

Dm is the source register, for a doubleword operation.

Sd is the destination register, for a singleword operation.

Sm is the source register, for a singleword operation.
Operation

This instruction copies the contents of one floating-point register to another.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.15 VMOV Scalar to ARM Core Register
Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax
VMOV{cond} Rt, Dn[x]

where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the destination ARM core register.
Dn is the 64-bit doubleword register.
X Specifies which half of the doubleword register to use:

- If x is 0, use lower half of doubleword register.

- If x is 1, use upper half of doubleword register.
Operation

This instruction transfers:

e One word from the upper or lower half of a doubleword floating-point register to an ARM core register.
Restrictions

Rt cannot be PC or SP.
Condition Flags
These instructions do not change the flags.

Atmel SAMA4CP [DATASHEET] 166

43051E-ATPL-08/14

12.6.11.16 VMOV ARM Core Register to Single Precision
Transfers a single-precision register to and from an ARM core register.

Syntax

VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn

where:

cond is an optional condition code, see “Conditional Execution”.
Sn is the single-precision floating-point register.

Rt is the ARM core register.

Operation

This instruction transfers:

e The contents of a single-precision register to an ARM core register.
e The contents of an ARM core register to a single-precision register.
Restrictions

Rt cannot be PC or SP.
Condition Flags
These instructions do not change the flags.
12.6.11.17 VMOV Two ARM Core Registers to Two Single Precision
Transfers two consecutively numbered single-precision registers to and from two ARM core registers.
Syntax

VMOV{cond} Sm, Sml, Rt, Rt2
VMOV{cond} Rt, Rt2, Sm, Sm

where:
cond is an optional condition code, see “Conditional Execution”.
Sm is the first single-precision register.
Sm1 is the second single-precision register.
This is the next single-precision register after Sm.
Rt is the ARM core register that Sm is transferred to or from.
Rt2 is the The ARM core register that Sm1 is transferred to or from.
Operation

This instruction transfers:

e The contents of two consecutively numbered single-precision registers to two ARM core registers.
e The contents of two ARM core registers to a pair of single-precision registers.

Restrictions
e The restrictions are:
e The floating-point registers must be contiguous, one after the other.
e The ARM core registers do not have to be contiguous.

e Rtcannot be PC or SP.
Condition Flags

These instructions do not change the flags.

Atmel SAMA4CP [DATASHEET] 167

43051E-ATPL-08/14

12.6.11.18 VMOV ARM Core Register to Scalar
Transfers one word to a floating-point register from an ARM core register.

Syntax
VMOV{cond}{-32} Dd[x], Rt
where:
cond is an optional condition code, see “Conditional Execution”.
32 is an optional data size specifier.
Dd[x] is the destination, where [x] defines which half of the doubleword is transferred, as follows:
If x is 0, the lower half is extracted.
If x is 1, the upper half is extracted.
Rt is the source ARM core register.
Operation
This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM core
register.
Restrictions

Rt cannot be PC or SP.
Condition Flags
These instructions do not change the flags.
12.6.11.19 VMRS
Move to ARM Core register from floating-point System Register.
Syntax

VMRS{cond} Rt, FPSCR
VMRS{cond} APSR_nzcv, FPSCR

where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the destination ARM core register. This register can be R0-R14.

APSR_nzcv Transfer floating-point flags to the APSR flags.
Operation
This instruction performs one of the following actions:

e Copies the value of the FPSCR to a general-purpose register.
e Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.
Restrictions

Rt cannot be PC or SP.
Condition Flags
These instructions optionally change the flags: N, Z, C, V.

Atmel SAMA4CP [DATASHEET]

43051E-ATPL-08/14

168

12.6.11.20 VMSR
Move to floating-point System Register from ARM Core register.

Syntax
VMSR{cond} FPSCR, Rt
where:
cond is an optional condition code, see “Conditional Execution”.
Rt is the general-purpose register to be transferred to the FPSCR.
Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control Regis-
ter” for more information.

Restrictions
The restrictions are:

e Rtcannot be PC or SP.
Condition Flags

This instruction updates the FPSCR.

12.6.11.21 VMUL
Floating-point Multiply.

Syntax
VMUL{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:

1. Multiplies two floating-point values.
2. Places the results in the destination register.
Restrictions

There are no restrictions.
Condition Flags
These instructions do not change the flags.

12.6.11.22 VNEG
Floating-point Negate.

Syntax
VNEG{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sm is the operand floating-point value.
/ItmeL SAM4CP [DATASHEET] 169

43051E-ATPL-08/14

Operation
This instruction:

1. Negates a floating-point value.

2. Places the results in a second floating-point register.
The floating-point instruction inverts the sign bit.
Restrictions
There are no restrictions.

Condition Flags
These instructions do not change the flags.
12.6.11.23 VNMLA, VNMLS, VNMUL
Floating-point multiply with negation followed by add or subtract.
Syntax

VNMLA{cond}.F32 Sd, Sn, Sm
VNMLS{cond}.F32 Sd, Sn, Sm
VNMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the negation of the product.
3. Writes the result back to the destination register.
The VNMLS instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.
The VNMUL instruction:
1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.

12.6.11.24 VPOP
Floating-point extension register Pop.

Syntax
VPOP{cond}{-.size} list

where:

cond is an optional condition code, see “Conditional Execution”.

size is an optional data size specifier.

If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
SAM4CP [DATASHEET 170
Atmel []

43051E-ATPL-08/14

list is the list of extension registers to be loaded, as a list of consecutively numbered doubleword or single-
word registers, separated by commas and surrounded by brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.
Restrictions

The list must contain at least one register, and not more than sixteen registers.
Condition Flags

These instructions do not change the flags.

12.6.11.25 VPUSH
Floating-point extension register Push.

Syntax
VPUSH{cond}{.size} list
where:
cond is an optional condition code, see “Conditional Execution”.
size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
list is a list of the extension registers to be stored, as a list of consecutively numbered doubleword or single-
word registers, separated by commas and sur rounded by brackets.
Operation

This instruction:

e Stores multiple consecutive extension registers to the stack.
Restrictions

The restrictions are:

e List must contain at least one register, and not more than sixteen.
Condition Flags

These instructions do not change the flags.

12.6.11.26 VSQRT
Floating-point Square Root.

Syntax
VSQRT{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:

e Calculates the square root of the value in a floating-point register.
e Writes the result to another floating-point register.
Restrictions

There are no restrictions.
Condition Flags
These instructions do not change the flags.

Atmel SAM4CP [DATASHEET] 171

43051E-ATPL-08/14

12.6.11.27 VSTM
Floating-point Store Multiple.

Syntax
VSTM{mode}{cond}{.size} Rn{!}, list
where:
mode is the addressing mode:
-IA Increment After. The consecutive addresses start at the address specified in Rn. This is the default
and can be omitted.
- DB Decrement Before. The consecutive addresses end just before the address specified in Rn.
cond is an optional condition code, see “Conditional Execution”.
size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
Rn is the base register. The SP can be used.
! is the function that causes the instruction to write a modified value back to Rn.
Required if mode == DB.
list is a list of the extension registers to be stored, as a list of consecutively numbered doubleword or single-
word registers, separated by commas and surrounded by brackets.
Operation

This instruction:

e Stores multiple extension registers to consecutive memory locations using a base address from an ARM
core register.

Restrictions
The restrictions are:

e List must contain at least one register.
If it contains doubleword registers it must not contain more than 16 registers.

e Use of the PC as Rn is deprecated.
Condition Flags

These instructions do not change the flags.
12.6.11.28 VSTR

Floating-point Store.

Syntax

VSTR{cond}{.32} Sd, [Rn{, #imm}]
VSTR{cond}{.64} Dd, [Rn{, #imm}]

where
cond is an optional condition code, see “Conditional Execution”.
32,64 are the optional data size specifiers.
Sd is the source register for a singleword store.
Dd is the source register for a doubleword store.
Rn is the base register. The SP can be used.
imm is the + or - immediate offset used to form the address. Values are multiples of 4 in the range 0-1020. imm
can be omitted, meaning an offset of +0.
/ItmeL SAM4CP [DATASHEET] 172

43051E-ATPL-08/14

Operation
This instruction:

e Stores a single extension register to memory, using an address from an ARM core register, with an optional
offset, defined in imm.

Restrictions
The restrictions are:

e The use of PC for Rn is deprecated.
Condition Flags

These instructions do not change the flags.

12.6.11.29 VSUB
Floating-point Subtract.

Syntax
vVSuB{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution”.
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point value.
Operation

This instruction:

1. Subtracts one floating-point value from another floating-point value.
2. Places the results in the destination floating-point register.
Restrictions

There are no restrictions.
Condition Flags

These instructions do not change the flags.

Atmel SAMA4CP [DATASHEET] 173

43051E-ATPL-08/14

12.6.12 Miscellaneous Instructions
The table below shows the remaining Cortex-M4 instructions:

Table 12-28. Miscellaneous Instructions

Mnemonic | Description
BKPT Breakpoint
CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier
DSB Data Synchronization Barrier
ISB Instruction Synchronization Barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No Operation
SEV Send Event
SvC Supervisor Call
WFE Wait For Event
WEFI Wait For Interrupt
12.6.12.1 BKPT
Breakpoint.
Syntax
BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state
when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags
This instruction does not change the flags.
Examples

BKPT OxAB ; Breakpoint with immediate value set to OxAB (debugger can
; extract the immediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to OxAB for any purpose
other than Semi-hosting.

Atmel SAMACP [DATASHEET] 174

43051E-ATPL-08/14

12.6.12.2 CPS
Change Processor State.

Syntax
CPSeffect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions
The restrictions are:

e Use CPS only from privileged software, it has no effect if used in unprivileged software.
e CPS cannot be conditional and so must not be used inside an IT block.
Condition Flags

This instruction does not change the condition flags.

Examples
CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID ¥ ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE ¥ ; Enable interrupts and fault handlers (clear FAULTMASK)

12.6.12.3 DMB

Data Memory Barrier.

Syntax
DVMB{cond}

where:

cond is an optional condition code, see “Conditional Execution”.

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order, before
the DMB instruction are completed before any explicit memory accesses that appear, in program order, after the DMB
instruction. DMB does not affect the ordering or execution of instructions that do not access memory.

Condition Flags
This instruction does not change the flags.
Examples

DMB ; Data Memory Barrier

Atmel SAMA4CP [DATASHEET] 175

43051E-ATPL-08/14

12.6.12.4 DSB
Data Synchronization Barrier.

Syntax
DSB{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program order, do
not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory accesses
before it complete.

Condition Flags
This instruction does not change the flags.
Examples
DSB ; Data Synchronisation Barrier

12.6.12.5ISB
Instruction Synchronization Barrier.
Syntax
1SB{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions following
the ISB are fetched from memory again, after the ISB instruction has been completed.

Condition Flags
This instruction does not change the flags.
Examples
ISB ; Instruction Synchronisation Barrier

12.6.12.6 MRS
Move the contents of a special register to a general-purpose register.

Syntax
MRS{cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution”.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to clear the
Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These operations use
MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR".

Atmel SAMA4CP [DATASHEET] 176

43051E-ATPL-08/14

Restrictions
Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
MRS RO, PRIMASK ; Read PRIMASK value and write it to RO
12.6.12.7 MSR
Move the contents of a general-purpose register into the specified special register.
Syntax
MSR{cond} spec_reg, Rn
where:
cond is an optional condition code, see “Conditional Execution”.
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the APSR.
See “Application Program Status Register”. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is 0.
Rn is non-zero and less than the current BASEPRI value.

See “‘MRS”.
Restrictions
Rn must not be SP and must not be PC.
Condition Flags
This instruction updates the flags explicitly based on the value in Rn.
Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

12.6.12.8 NOP
No Operation.

Syntax

NOP{cond}
where:

cond is an optional condition code, see “Conditional Execution”.
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags

This instruction does not change the flags.

Examples

NOP ; No operation

Atmel SAMA4CP [DATASHEET] 177

43051E-ATPL-08/14

12.6.12.9 SEV
Send Event.

Syntax

SEV{cond}
where:

cond is an optional condition code, see “Conditional Execution”.
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It also sets
the local event register to 1, see “Power Management”.

Condition Flags
This instruction does not change the flags.
Examples

SEV ; Send Event

12.6.12.10 SVC
Supervisor Call.

Syntax
SVC{cond} #imm
where:
cond is an optional condition code, see “Conditional Execution”.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is
being requested.

Condition Flags
This instruction does not change the flags.
Examples

SVC 0x32 Supervisor Call (SVC handler can extract the immediate value

by locating it via the stacked PC)

12.6.12.11 WFE
Wait For Event.

Syntax
WFE{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

WFE is a hint instruction.
If the event register is 0, WFE suspends execution until one of the following events occurs:

An exception, unless masked by the exception mask registers or the current priority level.

e An exception enters the Pending state, if SEVONPEND in the System Control Register is set.
e A Debug Entry request, if Debug is enabled.
e An event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.
SAM4CP [DATASHEET 178
Atmel []

43051E-ATPL-08/14

If the event register is 1, WFE clears it to 0 and returns immediately.
For more information, see “Power Management”.
Condition Flags
This instruction does not change the flags.
Examples
WFE ; Wait for event

12.6.12.12 WFI
Wait for Interrupt.
Syntax
WF1{cond}
where:
cond is an optional condition code, see “Conditional Execution”.
Operation

WEFI is a hint instruction that suspends execution until one of the following events occurs:
e An exception.
e A Debug Entry request, regardless of whether Debug is enabled.
Condition Flags
This instruction does not change the flags.
Examples
WF1 ; Wait for interrupt

12.7 Cortex-M4 Core Peripherals

12.7.1 Peripherals

e Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing. See Section 12.8 "Nested Vectored Interrupt Controller (NVIC)”

e System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 12.9 "System Control Block (SCB)”

e System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick
timer or as a simple counter. See Section 12.10 "System Timer (SysTick)”

e Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region. See
Section 12.11 "Memory Protection Unit (MPU)”

e Floating-point Unit (FPU)
The Floating-point Unit (FPU) provides IEEE754-compliant operations on single-precision, 32-bit, floating-point
values. See Section 12.12 "Floating Point Unit (FPU)”

Atmel SAMA4CP [DATASHEET] 179

43051E-ATPL-08/14

12.7.2 Address Map
The address map of the Private peripheral bus (PPB) is given in the following table:

Table 12-29. Core Peripheral Register Regions

Address Core Peripheral

0xEOOOEO008 - 0OxEOOOEQOF System Control Block

0xEOOOEO10 - OXEOOOEO1F System Timer

0xEOOOE100 - OXEOOOE4EF Nested Vectored Interrupt Controller
0xEOOOEDOO - 0OXEOOOED3F System Control block

0xEOOOED90 - OXEOOOEDBS Memory Protection Unit
OxEOOOEFO00 - 0XEOOOEF03 Nested Vectored Interrupt Controller
0xEOOOEF30 - 0XEOOOEF44 Floating-point Unit

In register descriptions:

e The required privilege gives the privilege level required to access the register, as follows:
e Privileged: Only privileged software can access the register.
e Unprivileged: Both unprivileged and privileged software can access the register.

12.8 Nested Vectored Interrupt Controller (NVIC)
This section describes the NVIC and the registers it uses. The NVIC supports:

e 1to 41 interrupts.

e A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so level 0 is
the highest interrupt priority.

Level detection of interrupt signals.

Dynamic reprioritization of interrupts.

Grouping of priority values into group priority and subpriority fields.
Interrupt tail-chaining.

e An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

12.8.1 Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware and
Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the processor returns
from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. This means that the
peripheral can hold the interrupt signal asserted until it no longer requires servicing.
12.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

e The NVIC detects that the interrupt signal is HIGH and the interrupt is not active.

e The NVIC detects a rising edge on the interrupt signal.

e A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending Registers”, or
to the NVIC_STIR to make an interrupt pending, see “Software Trigger Interrupt Register”.

/ltmeL SAMA4CP [DATASHEET] 180

43051E-ATPL-08/14

A pending interrupt remains pending until one of the following:

e The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active. Then:

e For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt
signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the
processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.

e Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

12.8.2 NVIC Design Hints and Tips

Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned accesses
to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from taking
that interrupt.

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector table
are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the “Vector Table
Offset Register”.

12.8.2.1 NVIC Programming Hints
The software uses the CPSIE | and CPSID | instructions to enable and disable the interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void __disable_irg(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts
In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 12-30. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQN) Enable IRQnN

void NVIC_DisablelRQ(IRQn_t IRQnN) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQN) Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQN) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

e The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:

The array ISER[0] to ISER[1] corresponds to the registers ISERO - ISER1.

e The array ICER[0] to ICER[1] corresponds to the registers ICERO - ICER1.
e The array ISPR[0] to ISPR[1] corresponds to the registers ISPRO - ISPR1.
e The array ICPR[0] to ICPR[1] corresponds to the registers ICPRO - ICPR1.
e The array IABR[0] to IABR[1] corresponds to the registers IABRO - IABR1.
SAM4CP [DATASHEET] 181
/ItmeL 43051E-ATPL-08/14

e The Interrupt Priority Registers (IPRO-IPR10) provide an 8-bit priority field for each interrupt and each register

12.8.3

holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 12-31 shows
how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables that have one

bit per interrupt.

Table 12-31. Mapping of Interrupts to the Interrupt Variables

Interrupts CMSIS Array Elements ("
Set-enable Clear-enable Set-pending Clear-pending Active Bit
0- 31 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[0]
32 - 41 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]
Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds to

the ICERO.

Nested Vectored Interrupt Controller (NVIC) User Interface

Table 12-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

0xEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read/Write 0x00000000
O0xEOOOE11C Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000
0XEOOOE180 Interrupt Clear-enable Register 0 NVIC_ICERO Read/Write 0x00000000
0xEOOOE19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000
0XEOO0E200 Interrupt Set-pending Register 0 NVIC_ISPRO Read/Write 0x00000000
O0xEOO00E21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000
0XEOOOE280 Interrupt Clear-pending Register 0 NVIC_ICPRO Read/Write 0x00000000
0xEOO00E29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000
0xEOO00E300 Interrupt Active Bit Register 0 NVIC_IABRO Read/Write 0x00000000
O0xEOOOE31C Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000
0OxEOOOE400 Interrupt Priority Register 0 NVIC_IPRO Read/Write 0x00000000
O0xEOOOE426 Interrupt Priority Register 10 NVIC_IPR10 Read/Write 0x00000000
0xEOOOEF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

182

12.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERx [x=0..7]

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| SETENA |
23 22 21 20 19 18 17 16

| SETENA |
15 14 13 12 11 10 9 8

| SETENA |
7 6 5 4 3 2 1 0

| SETENA |

These registers enable interrupts and show which interrupts are enabled.

¢ SETENA: Interrupt Set-enable
Write:

0: No effect.

1: Enables the interrupt.
Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never
activates the interrupt, regardless of its priority.

Atmel SAMA4CP [DATASHEET] 183

43051E-ATPL-08/14

12.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERx [x=0..7]

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

These registers disable interrupts, and show which interrupts are enabled.

¢ CLRENA: Interrupt Clear-enable
Write:

0: No effect.

1: Disables the interrupt.
Read:

0: Interrupt disabled.

1: Interrupt enabled.

Atmel SAMACP [DATASHEET] 184

43051E-ATPL-08/14

12.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

These registers force interrupts into the pending state, and show which interrupts are pending.

¢ SETPEND: Interrupt Set-pending
Write:

0: No effect.
1: Changes the interrupt state to pending.
Read:
0: Interrupt is not pending.
1: Interrupt is pending.
Notes: 1. Writing a 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Writing a 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

Atmel SAMA4CP [DATASHEET] 185

43051E-ATPL-08/14

12.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRx [x=0..7]

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

These registers remove the pending state from interrupts, and show which interrupts are pending.

¢ CLRPEND: Interrupt Clear-pending
Write:

0: No effect.

1: Removes the pending state from an interrupt.
Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

Atmel SAMA4CP [DATASHEET] 186

43051E-ATPL-08/14

12.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRx [x=0..7]

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

These registers indicate which interrupts are active.

¢ ACTIVE: Interrupt Active Flags
0: Interrupt is not active.

1: Interrupt is active.

Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

Atmel SAMA4CP [DATASHEET] 187

43051E-ATPL-08/14

12.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..10]

Access: Read/Write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 1 10 9 8

| PRI |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO-NVIC_IPR10 registers provide a 8-bit priority field for each interrupt. These registers are byte-accessible. Each
register holds four priority fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[40].

¢ PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

* PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

* PRIO: Priority (4m)
Priority, Byte Offset O, refers to register bits [7:0].

Notes: 1.

Atmel

Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding
interrupt. The processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

for more information about the IP[0] to IP[40] interrupt priority array, that provides the software view of the interrupt
priorities, see Table 12-30, “CMSIS Functions for NVIC Control” .

The corresponding IPR number n is given by n = m DIV 4.
The byte offset of the required Priority field in this register is m MOD 4.

SAMA4CP [DATASHEET] 188

43051E-ATPL-08/14

12.8.3.7 Software Trigger Interrupt Register

Name: NVIC_STIR
Access: Write-only
Reset: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
. - r - - 1 - { - [- [- [o |
7 6 5 4 3 2 1 0
| INTID |
Write to this register to generate an interrupt from the software.
¢ INTID: Interrupt ID
Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.
SAM4CP [DATASHEET] 189
/ItmeL 43051E-ATPL-08/14

12.9 System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:

e Except for the SCB_CFSR and SCB_SHPR1-SCB_SHPRS registers, it must use aligned word accesses.

e For the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned halfword or word
accesses.

The processor does not support unaligned accesses to system control block registers.
In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.

2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The
SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_MMFAR or
SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault might
change the SCB_MMFAR or SCB_BFAR value.

12.9.1 System Control Block (SCB) User Interface

Table 12-33. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset
0xEOO00E008 Auxiliary Control Register SCB_ACTLR Read/Write 0x00000000
0xEOO00EDOO CPUID Base Register SCB_CPUID Read-only 0x410FC240
O0xEOOOEDO04 Interrupt Control and State Register SCB_ICSR Read/Write") 0x00000000
O0xEOOOEDO08 Vector Table Offset Register SCB_VTOR Read/Write 0x00000000
O0xEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read/Write 0xFA050000
O0xEOOOED10 System Control Register SCB_SCR Read/Write 0x00000000
OxEOOOED14 Configuration and Control Register SCB_CCR Read/Write 0x00000200
0xEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read/Write 0x00000000
OxEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read/Write 0x00000000
0xEO00ED20 System Handler Priority Register 3 SCB_SHPR3 Read/Write 0x00000000
0OxEOOOED24 System Handler Control and State Register SCB_SHCSR Read/Write 0x00000000
OXEO00ED28 Configurable Fault Status Register SCB_CFSR® Read/Write 0x00000000
OxEOOOED2C HardFault Status Register SCB_HFSR Read/Write 0x00000000
0xEOOOED34 MemManage Fault Address Register SCB_MMFAR Read/Write Unknown
0xEOOOED38 BusFault Address Register SCB_BFAR Read/Write Unknown
0xEOOOED3C Auxiliary Fault Status Register SCB_AFSR Read/Write 0x00000000

Notes: 1. See the register description for more information.
2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (OXEOOOED28 - 8

bits), “BFSR: Bus Fault Status Subregister” (OXEOOOED29 - 8 bits), “UFSR: Usage Fault Status Subregister’
(OXEOOOED2A - 16 bits).

SAMA4CP [DATASHEET] 190

43051E-ATPL-08/14

Atmel

12.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0

| - DISFOLD | DISDEFWBUFl DISMCYCINT |

The SCB_ACTLR register provides disable bits for the following processor functions:
* |T folding.

» Write buffer use for accesses to the default memory map.
« Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally require
modification.

* DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

* DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

* DISFOLD: Disable Folding
When set to 1, disables the IT folding.
Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT

instruction. This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in
looping. If a task must avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

« DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise but
decreases the performance, as any store to memory must complete before the processor can execute the next instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

¢ DISMCYCINT: Disable Multiple Cycle Interruption
When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt latency of the
processor, as any LDM or STM must complete before the processor can stack the current state and enter the interrupt handler.

Atmel SAM4CP [DATASHEET] 191

43051E-ATPL-08/14

12.9.1.2 CPUID Base Register

Name: SCB_CPUID

Access: Read/Write
31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant Constant |
15 14 13 12 1 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo Revision |

The SCB_CPUID register contains the processor part number, version, and implementation information.

* Implementer: Implementer Code
0x41: ARM.

* Variant: Variant Number
It is the r value in the rnpn product revision identifier:

0x0: Revision 0.

¢ Constant
Reads as OxF.

¢ PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

* Revision: Revision Number
It is the p value in the rnpn product revision identifier:

0x0: Patch 0.

Atmel SAMA4CP [DATASHEET] 192

43051E-ATPL-08/14

12.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read/Write
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR register provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and
clear-pending bits for the PendSV and SysTick exceptions.

It indicates:

» The exception number of the exception being processed, and whether there are preempted active exceptions.
» The exception number of the highest priority pending exception, and whether any interrupts are pending.

* NMIPENDSET: NMI Set-pending
Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMl is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a write of
1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if the NMI signal
is reasserted while the processor is executing that handler.

* PENDSVSET: PendSV Set-pending
Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

/ltmeL SAMA4CP [DATASHEET] 193

43051E-ATPL-08/14

* PENDSVCLR: PendSV Clear-pending
Write:

0: No effect.

1: Removes the pending state from the PendSV exception.

* PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

* PENDSTCLR: SysTick Exception Clear-pending
Write:

0: No effect.

1: Removes the pending state from the SysTick exception.

This bit is Write-only. On a register read, its value is Unknown.

ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
: Interrupt not pending.

= O

. Interrupt pending.

VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.
Nonzero: The exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

¢ RETTOBASE: Preempted Active Exceptions Present or Not
0: There are preempted active exceptions to execute.

1: There are no active exceptions, or the currently-executing exception is the only active exception.

¢ VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt Program
Status Register”.

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable,
Clear-Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register”.

Note: When the user writes to the SCB_ICSR, the effect is unpredictable if:
- Writing a 1 to the PENDSVSET bit and writing a 1 to the PENDSVCLR bit.
- Writing a 1 to the PENDSTSET bit and writing a 1 to the PENDSTCLR bit.

Atmel SAMACP [DATASHEET] 194

43051E-ATPL-08/14

12.9.1.4 Vector Table Offset Register

Name: SCB_VTOR

Access: Read/Write
31 30 29 28 27 26 25 24

| TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

| TBLOFF | - |

The SCB_VTOR indicates the offset of the vector table base address from memory address 0x00000000.

* TBLOFF: Vector Table Base Offset
It contains bits [29:7] of the offset of the table base from the bottom of the memory map.

Bit [29] determines whether the vector table is in the code or SRAM memory region:
0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the
next statement to give the information required for your implementation; the statement reminds the user of how to
determine the alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more
interrupts, adjust the alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the
alignment must be on a 64-word boundary because the required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

Atmel SAMA4CP [DATASHEET] 195

43051E-ATPL-08/14

12.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read/Write
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS - | PRIGROUP |
7 6 5 4 3 2 1 0

| - |SYSRESETREQ VECTCLRACTIVE VECTRESETl

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset control of
the system. To write to this register, write 0xX5FA to the VECTKEY field, otherwise the processor ignores the write.

* VECTKEYSTAT: Register Key
Read:

Reads as OxFAO0S5.

* VECTKEY: Register Key
Write:

Writes 0x5FA to VECTKEY, otherwise the write is ignored.

« ENDIANNESS: Data Endianness
0: Little-endian.

1: Big-endian.

* PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n fields
in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the PRIGROUP
value controls this split:

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP | Binary Point'" Group Priority Bits Subpriority Bits | Group Priorities Subpriorities
0b000 DXXXXXXX.y [7:1] None 128 2
0b001 bxxxxxx.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
0b110 bx.yyyyyyy [7] [6:0] 2 128
Ob111 b.yyyyyyy None [7:0] 1 256

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

/ltmeL SAMA4CP [DATASHEET] 196

43051E-ATPL-08/14

* SYSRESETREQ: System Reset Request
0: No system reset request.

1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

e VECTCLRACTIVE: Reserved for Debug use
This bit reads as 0. When writing to the register, write O to this bit, otherwise the behavior is unpredictable.

* VECTRESET: Reserved for Debug use
This bit reads as 0. When writing to the register, write O to this bit, otherwise the behavior is unpredictable.

Atmel SAMA4CP [DATASHEET] 197

43051E-ATPL-08/14

12.9.1.6 System Control Register

Name: SCB_SCR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | SEVONPEND - SLEEPDEEP | SLEEPONEXIT - |

* SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the processor is not
waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

 SLEEPDEEP: Sleep or Deep Sleep
Controls whether the processor uses sleep or deep sleep as its low-power mode:

0: Sleep.
1: Deep sleep.

* SLEEPONEXIT: Sleep-on-exit
Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.
1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

Atmel SAMA4CP [DATASHEET] 198

43051E-ATPL-08/14

12.9.1.7 Configuration and Control Register

Name: SCB_CCR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1 10 9 8
| - STKALIGN BFHFNMIGN |
7 6 5 4 3 2 1 0
UNALIGN_ USERSETMP | NONBASETHR
B DIV_0_TRP TRP B END DENA

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by
FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to the
NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

¢ STKALIGN: Stack Alignment
Indicates the stack alignment on exception entry:

0: 4-byte aligned.
1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the exception, it
uses this stacked bit to restore the correct stack alignment.

* BFHFNMIGN: Bus Faults Ignored
Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the hard fault
and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.
1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe system
devices and bridges to detect control path problems and fix them.

* DIV_0_TRP: Division by Zero Trap
Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:

0: Do not trap divide by 0.
1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

¢ UNALIGN_TRP: Unaligned Access Trap
Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

/ltmeL SAMA4CP [DATASHEET] 199

43051E-ATPL-08/14

« USERSETMPEND: Unprivileged Software Access
Enables unprivileged software access to the NVIC_STIR, see “Software Trigger Interrupt Register”:

0: Disable.
1: Enable.

* NONBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:

0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception Return”.

Atmel SAMA4CP [DATASHEET] 200

43051E-ATPL-08/14

12.9.1.8 System Handler Priority Registers

The SCB_SHPR1-SCB_SHPRaS registers set the priority level, 0 to 15 of the exception handlers that have configurable priority.
They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 12-34. System Fault Handler Priority Fields

Handler Field Register Description
Memory management fault (MemManage) PRI_4
Bus fault (BusFault) PRI_5 “System Handler Priority Register 1”
Usage fault (UsageFault) PRI_6
SVCall PRI_11 “System Handler Priority Register 2”
PendSV PRI_14

“System Handler Priority Register 3”
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and ignore
writes.

Atmel SAM4CP [DATASHEET] 201

43051E-ATPL-08/14

12.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI_5 |
7 6 5 4 3 2 1 0

| PRI_4 |

¢ PRI_6: Priority
Priority of system handler 6, UsageFault.

¢ PRIL_5: Priority
Priority of system handler 5, BusFault.

¢ PRI_4: Priority
Priority of system handler 4, MemManage.

Atmel SAMA4CP [DATASHEET] 202

43051E-ATPL-08/14

12.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2
Access: Read/Write
31 30 29 28 27 26 25 24
| PRI_11 |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

* PRI_11: Priority
Priority of system handler 11, SVCall.

Atmel SAMA4CP [DATASHEET] 203

43051E-ATPL-08/14

12.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read/Write
31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

¢ PRI_15: Priority
Priority of system handler 15, SysTick exception.

* PRI_14: Priority
Priority of system handler 14, PendSV.

Atmel SAMACP [DATASHEET] 204

43051E-ATPL-08/14

12.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - USGFAULTENA|BUSFAULTENA MEMFAULTENAl
15 14 13 12 1 10 9 8
SVCALLPEN |BUSFAULTPEN|MEMFAULTPEN|USGFAULTPEN
DED DED DED DED SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0
SVCALLACT - USGFAULTACT - BUSFAULTACT|MEMFAULTACT

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault, and SVC
exceptions; it also indicates the active status of the system handlers.

* USGFAULTENA: Usage Fault Enable
0: Disables the exception.

1: Enables the exception.

* BUSFAULTENA: Bus Fault Enable
0: Disables the exception.

1: Enables the exception.

* MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.

1: Enables the exception.

e SVCALLPENDED: SVC Call Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* BUSFAULTPENDED: Bus Fault Exception Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

SAMA4CP [DATASHEET] 205

43051E-ATPL-08/14

Atmel

* USGFAULTPENDED: Usage Fault Exception Pending
Read:

0: The exception is not pending.
1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* SYSTICKACT: SysTick Exception Active
Read:

0: The exception is not active.
1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked
content can cause the processor to generate a fault exception. Ensure that the software writing to this register retains
and subsequently restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a
read-modify-write procedure to ensure that only the required bit is changed.

* PENDSVACT: PendSV Exception Active
0: The exception is not active.

1: The exception is active.

¢ MONITORACT: Debug Monitor Active
0: Debug monitor is not active.

1: Debug monitor is active.

¢ SVCALLACT: SVC Call Active
0: SVC call is not active.

1: SVC call is active.

* USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.

1: Usage fault exception is active.

¢ BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.

1: Bus fault exception is active.

¢ MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

/ltmeL SAMA4CP [DATASHEET] 206

43051E-ATPL-08/14

12.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | NOCP | INVPC | INVSTATE |UNDEFINSTR|
15 14 13 12 11 10 9 8

| BFARVALID | - | LSPERR | STKERR | UNSTKERR |IMPRECISERR| PRECISERR | IBUSERR |
7 6 5 4 3 2 1 0

|MMARVALID| - | MLSPERR | MSTKERR |MUNSTKERR| - | DACCVIOL | IACCVIOL |

* IACCVIOL: Instruction Access Violation Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No instruction access violation fault.
1: The processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not written a
fault address to the SCB_MMFAR.

* DACCVIOL: Data Access Violation Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No data access violation fault.
1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded the
SCB_MMFAR register with the address of the attempted access.

¢ MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No unstacking fault.
1: Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The processor has
not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a fault address to
the SCB_MMFAR register.

¢ MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No stacking fault.
1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor has not
written a fault address to SCB_MMFAR register.

/ltmeL SAMA4CP [DATASHEET] 207

43051E-ATPL-08/14

¢ MLSPERR: MemManage during Lazy State Preservation
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No MemManage fault occurred during the floating-point lazy state preservation.

1: A MemManage fault occurred during the floating-point lazy state preservation.

¢ MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: The value in SCB_MMFAR is not a valid fault address.
1: SCB_MMFAR register holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit
to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR value has
been overwritten.

¢ IBUSERR: Instruction Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No instruction bus error.
1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it attempts
to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

¢ PRECISERR: Precise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No precise data bus error.
1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the fault.
When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

¢ IMPRECISERR: Imprecise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister”.

0: No imprecise data bus error.
1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the error.
When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR register.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority processes. If
a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that both this bit and
one of the precise fault status bits are set to 1.

¢ UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister”.

0: No unstacking fault.
1: Unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still present.
The processor does not adjust the SP from the failing return, does not performed a new save, and does not write a fault address
to the BFAR.

/ltmeL SAMA4CP [DATASHEET] 208

43051E-ATPL-08/14

¢ STKERR: Bus Fault on Stacking for Exception Entry
This is part of “BFSR: Bus Fault Status Subregister”.

0: No stacking fault.
1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incorrect.
The processor does not write a fault address to the SCB_BFAR.

* LSPERR: Bus Error during Lazy Floating-point State Preservation
This is part of “BFSR: Bus Fault Status Subregister”.

0: No bus fault occurred during floating-point lazy state preservation.

1: A bus fault occurred during floating-point lazy state preservation.

e BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister”.

0: The value in SCB_BFAR is not a valid fault address.
1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a memory
management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This prevents
problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

* UNDEFINSTR: Undefined Instruction Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No undefined instruction usage fault.
1: The processor has attempted to execute an undefined instruction.
When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

¢ INVSTATE: Invalid State Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No invalid state usage fault.
1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use of the
EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

¢ INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”. It is caused by an invalid PC load by EXC_RETURN:

0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the illegal load
of the PC.

/ltmeL SAMA4CP [DATASHEET] 209

43051E-ATPL-08/14

* NOCP: No Coprocessor Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”. The processor does not support coprocessor instructions:

0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

¢ UNALIGNED: Unaligned Access Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and Control
Register”. Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.

* DIVBYZERO: Divide by Zero Usage Fault
This is part of “UFSR: Usage Fault Status Subregister”.

0: No divide by zero fault, or divide by zero trapping not enabled.
1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed the
divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configuration and
Control Register”.

Atmel SAMA4CP [DATASHEET] 210

43051E-ATPL-08/14

12.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read/Write
31 30 29 28 27 26 25 24

| UFSR |
23 22 21 20 19 18 17 16

| UFSR |
15 14 13 12 11 10 9 8

| BFSR |
7 6 5 4 3 2 1 0

| MMFSR |

* MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
12.9.1.13.

* BFSR: Bus Fault Status Subregister
The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section 12.9.1.13.

¢ UFSR: Usage Fault Status Subregister
The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 12.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is set to
1 is cleared to 0 only by writing a 1 to that bit, or by a reset.

The SCB_CFSR indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The user can
access the SCB_CFSR or its subregisters as follows:

Access complete SCB_CFSR with a word access to OXxEOOOED28.

Access MMFSR with a byte access to 0OXEOOOED28.

Access MMFSR and BFSR with a halfword access to 0OXEOOOED28.

Access BFSR with a byte access to OXxEOOOED29.

Access UFSR with a halfword access to OXEOOOED2A.

/ItmeL SAMA4CP [DATASHEET] 211

43051E-ATPL-08/14

12.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read/Write
31 30 29 28 27 26 25 24

| DEBUGEVT FORCED - |

23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| - VECTTBL - |

The SCB_HFSR gives information about events that activate the hard fault handler. This register is read, write to clear. This
means that bits in the register read normally, but writing a 1 to any bit clears that bit to 0.

* DEBUGEVT: Reserved for Debug Use
When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

¢ FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either because
of priority or because it is disabled:

0: No forced hard fault.
1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

e VECTTBL: Bus Fault on a Vector Table
It indicates a bus fault on a vector table read during an exception processing:

0: No bus fault on vector table read.
1: Bus fault on vector table read.
This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is set to
1 is cleared to 0 only by writing a 1 to that bit, or by a reset.

Atmel SAMA4CP [DATASHEET] 212

43051E-ATPL-08/14

12.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_MMFAR contains the address of the location that generated a memory management fault.

* ADDRESS: Memory Management Fault Generation Location Address

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated the
memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write
instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the
requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR register is
valid. See “MMFSR: Memory Management Fault Status Subregister”.

Atmel SAMA4CP [DATASHEET] 213

43051E-ATPL-08/14

12.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_BFAR contains the address of the location that generated a bus fault.

* ADDRESS: Bus Fault Generation Location Address

When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the bus
fault.

Notes: 1. When an unaligned access faults, the address in the SCB_BFAR register is the one requested by the instruction,
even if it is not the address of the fault.

2. Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR register is valid. See
“‘BFSR: Bus Fault Status Subregister”.

Atmel SAMACP [DATASHEET] 214

43051E-ATPL-08/14

12.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps to) the
value in the SYST_RVR on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low-power mode, the SysTick counter
stops.

Ensure that the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the SysTick
counter is:

1. Program the reload value.
2. Clear the current value.
3. Program the Control and Status register.

12.10.1 System Timer (SysTick) User Interface
Table 12-35. System Timer (SYST) Register Mapping

Offset Register Name Access Reset
O0xEOO00EO010 SysTick Control and Status Register SYST_CSR Read/Write 0x00000000
OxEOOOEO014 SysTick Reload Value Register SYST_RVR Read/Write Unknown
OxEOOOEO018 SysTick Current Value Register SYST_CVR Read/Write Unknown
OxEOOOEO1C SysTick Calibration Value Register SYST_CALIB Read-only 0x000030D4

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

215

12.10.1.1 SysTick Control and Status Register

Name: SYST CSR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - COUNTFLAG |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - | - - - - CLKSOURCE TICKINT ENABLE |

The SysTick SYST_CSR register enables the SysTick features.

¢ COUNTFLAG: Count Flag
Returns 1 if the timer counted to O since the last time this was read.

¢ CLKSOURCE: Clock Source
Indicates the clock source:

0: External Clock.

1: Processor Clock.

¢ TICKINT: SysTick Exception Request Enable
Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.
1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

e ENABLE: Counter Enable
Enables the counter:

0: Counter disabled.
1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then counts down. On
reaching 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

Atmel SAMA4CP [DATASHEET] 216

43051E-ATPL-08/14

12.10.1.2 SysTick Reload Value Register

Name: SYST_RVR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| RELOAD |

The SYST_RVR specifies the start value to load into the SYST_CVR.

* RELOAD: SYST_CVR Load Value
Value to load into the SYST_CVR register when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but has no effect
because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N processor
clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

Atmel SAMA4CP [DATASHEET] 217

43051E-ATPL-08/14

12.10.1.3 SysTick Current Value Register

Name: SYST_CVR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

The SysTick SYST_CVR contains the current value of the SysTick counter.

¢ CURRENT: SysTick Counter Current Value
Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

Atmel SAMA4CP [DATASHEET] 218

43051E-ATPL-08/14

12.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read/Write
31 30 29 28 27 26 25 24

| NOREF SKEW - |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

The SysTick SYST_CSR register indicates the SysTick calibration properties.

* NOREF: No Reference Clock
It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.
1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

¢ SKEW: TENMS Value Verification
It indicates whether the TENMS value is exact:

0: TENMS value is exact.
1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

e TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibration value
is not known.

The TENMS field default value is 0x000030D4 (12500 decimal).

In order to achieve a 1 ms time base on SysTick, the TENMS field must be programmed to a value corresponding to the proces-
sor clock frequency (in kHz) divide by 8.

For example, for devices running the processor clock at 48 MHz, the TENMS field value must be 0x00001770 (48000 kHz/8).

Atmel SAMA4CP [DATASHEET] 219

43051E-ATPL-08/14

12.11 Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location, size, access permissions, and
memory attributes of each region. It supports:

e Independent attribute settings for each region.
e Overlapping regions.
e Export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:
e Eight separate memory regions, 0-7.
e A background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number. For
example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from
privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the same
region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory management
fault. This causes a fault exception, and might cause the termination of the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be executed.
Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).

Table 12-36 shows the possible MPU region attributes. These include Share ability and cache behavior attributes that are
not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for guidelines for
programming such an implementation.

Table 12-36. Memory Attributes Summary

Memory Type Shareability | Other Attributes Description

All accesses to Strongly-ordered memory occur in program

Strongly-ordered | - . order. All Strongly-ordered regions are assumed to be shared.

Shared - Memory-mapped peripherals that several processors share.
Device - i ;

Non-shared | - Memory-mapped peripherals that only a single processor

uses.
N | Shared - Normal memory that is shared between several processors.
orma
Non-shared | - Normal memory that only a single processor uses.
SAM4CP [DATASHEET] 220
Atmel

43051E-ATPL-08/14

12.11.1 MPU Access Permission Attributes

This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and XN) of
the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, then the MPU generates a permission fault.

The table below shows the encodings for the TEX, C, B, and S access permission bits.
Table 12-37. TEX, C, B, and S Encoding

TEX C B S Memory Type Shareability Other Attributes
0 0 xM Strongly-ordered Shareable -
1 x(M Device Shareable -
000 0 0 Normal Not shareable | outer and inner write-through. No write
1 Shareable allocate.
1
1 0 Normal Not shareable | Quter and inner write-back. No write
1 Shareable allocate.
0 Not shareable
0 0 Normal -
1 Shareable
1 x(M Reserved encoding -
b001
0 xM Implementation defined attributes. -
1 1 0 Normal Not shareable | Quter and inner write-back. Write and read
1 Shareable allocate.
0 0 xM Device Not shareable | Nonshared Device.
b010 1 x(M Reserved encoding -
1 x| x™ Reserved encoding -
0 Not shareable
b1BB A A Normal -
1 Shareable
Notes: 1. The MPU ignores the value of this bit.

Table 12-38 shows the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 12-38. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB | Corresponding Cache Policy

00 Non-cacheable

01 Write back, write and read allocate
10 Write through, no write allocate

1 Write back, no write allocate

SAMA4CP [DATASHEET] 221

43051E-ATPL-08/14

Atmel

Table 12-39 shows the AP encodings that define the access permissions for privileged and unprivileged software.
Table 12-39. AP Encoding

AP[2:0] | Privileged Unprivileged Description
Permissions Permissions
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission fault
011 RW RW Full access
100 Unpredictable Unpredictable Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

12.11.1.1 MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault, see “Exceptions
and Interrupts”. The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management Fault Status Sub-
register” for more information.

12.11.1.2 Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASRSs. Each register can
be programed separately, or a multiple-word write can be used to program all of these registers. MPU_RBAR and
MPU_RASR aliases can be used to program up to four regions simultaneously using an STM instruction.

12.11.1.3 Updating an MPU Region Using Separate Words
Simple code to configure one region:

; R1 = region number

; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R4, [RO, #0x4] ; Region Base Address

STRH R2, [RO, #0x8] ; Region Size and Enable

STRH R3, [RO, #OxA] ; Region Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously enabled. For
example:

; R1 = region number
; R2 = size/enable
; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR
STR R1, [RO, #0x0]
BIC R2, R2, #1
STRH R2, [RO, #0x8]
STR R4, [RO, #0x4]
STRH R3, [RO, #OxA]
ORR R2, #1

STRH R2, [RO, #0x8]

OXEOOOED98, MPU region number register
Region Number

Disable

Region Size and Enable

Region Base Address

Region Attribute

Enable

Region Size and Enable

/ltmeL SAMA4CP [DATASHEET] 222

43051E-ATPL-08/14

The software must use memory barrier instructions:

e Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might be
affected by the change in MPU settings.
e After the MPU setup, if it includes memory transfers that must use the new MPU settings.
However, memory barrier instructions are not required if the MPU setup process starts by entering an exception handler,
or is followed by an exception return, because the exception entry and exception return mechanisms cause memory
barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU
through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming
sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings, such
as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is entered using
a branch or call. If the programming sequence is entered using a return from exception, or by taking an exception, then
an ISB is not required.

12.11.1.4 Updating an MPU Region Using Multi-word Writes
The user can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:

: R1 region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 region number

; R2 address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register

STM RO, {R1-R3} ; Region Number, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required region
number and had the VALID bit set to 1. See “MPU Region Base Address Register”. Use this when the data is statically
packed, for example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Region Base register
STR R1, [RO, #0x0] ; Region base address and
; region number combined with VALID (bit 4) set to 1

STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 = address and region number in one

; R2 = size and attributes in one

LDR RO,=MPU_RBAR ; OXEOOOED9C, MPU Region Base register

STM RO, {R1-R2} ; Region base address, region number and VALID bit,
; and Region Attribute, Size and Enable

SAMACP [DATASHEET] 223
A t m eL 43051E-ATPL-08/14

12.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field of
the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register”. The least significant bit of
SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling a subregion means
another region overlapping the disabled range matches instead. If no other enabled region overlaps the disabled
subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be set to
0x00, otherwise the MPU behavior is unpredictable.

12.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 kB, and region 2 is 512 kB. To ensure the attributes
from region 1 apply to the first 128 kB region, set the SRD field for region 2 to b00000011 to disable the first two
subregions, as in Figure 12-13 below:

Figure 12-13. SRD Use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB
128KB
64KB
0

Disabled subregion
Disabled subregion

Base address of both regions

12.11.1.7 MPU Design Hints And Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt handlers
might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:

e Except for the MPU_RASR, it must use aligned word accesses.
e Forthe MPU_RASR, it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any
previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller
Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU as
follows:

Table 12-40. Memory Region Attributes for a Microcontroller

Memory Region | TEX C | B | S | Memory Type and Attributes

Flash memory b000 1 | 0 | O | Normal memory, non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, shareable, write-through

External SRAM b000 1 1 1 | Normal memory, shareable, write-back, write-allocate
Peripherals b000 0 | 1 |1 | Device memory, shareable

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system behavior.
However, using these settings for the MPU regions can make the application code more portable. The values given are
for typical situations. In special systems, such as multiprocessor designs or designs with a separate DMA engine, the
shareability attribute might be important. In these cases, refer to the recommendations of the memory device
manufacturer.

Atmel SAMACP [DATASHEET] 224

43051E-ATPL-08/14

12.11.2 Memory Protection Unit (MPU) User Interface
Table 12-41. Memory Protection Unit (MPU) Register Mapping

Offset Register Name Access Reset

O0xEOOOED90 MPU Type Register MPU_TYPE Read-only 0x00000800
O0xEOOOED94 MPU Control Register MPU_CTRL Read/Write 0x00000000
OxEOOOED98 MPU Region Number Register MPU_RNR Read/Write 0x00000000
OxEOOOED9C MPU Region Base Address Register MPU_RBAR Read/Write 0x00000000
OxEOOOEDAO MPU Region Attribute and Size Register MPU_RASR Read/Write 0x00000000
OxEOOOEDA4 MPU Region Base Address Register Alias 1 MPU_RBAR_A1 | Read/Write 0x00000000
OxEOOOEDAS8 MPU Region Attribute and Size Register Alias 1 MPU_RASR_A1 | Read/Write 0x00000000
OxEOOOEDAC MPU Region Base Address Register Alias 2 MPU_RBAR_A2 | Read/Write 0x00000000
0OxEOOOEDBO MPU Region Attribute and Size Register Alias 2 MPU_RASR_A2 | Read/Write 0x00000000
O0xEOOOEDB4 MPU Region Base Address Register Alias 3 MPU_RBAR_A3 | Read/Write 0x00000000
OxEOOOEDBS MPU Region Attribute and Size Register Alias 3 MPU_RASR_A3 | Read/Write 0x00000000

SAMA4CP [DATASHEET] 225

43051E-ATPL-08/14

Atmel

12.11.2.1 MPU Type Register

Name: MPU_TYPE
Access: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| IREGION |
15 14 13 12 11 10 9 8
| DREGION |
7 6 5 4 3 2 1 0
| - SEPARATE |
The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.
¢ IREGION: Instruction Region
Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.
* DREGION: Data Region
Indicates the number of supported MPU data regions:
0x08 = Eight MPU regions.
¢ SEPARATE: Separate Instruction
Indicates support for unified or separate instruction and date memory maps:
0: Unified.
SAM4CP [DATASHEET 226
Atmel []

43051E-ATPL-08/14

12.11.2.2 MPU Control Register

Name: MPU_CTRL

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - PRIVDEFENA | HFNMIENA ENABLE |

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of the MPU
when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

* PRIVDEFENA: Privileged Default Memory Map Enable
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over this
default map.

If the MPU is disabled, the processor ignores this bit.

¢ HFNMIENA: Hard Fault and NMI Enable
Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
1: The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

* ENABLE
Enables the MPU:

0: MPU disabled.
1: MPU enabled.
When ENABLE and PRIVDEFENA are both set to 1:

* For privileged accesses, the default memory map is as described in “Memory Model”. Any access by privileged software that
does not address an enabled memory region behaves as defined by the default memory map.
* Any access by unprivileged software that does not address an enabled memory region causes a memory management fault.
XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

/ltmeL SAMA4CP [DATASHEET] 227

43051E-ATPL-08/14

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless the
PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged software can
operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the MPU
is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with priority
—1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is enabled.
Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

Atmel SAMA4CP [DATASHEET] 228

43051E-ATPL-08/14

12.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| REGION |

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASRs.

* REGION: MPU Region Referenced by the MPU_RBAR and MPU_RASRs
Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers.

The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. However, the
region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base Address Regis-
ter”. This write updates the value of the REGION field.

Atmel SAMA4CP [DATASHEET] 229

43051E-ATPL-08/14

12.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR VALID REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region (SIZE field in the
MPU_RASR).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 kB region must be aligned on a multiple of 64 kB, for
example, at 0x00010000 or 0x00020000.

e VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and ignores
the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

* REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

/ltmeL SAMA4CP [DATASHEET] 230

43051E-ATPL-08/14

12.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read/Write
31 30 29 28 27 26 25 24

| ~ XN - | AP |
23 22 21 20 19 18 17 16

| - TEX | S C B |
15 14 13 12 1 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - SIZE ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables that
region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

» The most significant halfword holds the region attributes.
* The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

e AP: Access Permission
See Table 12-39.

¢ TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

* SRD: Subregion Disable
For each bit in this field:

0: Corresponding sub-region is enabled.
1: Corresponding sub-region is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD field
as 0x00.

* SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

(Region size in bytes) = 2(81ZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE values,
with the corresponding region size and value of N in the MPU_RBAR.

Atmel SAM4CP [DATASHEET] 231

43051E-ATPL-08/14

SIZE Value | Region Size | Value of N | Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1kB 10 -

b10011 (19) | 1 MB 20 -

b11101 (29) | 1 GB 30 -

b11111 (31) | 4 GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR, see “MPU Region Base Address Register”.

* ENABLE: Region Enable
Note: Forinformation about access permission, see “MPU Access Permission Attributes”.

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

232

12.11.2.6 MPU Region Base Address Register Alias 1

Name: MPU_RBAR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 1 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the
SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes).
If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 kB region must be aligned on a multiple of 64 kB, for
example, at 0x00010000 or 0x00020000.

¢ VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and ignores
the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

* REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

/ltmeL SAMA4CP [DATASHEET] 233

43051E-ATPL-08/14

12.11.2.7 MPU Region Attribute and Size Register Alias 1

Name: MPU_RASR_A1

Access: Read/Write
31 30 29 28 27 26 25 24

| - | XN [- [AP |
23 22 21 20 19 18 17 16

| - TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE [ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables that
region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
* The most significant halfword holds the region attributes.
* The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

e AP: Access Permission
See Table 12-39.

e TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

¢ SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD field
as 0x00.

Atmel SAMACP [DATASHEET] 234

43051E-ATPL-08/14

e SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

(Region size in bytes) = 2(SIZE+1)
The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE values,
with the corresponding region size and value of N in the MPU_RBAR.

SIZE Value Region Size Value of N(") Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1kB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4 GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR; see “MPU Region Base Address Register”.

* ENABLE: Region Enable
Note: Forinformation about access permission, see “MPU Access Permission Attributes”.

Atmel SAMA4CP [DATASHEET] 235

43051E-ATPL-08/14

12.11.2.8 MPU Region Base Address Register Alias 2

Name: MPU_RBAR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 1 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the
SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 kB region must be aligned on a multiple of 64 kB, for
example, at 0x00010000 or 0x00020000.

e VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and ignores
the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

¢ REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

/ltmeL SAMA4CP [DATASHEET] 236

43051E-ATPL-08/14

12.11.2.9 MPU Region Attribute and Size Register Alias 2

Name: MPU_RASR_A2

Access: Read/Write
31 30 29 28 27 26 25 24

| - | XN [- [AP |
23 22 21 20 19 18 17 16

| - TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE [ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables that
region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
* The most significant halfword holds the region attributes.
* The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

e AP: Access Permission
See Table 12-39.

* TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

¢ SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD field
as 0x00.

Atmel SAMA4CP [DATASHEET] 237

43051E-ATPL-08/14

e SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:

(Region size in bytes) = 2(SIZE+1)
The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE values,
with the corresponding region size and value of N in the MPU_RBAR.

SIZE Value Region Size Value of N(") Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1kB 10 -

b10011 (19) 1 MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4 GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR; see “MPU Region Base Address Register”

* ENABLE: Region Enable
Note: Forinformation about access permission, see “MPU Access Permission Attributes”.

Atmel SAMA4CP [DATASHEET] 238

43051E-ATPL-08/14

12.11.2.10 MPU Region Base Address Register Alias 3

Name: MPU_RBAR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 1 10 9 8

| ADDR |
7 6 5 4 3 2 1 0

| ADDR | VALID | REGION |

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address
Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the
SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 kB region must be aligned on a multiple of 64 kB, for
example, at 0x00010000 or 0x00020000.

e VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and ignores
the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

* REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

/ltmeL SAMA4CP [DATASHEET] 239

43051E-ATPL-08/14

12.11.2.11 MPU Region Attribute and Size Register Alias 3

Name: MPU_RASR_A3

Access: Read/Write
31 30 29 28 27 26 25 24

| - | XN [- [AP |
23 22 21 20 19 18 17 16

| - TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE [ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables that
region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
* The most significant halfword holds the region attributes.
* The least significant halfword holds the region size, and the region and subregion enable bits.

¢ XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

e AP: Access Permission
See Table 12-39.

e TEX, C, B: Memory Access Attributes
See Table 12-37.

¢ S: Shareable
See Table 12-37.

¢ SRD: Subregion Disable
For each bit in this field:

0: Corresponding subregion is enabled.
1: Corresponding subregion is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD field
as 0x00.

Atmel SAM4CP [DATASHEET] 240

43051E-ATPL-08/14

e SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR as follows:
(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE values,
with the corresponding region size and value of N in the MPU_RBAR.

SIZE Value Region Size Value of N(") Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1kB 10 -

b10011 (19) 1MB 20 -

b11101 (29) 1GB 30 -

b11111 (31) 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR; see “MPU Region Base Address Register”.

* ENABLE: Region Enable
Note: Forinformation about access permission, see “MPU Access Permission Attributes”.

Atmel SAM4CP [DATASHEET] 241

43051E-ATPL-08/14

12.12 Floating Point Unit (FPU)
The Cortex-M4F FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and floating-point constant
instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std 754-2008, IEEE
Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which can also be accessed as 16 doubleword registers for
load, store, and move operations.

12.12.1 Enabling the FPU

The FPU is disabled from reset. It must be enabled before any floating-point instructions can be used. An example code
sequence for enabling the FPU in both privileged and user modes is showed below. The processor must be in privileged
mode to read from and write to the CPACR.

Example of Enabling the FPU:

; CPACR is located at address OxEOOOED88

LDR.W RO, =0xEOOOED88

; Read CPACR

LDR R1, [RO]

; Set bits 20-23 to enable CP10 and CP11l coprocessors
ORR R1, R1, #(OxF << 20)

; Write back the modified value to the CPACR

STR R1, [RO]; wait for store to complete
DSB

;reset pipeline now the FPU is enabled

1SB

12.12.2 Floating Point Unit (FPU) User Interface

Table 12-42. Floating Point Unit (FPU) Register Mapping

Offset Register Name Access Reset

0xEOO0OED88 Coprocessor Access Control Register CPACR Read/Write 0x00000000

OxEOOOEF34 Floating-point Context Control Register FPCCR Read/Write 0xC0000000

O0xEOOOEF38 Floating-point Context Address Register FPCAR Read/Write -

- Floating-point Status Control Register FPSCR Read/Write -

O0xEOOOEO1C Floating-point Default Status Control Register | FPDSCR Read/Write 0x00000000
Atmel it S

12.12.2.1 Coprocessor Access Control Register

Name: CPACR
Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| CP11 CP10 - |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The CPACR specifies the access privileges for coprocessors.

* CP10: Access Privileges for Coprocessor 10
The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.
1: Privileged access only. An unprivileged access generates a NOCP fault.
2: Reserved. The result of any access is unpredictable.

3: Full access.

e CP11: Access Privileges for Coprocessor 11
The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.
1: Privileged access only. An unprivileged access generates a NOCP fault.
2: Reserved. The result of any access is unpredictable.

3: Full access.

Atmel SAM4CP [DATASHEET] 243

43051E-ATPL-08/14

12.12.2.2 Floating-point Context Control Register

Name: FPCCR

Access: Read/Write
31 30 29 28 27 26 25 24

| ASPEN LSPEN - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| - | MONRDY |
7 6 5 4 3 2 1 0

| - BFRDY | MMRDY HFRDY | THREAD - USER | LSPACT |

The FPCCR sets or returns FPU control data.

* ASPEN: Automatic Hardware State Preservation And Restoration
Enables CONTROL bit [2] setting on execution of a floating-point instruction. This results in an automatic hardware state
preservation and restoration, for floating-point context, on exception entry and exit.

0: Disable CONTROL bit [2] setting on execution of a floating-point instruction.
1: Enable CONTROL bit [2] setting on execution of a floating-point instruction.

¢ LSPEN: Automatic Lazy State Preservation
0: Disable automatic lazy state preservation for floating-point context.

1: Enable automatic lazy state preservation for floating-point context.

¢ MONRDY: Debug Monitor Ready
0: DebugMonitor is disabled or the priority did not permit to set MON_PEND when the floating-point stack frame was allocated.

1: DebugMonitor is enabled and the priority permitted to set MON_PEND when the floating-point stack frame was allocated.

* BFRDY: Bus Fault Ready
0: BusFault is disabled or the priority did not permit to set the BusFault handler to the pending state when the floating-point stack
frame was allocated.

1: BusFault is enabled and the priority permitted to set the BusFault handler to the pending state when the floating-point stack
frame was allocated.

¢ MMRDY: Memory Management Ready
0: MemManage is disabled or the priority did not permit to set the MemManage handler to the pending state when the floating-
point stack frame was allocated.

1: MemManage is enabled and the priority permitted to set the MemManage handler to the pending state when the floating-point
stack frame was allocated.

* HFRDY: Hard Fault Ready
0: The priority did not permit to set the HardFault handler to the pending state when the floating-point stack frame was allocated.

1: The priority permitted to set the HardFault handler to the pending state when the floating-point stack frame was allocated.

Atmel SAMACP [DATASHEET] 244

43051E-ATPL-08/14

e THREAD: Thread Mode
0: The mode was not the Thread Mode when the floating-point stack frame was allocated.

1: The mode was the Thread Mode when the floating-point stack frame was allocated.

* USER: User Privilege Level
0: The privilege level was not User when the floating-point stack frame was allocated.

1: The privilege level was User when the floating-point stack frame was allocated.

¢ LSPACT: Lazy State Preservation Active
0: The lazy state preservation is not active.

1: The lazy state preservation is active. The floating-point stack frame has been allocated but saving the state to it has been

deferred.

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

245

12.12.2.3 Floating-point Context Address Register

Name: FPCAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS | - |

The FPCAR holds the location of the unpopulated floating-point register space allocated on an exception stack frame.

* ADDRESS: Location of Unpopulated Floating-point Register Space Allocated on an Exception Stack Frame
The location of the unpopulated floating-point register space allocated on an exception stack frame.

Atmel SAM4CP [DATASHEET] 246

43051E-ATPL-08/14

12.12.2.4 Floating-point Status Control Register

Name: FPSCR

Access: Read/Write
31 30 29 28 27 26 25 24

| N Z | C Vv - AHP DN Fz |
23 22 21 20 19 18 17 16

| RMode | - |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| IDC | - IXC UFC OFC DzC I0C |

The FPSCR provides all necessary User level control of the floating-point system.

* N: Negative Condition Code Flag
Floating-point comparison operations update this flag.

e Z: Zero Condition Code Flag
Floating-point comparison operations update this flag.

¢ C: Carry Condition Code Flag
Floating-point comparison operations update this flag.

¢ V: Overflow Condition Code Flag
Floating-point comparison operations update this flag.

¢ AHP: Alternative Half-precision Control
0: IEEE half-precision format selected.

1: Alternative half-precision format selected.

* DN: Default NaN Mode Control
0: NaN operands propagate through to the output of a floating-point operation.

1: Any operation involving one or more NaNs returns the Default NaN.

* FZ: Flush-to-zero Mode Control
0: Flush-to-zero mode disabled. The behavior of the floating-point system is fully compliant with the IEEE 754 standard.

1: Flush-to-zero mode enabled.

* RMode: Rounding Mode Control
The encoding of this field is:

0b00: Round to Nearest (RN) mode.

0b01: Round towards Plus Infinity (RP) mode.
0b10: Round towards Minus Infinity (RM) mode.
0b11: Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

Atmel SAMACP [DATASHEET] 247

43051E-ATPL-08/14

¢ IDC: Input Denormal Cumulative Exception
IDC is a cumulative exception bit for floating-point exception; see also bits [4:0].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

¢ IXC: Inexact Cumulative Exception
IXC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

¢ UFC: Underflow Cumulative Exception
UFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

* OFC: Overflow Cumulative Exception
OFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

* DZC: Division by Zero Cumulative Exception
DZC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

¢ 10C: Invalid Operation Cumulative Exception
I0C is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

Atmel SAM4CP [DATASHEET] 248

43051E-ATPL-08/14

12.12.2.5 Floating-point Default Status Control Register

Name: FPDSCR

Access: Read/Write
31 30 29 28 27 26 25 24

| - AHP DN FZ |
23 22 21 20 19 18 17 16

| RMode - |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The FPDSCR holds the default values for the floating-point status control data.

e AHP: FPSCR.AHP Default Value
Default value for FPSCR.AHP.

e DN: FPSCR.DN Default Value
Default value for FPSCR.DN.

¢ FZ: FPSCR.FZ Default Value
Default value for FPSCR.FZ.

¢ RMode: FPSCR.RMode Default Value
Default value for FPSCR.RMode.

Atmel SAM4CP [DATASHEET] 249

43051E-ATPL-08/14

12.13 Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.
An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is

said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register

A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register

In instruction descriptions, a register specified by a load or store instruction that is used to hold the
base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”.

Big-endian (BE)

Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant”, “Endianness”, “Little-endian (LE)”.

Big-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address, a byte at a halfword-aligned address is the most significant byte within the halfword at
that address.

See also “Little-endian memory”.

Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.

Byte-invariant

In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

Condition field

A four-bit field in an instruction that specifies a condition under which the instruction can execute.

Atmel

SAMA4CP [DATASHEET] 250

43051E-ATPL-08/14

Conditional execution

If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In ARM

Context
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.
Coprocessor A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.
Debugger A debugging system that includes a program, used to detect, locate, and correct software faults,

together with custom hardware that supports software debugging.

Direct Memory Access
(DMA)

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

Doubleword

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

Doubleword-aligned

A data item having a memory address that is divisible by eight.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.
See also “Little-endian (LE)” and “Big-endian (BE)".

Exception An event that interrupts program execution. When an exception occurs, the processor suspends the

normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

Exception service routine

See “Interrupt handler”.

Exception vector

See “Interrupt vector”.

Flat address mapping

A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

Halfword

A 16-bit data item.

lllegal instruction

An instruction that is architecturally Undefined.

Atmel

SAMA4CP [DATASHEET] 251

43051E-ATPL-08/14

Implementation-defined

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

Index register

In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register”.

Instruction cycle count

The number of cycles that an instruction occupies the Execute stage of the pipeline.

Interrupt handler

A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

Little-endian (LE)

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

» o«

See also “Big-endian (BE)”, “Byte-invariant”, “Endianness”.

Little-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address, a byte at a halfword-aligned address is the least significant byte within the halfword at
that address.

See also “Big-endian memory”.

Load/store architecture

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Memory Protection Unit
(MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

Prefetching

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

Atmel

SAMA4CP [DATASHEET] 252

43051E-ATPL-08/14

Preserved

Preserved by writing the same value back that has been previously read from the same field on the
same processor.

Read Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region A partition of memory space.

Reserved A field in a control register or instruction format is reserved if the field is to be defined by the

implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

Thread-safe

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

Unaligned A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction exception.

Unpredictable One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

Word A 32-bit data item.

Write

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

Atmel

SAMA4CP [DATASHEET] 253

43051E-ATPL-08/14

13. Debug and Test Features

13.1 Description

The SAM4 Series microcontrollers feature a number of complementary debug and test capabilities. The Serial
Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug (JTAG-DP) port is
used for standard debugging functions, such as downloading code and single-stepping through programs. It also
embeds a serial wire trace.

13.2 Associated Documentation

The SAM4CP implements the standard ARM CoreSight™ Macrocell. For further detailed CoreSight information, the
following reference documents are available from the ARM website:

Cortex-M4/M4F Technical Reference Manual (ARM DDI 0439C).
CoreSight Technology System Design Guide (ARM DGI 0012D).
CoreSight Components Technical Reference Manual (ARM DDI 0314H).
ARM Debug Interface v5 Architecture Specification (Doc. ARM IHI 0031A).
ARMvV7-M Architecture Reference Manual (ARM DDI 0403D).

13.3 Embedded Characteristics

Atmel

Dual Core Debugging with common Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP)
debug access port connected to both cores.

Star Topology AHB-AP Debug Access Port Implementation with common SW-DP / SWJ-DP providing higher
performance than daisy-chain topology.

Possibility to halt each core on debug event on the other core (hardware).

Possibility to restart each core when the other core has restarted (hardware).
Synchronization and software cross-triggering with Debugger.

Instrumentation Trace Macrocell (ITM) on both core for support of printf style debugging.
Mux 2-1 to trace chosen core (limit the number of out put pin).

Single wire Viewer or clock mode (4-bit parallel output ports).

Debug access to all memory and registers in the system, including Cortex-M4 register bank when the core is
running, halted, or held in reset.

Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches.
Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and system profiling.
IEEE 1149.1 JTAG Boundary scan on All Digital Pins.

SAMA4CP [DATASHEET] 254

43051E-ATPL-08/14

Figure 13-1. Debug and Test Block Diagram
IDl ™S
ll:ll TCK/SWCLK
IDl TDI
Boundary SWJ-DP d El JTAGSEL
TAP I \L
|) I |:| | TDO/TRACESWO
Reset POR
and
Test 4—| | TST
Figure 13-2. Dual Core Debug Architecture
o
S &
OSESE S

Serial Wire and JTAG Debug Port (SW-DP / SWJ-DP)

A

Y

AHB-AP 0 AHB-AP 1
DAP Cross-Trigering C MAF AP
Cortex-M4 |[€1+>»| DebugEvent »| Cortex-
[eR? (Halt / Restart) BOM
IT™ IT™
A Y
Core 0 TPIU TRy Core 1
(CM4P0) (CM4P1)

2->1

'

Trace Data

Figure 13-2 illustrates the dual core debug implementation using only one SW-JTAG/SW-DP Debug Access Port. Star
topology has been used to connect the AHB-AP 0 (Core 0) and AHB-AP 1 (Core) rather than legacy daisy chaining
method. Star topology provides higher performance than daisy-chain topology. This core debug architecture is fully

supported by debug tools vendors.

SAMA4CP [DATASHEET] 255

43051E-ATPL-08/14

Atmel

13.4 Cross Triggering Debut Events

Cross Triggering (CT) as shown in Figure 13-2 is an Atmel module that allows two cores to send and receive debug
events to and from each other. This module is used to debug two applications at the same time (one application running
on each core).

The CT allows core 0 (or 1) to trigger a debug event (halt) to core 1 (or 0) to enter debug mode. The debug event can be
sent when the core 0 (or 1) enters debug mode (such as breakpoint) or at run-time. It means that an user application
running on core 0 (or 1) can put core 1 (or 0) without entering debug mode.

Once core 0 (or 1) gets out of debug mode, it releases core 1 (0) from debug mode as well.

The Cross Triggering configuration is located in the Special Function Register in the Matrix user Interface.

13.5 Application Examples

13.5.1 Debug Environment

Figure 13-3 shows a complete debug environment example. The SWJ-DP interface is used for standard debugging
functions, such as downloading code and single-stepping through the program and viewing core and peripheral registers.

Figure 13-3. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM4

SAM4-based Application Board

Atmel SAMA4CP [DATASHEET] 256

43051E-ATPL-08/14

13.5.2 Test Environment

Figure 13-4 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by the
tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These devices can be
connected to form a single scan chain.

Figure 13-4. Application Test Environment Example

Test Adaptor

Tester
JTAG
Probe
JTAG . .
Connector || Chip nf = =4 Chip 2
I
SAM4-based Application Board In Test
13.6 Debug and Test Pin Description
Table 13-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWD/JTAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out OQutput
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input
JTAGSEL JTAG Selection Input High

Atmel

SAMA4CP [DATASHEET] 257

43051E-ATPL-08/14

13.7 Functional Description

13.7.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-up, the
device is in normal operating mode. When at high level, the device is in test mode or FFPI mode. The TST pin integrates
a permanent pull-down resistor of about 15 kQ,so that it can be left unconnected for normal operation. Note that when
setting the TST pin to low or high level at power up, it must remain in the same state during the duration of the whole
operation.

13.7.2 Debug Architecture

Figure 13-5 shows the Debug Architecture used in the SAM4. The Cortex-M4 embeds four functional units for debug:
e SWJ-DP (Serial Wire/JTAG Debug Port).
e FPB (Flash Patch Breakpoint).
e DWT (Data Watchpoint and Trace).
e |TM (Instrumentation Trace Macrocell).
e TPIU (Trace Port Interface Unit).
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes and

debugging tool vendors for Cortex-M4 based microcontrollers. For further details on SWJ-DP see the Cortex-M4
technical reference manual.

Figure 13-5. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler SWJ-DP

6 breakpoints

data address sampler

SWD/JTAG
data sampler ™
software trace SWO trace
32 channels
interrupt trace TPIU

time stamping

CPU statistics

Atmel SAMA4CP [DATASHEET] 258

43051E-ATPL-08/14

13.7.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M4 embeds a SWJ-DP Debug port which is the standard CoreSight debug port. It combines Serial Wire
Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port (JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it must
provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and enables SW-DP.

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE output
(TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP.

Table 13-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO TMS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP and
JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

13.7.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by
default after reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Switch from SWD to JTAG. The sequence is:
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (0x3CE7 MSB first)
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

13.7.4 FPB (Flash Patch Breakpoint)

The FPB:

° Implements hardware breakpoints.

e Patches code and data from code space to system space.
The FPB unit contains:

e Two literal comparators for matching against literal loads from Code space, and remapping to a corresponding
area in System space.

e Six instruction comparators for matching against instruction fetches from Code space and remapping to a
corresponding area in System space.

e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core on a
match.

/ltmeL SAMA4CP [DATASHEET] 259

43051E-ATPL-08/14

13.7.5 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals.
e PC or Data watchpoint packets.
e Watchpoint event to halt core.
The DWT contains counters for the items that follow:
e Clock cycle (CYCCNT).
Folded instructions.
Load Store Unit (LSU) operations.
Sleep Cycles.
CPI (all instruction cycles except for the first cycle).
Interrupt overhead.

13.7.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS) and
application events, and emits diagnostic system information. The ITM emits trace information as packets which can be
generated by three different sources with several priority levels:

e Software trace: Software can write directly to ITM stimulus registers. This can be done thanks to the “printf’
function. For more information, refer to Section 13.7.6.1 “How to Configure the ITM”.

Hardware trace: The ITM emits packets generated by the DWT.

Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate the
timestamp.

13.7.6.1 How to Configure the ITM

The following example describes how to output trace data in asynchronous trace mode.
e Configure the TPIU for asynchronous trace mode (refer to Section 13.7.6.3 “How to Configure the TPIU”).

e Enable the write accesses into the ITM registers by writing “OXxC5ACCES55” into the Lock Access Register
(Address: 0OXEOOOOFBO).

e Write 0x00010015 into the Trace Control Register:
e Enable ITM
e Enable Synchronization packets
e Enable SWO behavior
e Fixthe ATB ID to 1
e Write O0x1 into the Trace Enable Register:
e Enable the Stimulus port 0
e Write Ox1 into the Trace Privilege Register:

e Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will result in the
corresponding stimulus port being accessible in user mode)

e Write into the Stimulus port O register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

/ltmeL SAMA4CP [DATASHEET] 260

43051E-ATPL-08/14

13.7.6.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous trace
mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG debug mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

° NRZ_based UART byte structure.

13.7.6.3 How to Configure the TPIU

This example only concerns the asynchronous trace mode.

e Setthe TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of trace
and debug blocks.

e Write Ox2 into the Selected Pin Protocol Register.
e Select the Serial Wire Output — NRZ
Write 0x100 into the Formatter and Flush Control Register.

Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

13.7.7 IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied low, while JTAGSEL is high and INTEST7 is tied low
during the power-up, and must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST
and BYPASS functions are implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG
chip ID that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset must be
performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file is provided on Atmel’s web site to set up the test.

13.7.7.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated control
signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects the
direction of the pad.

For more information, refer to BDSL files available for the SAM4 Series.

Atmel SAM4CP [DATASHEET] 261

43051E-ATPL-08/14

13.7.8 ID Code Register

Access: Read-only
31 30 29 28 27 26 25 24
| VERSION | PART NUMBER
23 22 21 20 19 18 17 16
| PART NUMBER
15 14 13 12 11 10 9 8
| PART NUMBER | MANUFACTURER IDENTITY
7 6 5 4 3 2 1 0
| MANUFACTURER IDENTITY | 1
¢ VERSION[31:28]: Product Version Number
Set to 0x0.
* PART NUMBER[27:12]: Product Part Number
Chip Name Chip ID
SAM4CP 0x05B34
¢ MANUFACTURER IDENTITY[11:1]
Set to Ox01F.
¢ Bit[0] Required by IEEE Std. 1149.1.
Set to 0x1.
Chip Name JTAG ID Code
SAM4CP 0x05B3_403F

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

262

14. SAM4CP Boot Program

14.1 Description

The SAM-BA Boot Program integrates an array of programs permitting download and/or upload into the different
memories of the product.

14.2 Hardware and Software Constraints

e SAM-BA Boot uses the first 4096 bytes of the SRAM for variables and stacks. The remaining available size can be
used for user's code.

e UARTO requirements: None.

Table 14-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line
UARTO URXDO PB4
UARTO UTXDO PB5

14.3 Flow Diagram

The Boot Program implements the algorithm in Figure 14-1.

Figure 14-1. Boot Program Algorithm Flow Diagram

No

Device v Character # receive
Setup from UARTO?

Yes

|Run SAM-BA Monitorl

The SAM-BA Boot program uses the internal 12 MHz RC oscillator as source clock for PLL. The MCK runs from PLL
divided by 2. The core runs at 48 MHz.

14.4 Device Initialization

Initialization follows the steps described below:
1. Stack setup
Setup the Embedded Flash Controller
Switch on internal 12 MHz RC oscillator
Configure PLLB to run at 48 MHz
Configure UARTO
Disable Watchdog
Wait for a character on UARTO
Jump to SAM-BA monitor (see Section 14.5 "SAM-BA Monitor”)

® N ks ON

Atmel SAMA4CP [DATASHEET] 263

43051E-ATPL-08/14

14.5 SAM-BA Monitor

The SAM-BA boot principle:

Once the communication interface is identified, to run in an infinite loop waiting for different commands as shown in Table

14-2,

Note:

Note:

Atmel

Table 14-2. Commands Available through the SAM-BA Boot
Command Action Argument(s) Example
N Set Normal mode No argument N#
T Set Terminal mode No argument T#
(o] Write a byte Address, Value# 0200001,CA#
o Read a byte Address,# 0200001,#
H Write a half word Address, Value# H200002,CAFE#
h Read a half word Address # h200002,#
w Write a word Address, Value# W200000,CAFEDECA#
w Read a word Address,# w200000,#
S Send a file Address,# S200000,#
R Receive a file Address, NbOfBytes# R200000,1234#
G Go Address# G200200#
\' Display version No argument Vi#

Mode commands:
e Normal mode configures SAM-BA Monitor to send/receive data in binary format
e Terminal mode configures SAM-BA Monitor to send/receive data in ASCII format
Write commands: Write a byte (O), a halfword (H) or a word (W) to the target
e Address: Address in hexadecimal
e Value: Byte, halfword or word to write in hexadecimal
Read commands: Read a byte (0), a halfword (h) or a word (w) from the target
e Address: Address in hexadecimal
e Output: The byte, halfword or word read in hexadecimal
Send a file (S): Send a file to a specified address
e Address: Address in hexadecimal

There is a time-out on this command which is reached when the prompt *>" appears before the end of the
command execution.

Receive a file (R): Receive data into a file from a specified address
e Address: Address in hexadecimal
e NbOfBytes: Number of bytes in hexadecimal to receive

Go (G): Jump to a specified address and execute the code
e Address: Address to jump in hexadecimal

Get Version (V): Return the SAM-BA boot version

In Terminal mode, when the requested command is performed, SAM-BA Monitor adds the following prompt
sequence to its answer: <LF>+<CR>+">',

SAMA4CP [DATASHEET] 264

43051E-ATPL-08/14

14.5.1 UARTO Serial Port
Communication is performed through the UARTO initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this protocol
can be used to send the application file to the target. The size of the binary file to send depends on the SRAM size
embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size because the Xmodem
protocol requires some SRAM memory to work. See Section 14.2 "Hardware and Software Constraints”.

14.5.2 Xmodem Protocol
The supported Xmodem protocol is the 128-byte length block. This protocol uses a two-character CRC-16 to guarantee
detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report a successful transmission. Each block
of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum>
where:
e <SOH> =01 hex
e <blk #> = binary number, starts at 01, increments by 1, and wraps OFFH to 00H (not to 01)
e <255-blk #> = 1’s complement of the blk#.
e <checksum> = 2 bytes CRC16

Figure 14-2 shows a transmission using this protocol.

Figure 14-2. Xmodem Transfer Example

Host Device

Cc

SOH 01 FE Data[128] CRC CRC

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK
EOT
ACK
SAMA4CP [DATASHEET] 265
A t m eL 43051E-ATPL-08/14

14.5.3 In Application Programming (IAP) Feature
The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the Flash to be ready (looping
while the FRDY bit is not set in the EEFC_FSR register).

Since this function is executed from ROM, this allows Flash programming (such as sector write) to be done by code
running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x02000008).
This function takes one argument in parameter: the command to be sent to the EEFC.
This function returns the value of the EEFC_FSR register.

IAP software code example:

(unsigned int) (*1AP_Function)(unsigned long);
void main (void){
unsigned long FlashSectorNum = 200; //
unsigned long flash_cmd = 0;
unsigned long flash_status = 0;
unsigned long EFCIndex = 0; // O:EEFCO, 1: EEFC1

/* Initialize the function pointer (retrieve function address from NMI vector)
*/

IAP_Function = ((unsigned long) (*)(unsigned long))
0x02000008;

/* Send your data to the sector here */
/* build the command to send to EEFC */

flash_cmd = (Ox5A << 24) | (FlashSectorNum << 8) |
AT91C_MC_FCMD_EWP;

/* Call the IAP function with appropriate command */

flash_status = IAP_Function (EFCIndex, flash_cmd);

Atmel SAMA4CP [DATASHEET] 266

43051E-ATPL-08/14

15. Reset Controller (RSTC)

15.1 Description
The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any external
components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the peripheral and processor
resets.

15.2 Embedded Characteristics
e Management of All System Resets, Including
e External Devices through the NRST Pin
e Processor Reset and Coprocessor (second processor) Reset
e Processor Peripheral Set Reset and Coprocessor Peripheral Set Reset
e Based on Embedded Power-on Cell
e Reset Source Status
e Status of the Last Reset
e Either Software Reset, User Reset, Watchdog Reset
e External Reset Signal Shaping

15.3 Block Diagram

Figure 15-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset

——> rstc_irq

vddcore_nreset

> proc_nreset

Reset
user_reset State > periph_nreset
NRST g
NRST Manager
D nrst_out Manager
exter_nreset coproc_nreset
WDRPROC coproc_periph_nreset
wd_fault >
SLCK
SAM4CP [DATASHEET] 267
AtmeL 43051E-ATPL-08/14

15.4 Functional Description

15.4.1 Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at Slow Clock and generates
the following reset signals:
e proc_nreset: Processor reset line. It also resets the Watchdog Timer
e coproc_nreset: Coprocessor (second processor) reset line
e periph_nreset: Affects the whole set of embedded peripherals
e coproc_periph_nreset: Affects the whole set of embedded peripherals driven by the Co- processor
e nrst_out: Drives the NRST pin
These reset signals are asserted by the Reset Controller, either on events generated by peripherals, events on NRST

pin, or on software action. The Reset State Manager controls the generation of reset signals and provides a signal to the
NRST Manager when an assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device resets.

The Reset Controller Mode Register (RSTC_MR), used to configure the Reset Controller, is powered with VDDBU, so
that its configuration is saved as long as VDDBU is on.

15.4.2 NRST Manager

After power-up, NRST is an output during the External Reset Length (ERSTL) time period defined in the RSTC_MR.
When the ERSTL time has elapsed, the pin behaves as an input and all the system is held in reset if NRST is tied to GND
by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State Manager.
Figure 15-2 shows the block diagram of the NRST Manager.

Figure 15-2. NRST Manager
RSTC_MR

RSTC SR URSTIEN

URSTS
ﬁ>_> rstc_irq
NRSTL | RSTC_MR Other | 2

URSTEN interrupt
sources
I > user_reset

NRST | RSTC_MR
al
| nrst_out

I External Reset Timerfe«———————— exter_nreset

15.4.2.1 NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is reported
to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs. Writing a 0
to the URSTEN in the RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in the Reset Controller Status Register
(RSTC_SR). As soon as the NRST pin is asserted, the URSTS in RSTC_SR is set. This bit clears only when RSTC_SR
is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, set the
URSTIEN bit in the RSTC_MR.

/ltmeL SAMA4CP [DATASHEET] 268

43051E-ATPL-08/14

15.4.2.2 NRST External Reset Control

The Reset State Manager asserts the signal exter_nreset to assert the NRST pin. When this occurs, the “nrst_out” signal
is driven low by the NRST Manager for a time programmed by the field ERSTL in the RSTC_MR. This assertion duration,
named External Reset Length, lasts 2ERSTH+) Slow Clock cycles. This gives the approximate duration of an assertion
between 60 us and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is driven
low for a time compliant with potential external devices connected on the system reset.

RSTC_MR is backed up, making it possible to use the ERSTL field to shape the system power-up reset for devices
requiring a longer startup time than that of the slow clock oscillator.

15.4.3 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports the reset
status in field RSTTYP of the Status Register (RSTC_SR). The update of RSTC_SR.RSTTYP is performed when the
processor reset is released.

15.4.3.1 General Reset

A general reset occurs when a VDDBU power-on-reset is detected, a Brownout or a Voltage regulation loss is detected
by the Supply controller. The vddcore_nreset signal is asserted by the Supply Controller when a general reset occurs.

All the reset signals are released and field RSTC_SR.RSTTYP reports a General Reset. As the RSTC_MR is reset, the
NRST line rises 2 cycles after the vddcore_nreset, as ERSTL defaults at value 0x0.

Figure 15-3 shows how the General Reset affects the reset signals.

Figure 15-3. General Reset State

ey etpipininininininSni{iEninl

vddbu_nreset

proc_nreset

)
)
)
v \§
)
)
)

RSTTYP XXX 0x0 = General Reset XXX
periph_nreset
NRST
(nrst_out)
EXTERNAL RESET LENGTH
=2cycles
/ItmeL SAM4CP [DATASHEET] 269

43051E-ATPL-08/14

15.4.3.2 Backup Reset

A Backup reset occurs when the chip exits from Backup Mode. While exiting Backup mode, the vddcore_nreset signal is
asserted by the Supply Controller.

Field RSTC_SR.RSTTYP is updated to report a Backup Reset.
15.4.3.3 Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This reset lasts 3 Slow Clock cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in the WDT_MR:

e If WDRPROC = 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also asserted,
depending on how field RSTC_MR.ERSTL is programmed. However, the resulting low level on NRST does not
result in a User Reset state.

e If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDRSTEN in the WDT_MR is set, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog is
enabled by default and with a period set to a maximum.

When bit WDT_MR. WDRSTEN is reset, the watchdog fault has no impact on the reset controller.

Figure 15-4. Watchdog Reset

soc LTI L L LWL L
UL L L

Any
MCK Freq.

wd_fault /— N

Processor Startup|
2 cycles

proc_nreset

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC =0

NRST
(nrst_out)

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

15.4.3.4 Software Reset

The Reset Controller offers several commands to assert the different reset signals. These commands are performed by
writing the Control Register (RSTC_CR) or Coprocessor Mode Register with the following bits at 1:

e RSTC_CR.PROCRST: Writing a 1 to PROCRST resets the processor and the watchdog timer.

e RSTC_CR.PERRST: Writing a 1 to PERRST resets all the embedded peripherals associated to processor
whereas the coprocessor peripherals are not reset, including the memory system, and, in particular, the Remap
Command. The Peripheral Reset is generally used for debug purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

e RSTC_CPMR.CPROCEN: Writing a 0 to CPROCEN resets the coprocessor only.

/ltmeL SAMA4CP [DATASHEET] 270

43051E-ATPL-08/14

e RSTC_CPMR.CPEREN: Writing a 0 to CPEREN resets all the embedded peripherals associated to coprocessor
whereas the processor peripherals are not reset.

e RSTC_CR.EXTRST: Writing a 1 to EXTRST asserts low the NRST pin during a time defined by the field
RSTC_MR.ERSTL.

The software reset is entered if at least one of these bits is set by the software. All these commands can be performed
independently or simultaneously. The software reset lasts 3 Slow Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master Clock
(MCK). They are released when the software reset has ended, i.e.; synchronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the configuration of the field RSTC_MR.ERSTL. However,
the resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in field RSTC_SR.RSTTYP. Other
Software Resets are not reported in RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the
RSTC_SR. SRCMP is cleared at the end of the software reset. No other software reset can be performed while the
SRCMP bit is set, and writing any value in the RSTC_CR has no effect.

Figure 15-5. Software Reset

soc L[L

MCK Any
Freq.

JEREREESEEEE RN
JEREREEERERER RN

Write RSTC_CR 2\

Resynch/|Processor Startup|
1 cycle =2 cycles

proc_nreset
if PROCRST=1

RSTTYP Any XXX 0x3 = Software Reset

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1 >
EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

S X o~

SRCMP in RSTC_SR /

15.4.3.5 User Reset

The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in RSTC_MR is at 1.
The NRST input signal is resynchronized with SLCK to insure proper behavior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor and Coprocessor Reset and
the Peripheral Resets are asserted.

The User Reset ends when NRST rises, after a two-cycle resynchronization time and a 3-cycle processor startup.
The processor clock is re-enabled as soon as NRST is confirmed high.

Atmel SAM4CP [DATASHEET] 271

43051E-ATPL-08/14

When the processor reset signal is released, field RSTC_SR.RSTTYP is loaded with the value 0x4, indicating a User
Reset.

The NRST Manager guarantees that the NRST line is asserted for External Reset Length Slow Clock cycles,
as programmed in field RSTC_MR.ERSTL. However, if NRST does not rise after External Reset Length because it is
driven low externally, the internal reset lines remain asserted until NRST actually rises.

Figure 15-6. User Reset State

soc L[L L LML L e
o pigininl
NRST ~ \ /

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
proc_nreset /
RSTTYP Any XXX 0x4 = User Reset

periph_nreset

NRST
(nrst_out)

>= EXTERNAL RESET LENGTH

15.4.4 Reset State Priorities
The Reset State Manager manages the priorities among the different reset sources. The resets are listed in order of
priority as follows:
e General Reset
Backup Reset
Watchdog Reset
Software Reset
User Reset

Particular cases are listed below:

e When in User Reset:
e A watchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.
e A software reset is impossible, since the processor reset is being activated.

e When in Software Reset:
e A watchdog event has priority over the current state.
e The NRST has no effect.

e When in Watchdog Reset:
e The processor reset is active and so a Software Reset cannot be programmed.
e A User Reset cannot be entered.

Atmel SAMA4CP [DATASHEET] 272

43051E-ATPL-08/14

15.5 Reset Controller (RSTC) User Interface

Table 15-1. Register Mapping
Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -
0x04 Status Register RSTC_SR Read-only 0x0000_0000
0x08 Mode Register RSTC_MR Read/Write 0x0000 0001
0x0C Coprocessor Mode Register RSTC_CPMR Read/Write 0x0000_0000

Atmel

SAMA4CP [DATASHEET]

43051E-ATPL-08/14

273

15.5.1 Reset Controller Control Register
Name: RSTC_CR

Address: 0x400E1400

Access: Write-only

31 30 29 28 27 26 25 24
| KEY |

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0
| — | - | - | - | EXTRST | PERRST | - | PROCRST |

PROCRST: Processor Reset
0 = No effect.

1 = If KEY is correct, resets the processor.

PERRST: Peripheral Reset
0 = No effect.

1 =If KEY is correct, resets the processor peripherals.

EXTRST: External Reset
0 = No effect.
1 = If KEY is correct, asserts the NRST pin.

KEY: System Reset Key

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

Atmel SAMACP [DATASHEET] 274

43051E-ATPL-08/14

15.5.2 Reset Controller Status Register

Name: RSTC_SR

Address: 0x400E1404

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | — | - | - | - | — | SRCMP | NRSTL |
15 14 13 12 11 10 9 8

I - I - I - I - I - I RSTTYP |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - | URSTS |

¢ URSTS: User Reset Status

A high-to-low transition of the NRST pin sets the URSTS bit. This transition is also detected on the MCK rising edge. If the user
reset is disabled (URSTEN = 0 in RSTC_MR) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR, the URSTS
bit triggers an interrupt. Reading the RSTC_SR resets the URSTS bit and clears the interrupt.

0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.
1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

¢ RSTTYP: Reset Type
This field reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

Value Name Description
0 General Reset First power-up Reset
1 Backup Reset Return from Backup Mode
2 Watchdog Reset Watchdog fault occurred
3 Software Reset Processor reset required by the software
4 User Reset NRST pin detected low

* NRSTL: NRST Pin Level
This bit registers the NRST pin level sampled on each Master Clock (MCK) rising edge.

* SRCMP: Software Reset Command in Progress

When set, this bit indicates that a software reset command is in progress and that no further software reset should be performed
until the end of the current one. This bit is automatically cleared at the end of the current software reset.

0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

/ltmeL SAMA4CP [DATASHEET] 275

43051E-ATPL-08/14

15.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1408

Access: Read/Write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0

| - | - | - | URSTIEN | - | - | - | URSTEN |

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register
(SYSC_WPMR).

* URSTEN: User Reset Enable
0 = The detection of a low level on the NRST pin does not generate a User Reset.

1 = The detection of a low level on the NRST pin triggers a User Reset.

¢ URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.
1 =USRTS bitin RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

* ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of 2!) Slow Clock cycles. This
allows assertion duration to be programmed between 60 ps and 2 seconds. Note that synchronization cycles must also be con-
sidered when calculating the actual reset length as previously described.

ERSTL+1

e KEY: Write Access Password

Value Name Description
0xAS5 PASSWD Writing any other value in this field aborts the write operation. Always reads as 0.
SAM4CP [DATASHEET 276
Atmel []

43051E-ATPL-08/14

15.5.4 Reset Controller Coprocessor Mode Register

Name: RSTC_CPMR

Address: 0x400E140C

Access: Read/Write
31 30 29 28 27 26 25 24

| CPKEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | CPEREN | - | — | - | CPROCEN |

* CPROCEN: Coprocessor (second processor) Enable
0 = If CPKEY is correct, resets the coprocessor (power-on default value).

1 = If CPKEY is correct, deasserts the reset of the coprocessor.

¢ CPEREN: Coprocessor Peripheral Enable
0 = If CPKEY is correct, resets the coprocessor peripherals.

1 =If CPKEY is correct, deasserts the reset of the coprocessor peripherals.

* CPKEY: Coprocessor System Enable Key

Value Name Description
O0x5A PASSWD Writing any other value in this field aborts the write operation.
SAM4CP [DATASHEET 277
Atmel []

43051E-ATPL-08/14

16. Real-time Timer (RTT)

16.1 Description

The Real-time Timer (RTT) is built around a 32-bit counter used to count roll-over events of the programmable 16-bit
prescaler driven from the 32 kHz slow clock source. It generates a periodic interrupt and/or triggers an alarm on a

programmed value.

The RTT can also be configured to be driven by the 1 Hz RTC signal, thus taking advantage of a calibrated 1 Hz clock.

The slow clock source can be fully disabled to reduce power consumption when only an elapsed seconds count is

required.

16.2 Embedded Characteristics

e 32-bit Free-r