

# General Purpose CMOS Six Channel Analog Input Front End

# **Preliminary Technical Data**

AD73360

FEATURES
Six 16-Bit A/D Converters
Programmable Input Sample Rate
75 dB ADC SNR
64 kS/s Maximum Sample Rate
TBD-dB Crosstalk
Low Group Delay (25 μs typ per ADC Channel
Programmable Input Gain
Flexible Serial Port which Allows multiple devices
to be Connected in Cascade
Single (+2.7 V to +5.5 V) Supply Operation
TBD mW Max Power Consumption at 2.7 V
On-Chip Reference
28-Pin SOIC & 44-Pin LQFP Packages

APPLICATIONS
General Purpose Analog Input
Industrial Power Metering

#### GENERAL DESCRIPTION

The AD73360 is a six channel analog input front-end processor for general purpose applications including industrial power metering or multi-channel analog inputs. It features six 16-bit A/D conversion channels each of which provide 70 dB signal-to-noise ratio over a voiceband signal bandwidth. It also features a programmable input gain amplifier (PGA) with gain settings in eight stages from 0 dB to 38 dB.

The AD73360 is particularly suitable for industrial power metering as each channel samples synchronously ensuring that there is very little time (phase) delay between the conversions. The AD73360 also features low group delay conversions on all channels.

An on-chip reference voltage is included to allow single supply operation. This reference is programmable to accommodate either 3V or 5V operation.

The sampling rate of the device is programmable with four separate settings offering 64, 32, 16 and 8 kHz sampling rates (from a master clock of 16.384 MHz).

A serial port (SPORT) allows easy interfacing of single or cascaded devices to industry standard DSP engines. The SPORT transfer rate is programmable to allow interfacing to both fast and slow DSP engines.

The AD73360 is available in 28-pin SOIC and 44-pin LQFP packages.



# 

| MB10000 OI EOII IOMI                               |        |                |              | I HIRAT INICIO CINO INICIO INI |                                                       |  |  |
|----------------------------------------------------|--------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| Parameter                                          | Min A  | D73360A<br>Typ | Max          | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Conditions/Comments                              |  |  |
|                                                    | 141111 | тур            | Max          | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |  |  |
| REFERENCE                                          |        |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5VEN = 0                                              |  |  |
| REFCAP                                             | 1.00   | 1.0            | 1 20         | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |  |  |
| Absolute Voltage, V <sub>REFCAP</sub><br>REFCAP TC | 1.08   | 1.2<br>50      | 1.32         | ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1 μF Capacitor Required from                        |  |  |
| REFOUT                                             |        | 50             |              | ppin C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REFCAP to AGND2                                       |  |  |
| Typical Output Impedance                           |        | 68             |              | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | REPORT TO NORDZ                                       |  |  |
| Absolute Voltage, V <sub>REFOUT</sub>              | 1.08   | 1.2            | 1.32         | l $\bar{v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unloaded                                              |  |  |
| Minimum Load Resistance                            | 1      | 1.2            | 1.52         | kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| Maximum Load Capacitance                           |        |                | 100          | рF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| ADC SPECIFICATIONS                                 |        |                |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |  |  |
| Maximum Input Range at VIN <sup>2, 3</sup>         |        |                | 1.578        | V p-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5VEN = 0, Measured Differentially                     |  |  |
| Transmission in put itunge ut vii (                |        |                | -2.85        | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 v 21 v o, medical 2 more many                       |  |  |
| Nominal Reference Level at VIN                     |        | 1.0954         |              | V p-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5VEN = 0, Measured Differentially                     |  |  |
| (0 dBm0)                                           |        | -6.02          |              | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                     |  |  |
| Absolute Gain                                      |        |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |  |
| PGA = 0 dB                                         | -0.75  | 0.1            | +1.0         | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 kHz, 0 dBm0                                       |  |  |
| PGA = 38 dB                                        | -1.5   | -0.5           | +0.5         | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 kHz, 0 dBm0                                       |  |  |
| Gain Tracking Error                                |        | $\pm 0.1$      |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 kHz, +3 dBm0 to -50 dBm0                          |  |  |
| Signal to (Noise + Distortion)                     | 1      |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |  |
| PGA = 0 dB                                         | 70     | 76             |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 Hz to Fs/2; Fs = $8 \text{ kHz}$                    |  |  |
|                                                    |        |                |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 Hz to Fs/2; Fs = 16 kHz                             |  |  |
|                                                    |        |                |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 Hz to Fs/2; Fs = 32 kHz                             |  |  |
| PGA = 38 dB                                        | 61     | 65             |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 Hz to Fs/2; Fs = 64 kHz                             |  |  |
| Total Harmonic Distortion                          | 61     | 00             |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0  Hz to Fs/2; Fs = $8  kHz$                          |  |  |
| PGA = 0 dB                                         |        | -83            | -70          | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| PGA = 38 dB                                        |        | - <b>83</b>    | - <b>7</b> 0 | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| Intermodulation Distortion                         |        | -78            | 10           | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PGA = 0 dB                                            |  |  |
| Idle Channel Noise                                 |        | - <b>7</b> 6   |              | dBm0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PGA = 0 dB                                            |  |  |
| Crosstalk ADC-to-ADC                               |        | TBD            |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ADC1 Input Signal Level: 1.0 kHz, 0 dBm0              |  |  |
|                                                    |        |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADC2 Input at Idle                                    |  |  |
| DC Offset                                          | -20    | +15            | +50          | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PGA = 0 dB                                            |  |  |
| Power Supply Rejection                             |        | <b>-55</b>     |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Input Signal Level at AVDD and DVDD                   |  |  |
|                                                    |        |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pins 1.0 kHz, 100 mV p-p Sine Wave                    |  |  |
| Group Delay <sup>4, 5</sup>                        |        | 25             |              | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64 kHz Output Sample Rate                             |  |  |
|                                                    |        | TBD            |              | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 kHz Output Sample Rate                             |  |  |
|                                                    |        | TBD            |              | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 kHz Output Sample Rate<br>8 kHz Output Sample Rate |  |  |
| Input Resistance at VIN <sup>2, 4</sup>            |        | TBD<br>25      |              | μ $_{ m k}\Omega^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DMCLK = 16.384 MHz                                    |  |  |
|                                                    |        |                |              | N22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BNIGER - 10.304 MHZ                                   |  |  |
| FREQUENCY RESPONSE (ADC) Typical Output            |        |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |  |
| Frequency (Normalised to $F_S$ )                   |        |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |  |  |
| 0                                                  |        | 0              |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.03125                                            |        | -0.1           |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.0625                                             |        | -0.1<br>-0.25  |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.125                                              |        | -0.6           |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.1875                                             |        | -1.4           |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.25                                               |        | -2.8           |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.3125                                             |        | -4.5           |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.375                                              |        | -7.0           |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| 0.4375                                             |        | -9.5           |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |
| > 0.5                                              |        | < -12.5        |              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |  |  |

AD73360

|                                       | AD?             | 3322A |             |                  |                          |
|---------------------------------------|-----------------|-------|-------------|------------------|--------------------------|
| Parameter                             | Min             | Typ   | Max         | Units            | Test Conditions/Comments |
| LOGIC INPUTS                          |                 |       |             |                  |                          |
| V <sub>INH</sub> , Input High Voltage | $ m V_{DD}-0.8$ |       | $ m V_{DD}$ | V                |                          |
| V <sub>INL</sub> , Input Low Voltage  | 0               |       | 0.8         | V                |                          |
| I <sub>IH</sub> , Input Current       |                 |       | 10          | μA               |                          |
| C <sub>IN</sub> , Input Capacitance   |                 |       | 10          | pF               |                          |
| LOGIC OUTPUT                          |                 |       |             |                  |                          |
| V <sub>OH</sub> , Output High Voltage | $ m V_{DD}-0.4$ |       | $V_{ m DD}$ | V                | IOUT  - 100 μA           |
| V <sub>OL</sub> , Output Low Voltage  | 0               |       | 0.4         | V                | IOUT  - 100 μA           |
| Three-State Leakage Current           | -10             |       | +10         | $\mu \mathbf{A}$ |                          |
| POWER SUPPLIES                        |                 |       |             |                  |                          |
| AVDD1, AVDD2                          | 2.7             |       | 3.3         | V                |                          |
| DVDD                                  | 2.7             |       | 3.3         | V                |                          |
| $I_{\mathrm{DD}}^{}10}$               |                 |       |             |                  | See Table I              |

Specifications subject to change without notice.

Table I. Current Summary (AVDD = DVDD = +3.3 V)

| Conditions                |      | Internal Digital<br>Current | External Interface<br>Current | Total Current (Max) | SE | MCLK<br>ON | Comments                                       |
|---------------------------|------|-----------------------------|-------------------------------|---------------------|----|------------|------------------------------------------------|
| ADCs On Only              | 7    | 3                           | 0.5                           | 23                  | 1  | YES        | REFOUT Disabled                                |
| All Sections On           |      |                             |                               | TBD                 | 1  | YES        |                                                |
| REFCAP On Only            | 0.75 | 0                           | 0                             | 1.0                 | 0  | NO         | REFOUT Disabled                                |
| REFCAP and REFOUT On Only | 3.0  | 0                           | 0                             | 4.5                 | 0  | NO         |                                                |
| All Sections Off          | 0    | 0.85                        | 0                             | 1.0                 | 0  | YES        | MCLK Active Levels Equal to 0 V and DVDD       |
| All Sections Off          | 0.00 | 0.007                       | 0                             | 0.04                | 0  | NO         | Digital Inputs Static and Equal to 0 V or DVDD |

The above values are in mA and are typical values unless otherwise noted.

NOTES

1 Operating temperature range is as follows: -40°C to +85°C. Therefore, T<sub>MIN</sub> = -40°C and T<sub>MAX</sub> = +85°C.

2 Test conditions: Input PGA set for 0 dB gain (unless otherwise noted).

3 At input to sigma-delta modulator of ADC.

4 Guaranteed by design.

5 Overall group delay will be affected by the sample rate and the external digital filtering.

6 The ADC's input impedance is inversely proportional to DMCLK and is approximated by: (4 \* 10<sup>11</sup>)/DMCLK.

9 Frequency response of ADC measured with input at audio reference level (the input level that produces an output level of -10 dBm0), with 38 dB preamplifier bypassed and input ratio of 0 dB. input gain of 0 dB.

Test Conditions: no load on digital inputs, analog inputs ac coupled to ground.

# 

|                                                       | AD73360A |               |                         |                                                               |  |  |
|-------------------------------------------------------|----------|---------------|-------------------------|---------------------------------------------------------------|--|--|
| Parameter                                             | Min      | Typ Max       | Units                   | Test Conditions/Comments                                      |  |  |
| REFERENCE                                             |          |               |                         |                                                               |  |  |
| REFCAP                                                |          |               |                         |                                                               |  |  |
| Absolute Voltage, V <sub>REFCAP</sub>                 |          | 1.2           | V                       | 5VEN = 0                                                      |  |  |
| DEECAD TO                                             |          | 2.4           | V                       | 5VEN = 1                                                      |  |  |
| REFCAP TC                                             |          | 50            | ppm/°                   | C 0.1 μF Capacitor Required from                              |  |  |
| REFOUT Typical Output Impedance                       |          | 68            | Ω                       | REFCAP to AGND2                                               |  |  |
| Absolute Voltage, V <sub>REFOUT</sub>                 |          | 1.2           | V                       | 5VEN = 0, Unloaded                                            |  |  |
| Tibsolute voltage, v REFOUT                           |          | 2.4           | v                       | 5VEN = 1, Unloaded                                            |  |  |
| Minimum Load Resistance                               | 2        | 2.1           | kΩ                      | 5VEN = 1                                                      |  |  |
| Maximum Load Capacitance                              |          | 100           | pF                      |                                                               |  |  |
| ADC SPECIFICATIONS                                    |          |               |                         |                                                               |  |  |
| Maximum Input Range at VIN <sup>2, 3</sup>            |          | 3.156         | V p-p                   | 5VEN = 1, Measured Differentially                             |  |  |
|                                                       |          | 3.17          | dBm                     | 3 1 22 1 2 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1                      |  |  |
| Nominal Reference Level at VIN                        |          | 2.1908        | V p-p                   | 5VEN = 1, Measured Differentially                             |  |  |
| (0 dBm0)                                              |          | 0             | dBm                     |                                                               |  |  |
| Absolute Gain                                         |          |               |                         |                                                               |  |  |
| PGA = 0 dB                                            |          | 0.1           | dB                      | 1.0 kHz, 0 dBm0                                               |  |  |
| PGA = 38 dB                                           |          | -0.5          | dB                      | 1.0 kHz, 0 dBm0                                               |  |  |
| Gain Tracking Error<br>Signal to (Noise + Distortion) |          | ±0.1          | dB                      | 1.0 kHz, +3 dBm0 to -50 dBm0                                  |  |  |
| PGA = 0 dB                                            | 70       | 76            | dB                      | 0  Hz to Fs/2; Fs = $8  kHz$                                  |  |  |
| IGH = 0 db                                            | '        | 70            | dB                      | 0 Hz to Fs/2; Fs = 16 kHz                                     |  |  |
|                                                       |          |               | dB                      | 0  Hz to Fs/2; Fs = 32 kHz                                    |  |  |
|                                                       |          |               | dB                      | 0 Hz to Fs/2; Fs = 64 kHz                                     |  |  |
| PGA = 38 dB                                           | 61       | 65            | dB                      | 0  Hz to Fs/2; Fs = $8  kHz$                                  |  |  |
| Total Harmonic Distortion                             |          |               |                         |                                                               |  |  |
| PGA = 0 dB                                            |          | -76           | dB                      |                                                               |  |  |
| PGA = 38 dB                                           |          | -69           | dB                      | DOA O ID                                                      |  |  |
| Intermodulation Distortion                            |          | -69           | dB                      | PGA = 0 dB                                                    |  |  |
| Idle Channel Noise<br>Crosstalk ADC-to-ADC            |          | –67<br>TBD    | dBm0<br>dB              | PGA = 0 dB<br>ADC1 Input Signal Level: 1.0 kHz, 0 dBm0        |  |  |
| Closstaik ADC-to-ADC                                  |          | TBD           | ub                      | ADC1 input signal Level. 1.0 kHz, 0 dBillo ADC2 Input at Idle |  |  |
| DC Offset                                             |          | +20           | mV                      | PGA = 0 dB                                                    |  |  |
| Power Supply Rejection                                |          | -55           | dB                      | Input Signal Level at AVDD and DVDD                           |  |  |
|                                                       |          |               |                         | Pins 1.0 kHz, 100 mV p-p Sine Wave                            |  |  |
| Group Delay <sup>4, 5</sup>                           |          | 25            | μs                      | 64 kHz Output Sample Rate                                     |  |  |
|                                                       |          | TBD           | μs                      | 32 kHz Output Sample Rate                                     |  |  |
|                                                       |          | TBD           | μs                      | 16 kHz Output Sample Rate                                     |  |  |
| Input Resistance at VIN <sup>2, 4</sup>               |          | TBD<br>25     | $^{\mu 	ext{s}}$ $^{6}$ | 8 kHz Output Sample Rate DMCLK = 16.384 MHz                   |  |  |
|                                                       |          | 4.5           | KSZ                     | DWCER = 10.384 WIIZ                                           |  |  |
| FREQUENCY RESPONSE                                    |          |               |                         |                                                               |  |  |
| (ADC) <sup>9</sup> Typical Output                     |          |               |                         |                                                               |  |  |
| Frequency (Normalised to $F_S$ )                      |          | 0             | dB                      |                                                               |  |  |
| 0.03125                                               |          | -0.1          | dB                      |                                                               |  |  |
| 0.0625                                                |          | -0.1<br>-0.25 | dB                      |                                                               |  |  |
| 0.125                                                 |          | -0.6          | dB                      |                                                               |  |  |
| 0.1875                                                |          | -1.4          | dB                      |                                                               |  |  |
| 0.25                                                  |          | -2.8          | dB                      |                                                               |  |  |
| 0.3125                                                |          | -4.5          | dB                      |                                                               |  |  |
| 0.375                                                 |          | -7.0          | dB                      |                                                               |  |  |
| 0.4375                                                |          | -9.5          | dB                      |                                                               |  |  |
| > 0.5                                                 |          | < -12.5       | dB                      |                                                               |  |  |

AD73360

|                                       | AI           | )73322A |             |       |                                  |
|---------------------------------------|--------------|---------|-------------|-------|----------------------------------|
| Parameter                             | Min          | Typ     | Max         | Units | Test Conditions/Comments         |
| LOGIC INPUTS                          |              |         |             |       |                                  |
| V <sub>INH</sub> , Input High Voltage | $V_{DD} - 0$ | .8      | $V_{ m DD}$ | V     |                                  |
| V <sub>INL</sub> , Input Low Voltage  | 0            |         | 0.8         | V     |                                  |
| I <sub>IH</sub> , Input Current       |              | -0.5    |             | μΑ    |                                  |
| C <sub>IN</sub> , Input Capacitance   |              | 10      |             | pF    |                                  |
| LOGIC OUTPUT                          |              |         |             |       |                                  |
| V <sub>OH</sub> , Output High Voltage | $V_{DD} - 0$ | .4      | $ m V_{DD}$ | V     | $ I_{OUT}  \leq 100 \mu\text{A}$ |
| V <sub>OL</sub> , Output Low Voltage  | 0            |         | 0.4         | V     | $ I_{OUT}  \leq 100 \mu\text{A}$ |
| Three-State Leakage Current           |              | -0.3    |             | μΑ    | ·                                |
| POWER SUPPLIES                        |              |         |             |       |                                  |
| AVDD1, AVDD2                          | 4.5          |         | 5.5         | V     |                                  |
| DVDD                                  | 4.5          |         | 5.5         | V     |                                  |
| $ m I_{DD}^{10}$                      |              |         |             |       | See Table II                     |

#### NOTES

Specifications subject to change without notice.

Table II. Current Summary (AVDD = DVDD = +5.5 V)

| Conditions                   | Analog<br>Current | Internal Digital<br>Current | External Interface<br>Current | Total Current | SE | MCLK<br>ON | Comments                                          |
|------------------------------|-------------------|-----------------------------|-------------------------------|---------------|----|------------|---------------------------------------------------|
| ADC On Only                  | 8.5               | 6                           | 2                             | 33.0          | 1  | YES        | REFOUT Disabled                                   |
| All Sections On              |                   |                             |                               | TBD           | 1  | YES        |                                                   |
| REFCAP On Only               | 0.8               | 0                           | 0                             | 0.8           | 0  | NO         | REFOUT Disabled                                   |
| REFCAP and<br>REFOUT On Only | 3.5               | 0                           | 0                             | 3.5           | 0  | NO         |                                                   |
| All Sections Off             | 0                 | 1.5                         | 0                             | 1.5           | 0  | YES        | MCLK Active Levels Equal to 0 V and DVDD          |
| All Sections Off             | 0                 | 0.01                        | 0                             | 0.01          | 0  | NO         | Digital Inputs Static and<br>Equal to 0 V or DVDD |

The above values are in mA and are typical values unless otherwise noted.

<sup>&</sup>lt;sup>1</sup>Operating temperature range is as follows:  $-40^{\circ}$ C to  $+85^{\circ}$ C. Therefore,  $T_{MIN} = -40^{\circ}$ C and  $T_{MAX} = +85^{\circ}$ C. <sup>2</sup>Test conditions: Input PGA set for 0 dB gain (unless otherwise stated). <sup>3</sup>At input to sigma-delta modulator of ADC. <sup>4</sup>Guaranteed by design.

<sup>&</sup>lt;sup>5</sup>Overall group delay will be affected by the sample rate and the external digital filtering.

The ADC's input impedance is inversely proportional to DMCLK and is approximated by:  $(4 \approx 10^{11})$ /DMCLK.

Frequency response of ADC measured with input at audio reference level (the input level that produces an output level of –10 dBm0), with 38 dB preamplifier bypassed and input gain of 0 dB.

10 Test conditions: no load on digital inputs, analog inputs ac coupled to ground.

AD73360

Table III. Signal Ranges

|                         |                                                            | 3 V Power Supply            | 5 V Power Supply            |                             |  |
|-------------------------|------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--|
|                         |                                                            | 5VEN = 0                    | 5VEN = 0                    | 5VEN = 1                    |  |
| $\overline{V_{REFCAP}}$ |                                                            | 1.2 V ± 10%                 | 1.2 V                       | 2.4 V                       |  |
| V <sub>REFOUT</sub>     |                                                            | 1.2 V ± 10%                 | 1.2 V                       | 2.4 V                       |  |
| ADC                     | Maximum Input Range at $ m V_{IN}$ Nominal Reference Level | 1.578 V p-p<br>1.0954 V p-p | 1.578 V p-p<br>1.0954 V p-p | 3.156 V p-p<br>2.1908 V p-p |  |

# TIMING CHARACTERISTICS (AVDD = +3 V $\pm$ 10%; DVDD = +3 V $\pm$ 10%; AGND = DGND = 0 V; $T_A = T_{MIN}$ to $T_{MAX}$ , unless otherwise noted)

| Parameter       | Limit at<br>T <sub>A</sub> = -40°C to +85°C | Units  | Description                     |
|-----------------|---------------------------------------------|--------|---------------------------------|
| Clock Signals   |                                             |        | See Figure 1                    |
| t <sub>1</sub>  | 61                                          | ns min | MCLK Period                     |
| $t_2$           | 24.4                                        | ns min | MCLK Width High                 |
| t <sub>3</sub>  | 24.4                                        | ns min | MCLK Width Low                  |
| Serial Port     |                                             |        | See Figures 3 and 4             |
| $t_4$           | $t_1$                                       | ns min | SCLK Period                     |
| t <sub>5</sub>  | $0.4 * t_1$                                 | ns min | SCLK Width High                 |
| $t_6$           | $0.4 * t_1$                                 | ns min | SCLK Width Low                  |
| t <sub>7</sub>  | 20                                          | ns min | SDI/SDIFS Setup Before SCLK Low |
| t <sub>8</sub>  | 0                                           | ns min | SDI/SDIFS Hold After SCLK Low   |
| t <sub>9</sub>  | 10                                          | ns max | SDOFS Delay From SCLK High      |
| t <sub>10</sub> | 10                                          | ns min | SDOFS Hold After SCLK High      |
| t <sub>11</sub> | 10                                          | ns min | SDO Hold After SCLK High        |
| t <sub>12</sub> | 10                                          | ns max | SDO Delay From SCLK High        |
| t <sub>13</sub> | 30                                          | ns max | SCLK Delay from MCLK            |

# TIMING CHARACTERISTICS (AVDD = +5 V $\pm$ 10%; DVDD = +5 V $\pm$ 10%; AGND = DGND = 0 V; $T_A = T_{MIN}$ to $T_{MAX}$ , unless otherwise noted)

| Parameter       | Limit at<br>T <sub>A</sub> = -40°C to +85°C | Units  | Description                     |
|-----------------|---------------------------------------------|--------|---------------------------------|
| Clock Signals   |                                             |        | See Figure 1                    |
| $t_1$           | 61                                          | ns min | MCLK Period                     |
| $t_2$           | 24.4                                        | ns min | MCLK Width High                 |
| $t_3$           | 24.4                                        | ns min | MCLK Width Low                  |
| Serial Port     |                                             |        | See Figures 3 and 4             |
| $t_4$           | t <sub>1</sub>                              | ns min | SCLK Period                     |
| t <sub>5</sub>  | $0.4 * t_1$                                 | ns min | SCLK Width High                 |
| t <sub>6</sub>  | $0.4 * t_1$                                 | ns min | SCLK Width Low                  |
| t <sub>7</sub>  | 20                                          | ns typ | SDI/SDIFS Setup Before SCLK Low |
| t <sub>8</sub>  | 0                                           | ns typ | SDI/SDIFS Hold After SCLK Low   |
| t <sub>9</sub>  | 10                                          | ns typ | SDOFS Delay From SCLK High      |
| t <sub>10</sub> | 10                                          | ns typ | SDOFS Hold After SCLK High      |
| t <sub>11</sub> | 10                                          | ns typ | SDO Hold After SCLK High        |
| t <sub>12</sub> | 10                                          | ns typ | SDO Delay From SCLK High        |
| t <sub>13</sub> | 30                                          | ns typ | SCLK Delay from MCLK            |



Figure 1. MCLK Timing



Figure 2. Load Circuit for Timing Specifications



Figure 3. SCLK Timing



Figure 4. Serial Port (SPORT)



Figure 5a. S/(N+D) vs.  $V_{\text{IN}}$  (ADC @ 3 V) over Voiceband Bandwidth (300 Hz - 3.4 kHz)



Figure 5b. S/(N+D) vs.  $V_{\text{IN}}$  (ADC @ 5 V) over Voiceband Bandwidth (300 Hz - 3.4 kHz)

#### ABSOLUTE MAXIMUM RATINGS\*

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$ 

| AVDD, DVDD to GND –0.3 V to +7 V                 |
|--------------------------------------------------|
| AGND to DGND0.3 V to +0.3 V                      |
| Digital I/O Voltage to DGND0.3 V to DVDD + 0.3 V |
| Analog I/O Voltage to AGND0.3 V to AVDD + 0.3 V  |
| Operating Temperature Range                      |
| Industrial (A Version)40°C to +85°C              |
| Storage Temperature Range65°C to +150°C          |
| Maximum Junction Temperature+150°C               |
| SOIC, $\theta_{IA}$ Thermal Impedance            |
| Lead Temperature, Soldering                      |
| Vapor Phase (60 sec) +215°C                      |
| Infrared (15 sec) +220°C                         |
|                                                  |

<sup>\*</sup>Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ORDERING GUIDE**

| Model                                                      | Temperature<br>Range                                                                                                                                                 | Package<br>Option                      |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| AD73360AR<br>AD73360AS<br>EVAL-AD73360EB<br>EVAL-AD73360EZ | -40°C to +85°C<br>-40°C to +85°C<br>Evaluation Board <sup>3</sup><br>+EZ-Kit Lite Upgrade <sup>4</sup><br>Evaluation Board <sup>3</sup><br>+EZ-Kit Lite <sup>5</sup> | R-28 <sup>1</sup><br>S-44 <sup>2</sup> |

#### NOTES

#### CAUTION.

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD73322 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

### PIN CONFIGURATION



 $<sup>{}^{1}</sup>R = 0.3'$  Small Outline IC (SOIC).

<sup>&</sup>lt;sup>2</sup>S = Plastic Quad Flat Pack IC (PQFP).

<sup>&</sup>lt;sup>3</sup>The AD73322 evaluation board features a selectable number of codecs in cascade (from 1 to 4). It can be interfaced to an ADSP-2181 EZ-KIT Lite or to a Texas Instruments EVM kit.

<sup>&</sup>lt;sup>4</sup>The upgrade consists of a connector for the expansion port P3 of the EZKIT-Lite. This option is intended for existing owners of EZ-Kit Lite. <sup>5</sup>The EZ-Kit Lite has been modified to allow it to interface with the AD73322 evaluation board. This option is intended for users who do not already have an EZ-Kit Lite.

## PIN FUNCTION DESCRIPTION

| Mnemonic | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VINP1    | Analog Input to the Positive Terminal of Input Channel 1.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINN1    | Analog Input to the Negative Terminal of Input Channel 1.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINP2    | Analog Input to the Positive Terminal of Input Channel 2.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINN2    | Analog Input to the Negative Terminal of Input Channel 2.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINP3    | Analog Input to the Positive Terminal of Input Channel 3.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINN3    | Analog Input to the Negative Terminal of Input Channel 3.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINP4    | Analog Input to the Positive Terminal of Input Channel 4.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINN4    | Analog Input to the Negative Terminal of Input Channel 4.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINP5    | Analog Input to the Positive Terminal of Input Channel 5.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINN5    | Analog Input to the Negative Terminal of Input Channel 5.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINP6    | Analog Input to the Positive Terminal of Input Channel 6.                                                                                                                                                                                                                                                                                                                                                                                                           |
| VINN6    | Analog Input to the Negative Terminal of Input Channel 6.                                                                                                                                                                                                                                                                                                                                                                                                           |
| REFOUT   | Buffered Reference Output, which has a nominal value of 1.2 V or 2.4 V, the value being dependent on the status of Bit 5VEN (CRC:7).                                                                                                                                                                                                                                                                                                                                |
| REFCAP   | A Bypass Capacitor to AGND2 of $0.1 \mu\text{F}$ is required for the on-chip reference. The capacitor should be fixed to this pin.                                                                                                                                                                                                                                                                                                                                  |
| AVDD2    | Analog Power Supply Connection.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AGND2    | Analog Ground/Substrate Connection.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DGND     | Digital Ground/Substrate Connection.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DVDD     | Digital Power Supply Connection.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RESET    | Active Low Reset Signal. This input resets the entire chip, resetting the control registers and clearing the digital circuitry.                                                                                                                                                                                                                                                                                                                                     |
| SCLK     | Output Serial Clock whose rate determines the serial transfer rate to/from the codec. It is used to clock data or control information to and from the serial port (SPORT). The frequency of SCLK is equal to the frequency of the master clock (MCLK) divided by an integer number—this integer number being the product of the external master clock rate divider and the serial clock rate divider.                                                               |
| MCLK     | Master Clock Input. MCLK is driven from an external clock signal.                                                                                                                                                                                                                                                                                                                                                                                                   |
| SDO      | Serial Data Output of the Codec. Both data and control information may be output on this pin and is clocked on the positive edge of SCLK. SDO is in three-state when no information is being transmitted and when SE is low.                                                                                                                                                                                                                                        |
| SDOFS    | Framing Signal Output for SDO Serial Transfers. The frame sync is one-bit wide and it is active one SCLK period before the first bit (MSB) of each output word. SDOFS is referenced to the positive edge of SCLK. SDOFS is in three-state when SE is low.                                                                                                                                                                                                           |
| SDIFS    | Framing Signal Input for SDI Serial Transfers. The frame sync is one-bit wide and it is valid one SCLK period before the first bit (MSB) of each input word. SDIFS is sampled on the negative edge of SCLK and is ignored when SE is low.                                                                                                                                                                                                                           |
| SDI      | Serial Data Input of the Codec. Both data and control information may be input on this pin and are clocked on the negative edge of SCLK. SDI is ignored when SE is low.                                                                                                                                                                                                                                                                                             |
| SE       | SPORT Enable. Asynchronous input enable pin for the SPORT. When SE is set low by the DSP, the output pins of the SPORT are three-stated and the input pins are ignored. SCLK is also disabled internally in order to decrease power dissipation. When SE is brought high, the control and data registers of the SPORT are at their original values (before SE was brought low), however the timing counters and other internal registers are at their reset values. |
| AGND1    | Analog Ground Connection.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AVDD1    | Analog Power Supply Connection.                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### TERMINOLOGY

#### Absolute Gain

Absolute gain is a measure of converter gain for a known signal. Absolute gain is measured (differentially) with a 1 kHz sine wave at 0 dBm0 for each ADC. The absolute gain specification is used for gain tracking error specification.

#### Crosstalk

Crosstalk is due to coupling of signals from a given channel to an adjacent channel. It is defined as the ratio of the amplitude of the coupled signal to the amplitude of the input signal. Crosstalk is expressed in dB.

### Gain Tracking Error

Gain tracking error measures changes in converter output for different signal levels relative to an absolute signal level. The absolute signal level is 0 dBm0 (equal to absolute gain) at 1 kHz for each ADC. Gain tracking error at 0 dBm0 (ADC) is 0 dB by definition.

### Group Delay

Group Delay is defined as the derivative of radian phase with respect to radian frequency,  $d\emptyset(f)/df$ . Group delay is a measure of average delay of a system as a function of frequency. A linear system with a constant group delay has a linear phase response. The deviation of group delay from a constant indicates the degree of nonlinear phase response of the system.

#### Idle Channel Noise

Idle channel noise is defined as the total signal energy measured at the output of the device when the input is grounded (measured in the frequency range 300 Hz–3400 Hz).

#### Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, fa and fb, any active device with nonlinearities will create distortion products at sum and difference frequencies of mfa  $\pm$  nfb where m, n = 0, 1, 2, 3, etc. Intermodulation terms are those for which neither m nor n are equal to zero. For final testing, the second order terms include (fa + fb) and (fa – fb), while the third order terms include (2fa + fb), (2fa – fb), (fa + 2fb) and (fa – 2fb).

## Power Supply Rejection

Power supply rejection measures the susceptibility of a device to noise on the power supply. Power supply rejection is measured by modulating the power supply with a sine wave and measuring the noise at the output (relative to 0 dB).

#### Sample Rate

The sample rate is the rate at which each ADC updates its output register. It is set relative to the DMCLK and the programmable sample rate setting.

## SNR+THD

Signal-to-noise ratio plus harmonic distortion is defined to be the ratio of the rms value of the measured input signal to the rms sum of all other spectral components in the frequency range 300 Hz-3400 Hz, including harmonics but excluding dc.

#### ABBREVIATIONS

ADC Analog-to-Digital Converter.

ALB Analog Loop-Back.

BW Bandwidth.

CRx A Control Register where x is a placeholder for an

alphabetic character (A–E). There are five read/write control registers on the AD73322—

designated CRA through CRE.

CRx:n A bit position, where n is a placeholder for a

numeric character (0–7), within a control register; where x is a placeholder for an alphabetic character (A–E). Position 7 represents the MSB

and Position 0 represents the LSB.

DGT Digital Gain Tap
DLB Digital Loop-Back.

DMCLK Device (Internal) Master Clock. This is the

internal master clock resulting from the external master clock (MCLK) being divided by the on-

chip master clock divider.

FSLB Frame Sync Loop Back—where the SDOFS of

the final device in a cascade is connected to the RFS and TFS of the DSP and the SDIFS of first device in the cascade. Data input and output occur simultaneously. In the case of Non-FSLB, SDOFS and SDO are connected to the Rx Port of the DSP while SDIFS and SDI are

connected to the Tx Port.

PGA Programmable Gain Amplifier.

SC Switched Capacitor.
SNR Signal-to-Noise Ratio.

SPORT Serial Port.

THD Total Harmonic Distortion.

VBW Voice Bandwidth.

AD73360

Table XI. Control Register Map

| Address (Binary) | Name | Description        | Type | Width | Reset Setting (Hex) |
|------------------|------|--------------------|------|-------|---------------------|
| 000              | CRA  | Control Register A | R/W  | 8     | 0x00                |
| 001              | CRB  | Control Register B | R/W  | 8     | 0x00                |
| 010              | CRC  | Control Register C | R/W  | 8     | 0x00                |
| 011              | CRD  | Control Register D | R/W  | 8     | 0x00                |
| 100              | CRE  | Control Register E | R/W  | 8     | 0x00                |
| 101              | CRF  | Control register F | R/W  | 8     | 0x00                |

Table XII. Control Word Description

|   | 15               | 14  | 13 | 12     | 11    | 10  | 9        | 8     | 7  | 6 | 5   | 4      | 3    | 2 | 1 | 0 |
|---|------------------|-----|----|--------|-------|-----|----------|-------|----|---|-----|--------|------|---|---|---|
| ſ | $C/\overline{D}$ | R/₩ | DE | ICE AD | DRESS | REG | SISTER A | ADDRE | SS |   | REC | SISTER | DATA |   |   |   |

| Control   | Frame            | Description                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 15    | Control/Data     | When set high, it signifies a control word in Program or Mixed Program/Data Modes. When set low, it signifies a data word in Mixed Program/Data Mode or an invalid control word in Program Mode.                                                                                                                                                                                     |
| Bit 14    | Read/Write       | When set low, it tells the device that the data field is to be written to the register selected by the register field setting provided the address field is zero. When set high, it tells the device that the selected register is to be written to the data field in the input serial register and that the new control word is to be output from the device via the serial output. |
| Bit 13–11 | Device Address   | This 3-bit field holds the address information. Only when this field is zero is a device selected. If the address is not zero, it is decremented and the control word is passed out of the device via the serial output.                                                                                                                                                             |
| Bits 10-8 | Register Address | This 3-bit field is used to select one of the five control registers on the AD73322.                                                                                                                                                                                                                                                                                                 |
| Bits 7–0  | Register Data    | This 8-bit field holds the data that is to be written to or read from the selected register provided the address field is zero.                                                                                                                                                                                                                                                      |

## Table XIII. Control Register A Description

# **CONTROL REGISTER A**

| 7     | 6   | 5   | 4   | 3   | 2   | 1  | 0            |
|-------|-----|-----|-----|-----|-----|----|--------------|
| RESET | DC2 | DC1 | DC0 | SLB | DLB | MM | DATA/<br>PGM |

| Bit | Name     | Description                                   |
|-----|----------|-----------------------------------------------|
| 0   | DATA/PGM | Operating Mode (0 = Program; 1 = Data Mode)   |
| 1   | MM       | Mixed Mode (0 = Off; $1 = \text{Enabled}$ )   |
| 2   | DLB      | Digital Loop-Back Mode (0 = Off; 1 = Enabled) |
| 3   | SLB      | SPORT Loop-Back Mode (0 = Off; 1 = Enabled)   |
| 4   | DC0      | Device Count (Bit 0)                          |
| 5   | DC1      | Device Count (Bit 1)                          |
| 6   | DC2      | Device Count (Bit 2)                          |
| 7   | RESET    | Software Reset (0 = Off; 1 = Initiates Reset) |

# Table XIV. Control Register B Description

### **CONTROL REGISTER B**

| 7   | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|-----|------|------|------|------|------|------|------|
| CEE | MCD2 | MCD1 | MCD0 | SCD1 | SCD0 | DIR1 | DIR0 |

| Bit | Name | Description                                |
|-----|------|--------------------------------------------|
| 0   | DIR0 | Decimation/Interpolation Rate (Bit 0)      |
| 1   | DIR1 | Decimation/Interpolation Rate (Bit 1)      |
| 2   | SCD0 | Serial Clock Divider (Bit 0)               |
| 3   | SCD1 | Serial Clock Divider (Bit 1)               |
| 4   | MCD0 | Master Clock Divider (Bit 0)               |
| 5   | MCD1 | Master Clock Divider (Bit 1)               |
| 6   | MCD2 | Master Clock Divider (Bit 2)               |
| 7   | CEE  | Control Echo Enable (0 = Off; 1 = Enabled) |

# Table XV. Control Register C Description

# CONTROL REGISTER C

| 7    | 6  | 5     | 4 | 3 | 2 | 1 | 0  |
|------|----|-------|---|---|---|---|----|
| 5VEN | RU | PUREF | _ | _ | _ | _ | PU |

| Bit | Name     | Description                                      |
|-----|----------|--------------------------------------------------|
| 0   | PU       | Power-Up Device (0 = Power Down; 1 = Power On)   |
| 1   | Reserved | Must be programmed to zero (0)                   |
| 2   | Reserved | Must be programmed to zero (0)                   |
| 3   | Reserved | Must be programmed to zero (0)                   |
| 4   | Reserved | Must be programmed to zero (0)                   |
| 5   | PUREF    | REF Power (0 = Power Down; 1 = Power On)         |
| 6   | RU       | REFOUT Use (0 = Disable REFOUT; 1 = Enable       |
|     |          | REFOUT)                                          |
| 7   | 5VEN     | Enable 5 V Operating Mode (0 = Disable 5 V Mode; |
|     |          | 1 = Enable 5 V Mode)                             |

## Table XVI. Control Register D Description

# CONTROL REGISTER D

| 7        | 6        | 5        | 4        | 3      | 2        | 1        | 0        |
|----------|----------|----------|----------|--------|----------|----------|----------|
| DITATOCO | IGADC2 2 | IGADC2 1 | IGADC2 0 | PUADC1 | IGADC1 2 | TGADC1 1 | IGADC1 0 |

| Bit | Name     | Description                                |
|-----|----------|--------------------------------------------|
| 0   | IGADC1-0 | ADC1:Input Gain Select (Bit 0)             |
| 1   | IGADC1-1 | ADC1:Input Gain Select (Bit 1)             |
| 2   | IGADC1-2 | ADC1:Input Gain Select (Bit 2)             |
| 3   | PUADC1   | Power Control (ADC1); $1 = ON$ , $0 = OFF$ |
| 4   | IGADC2-0 | ADC2:Input Gain Select (Bit 0)             |
| 5   | IGADC2-1 | ADC2:Input Gain Select (Bit 1)             |
| 6   | IGADC2-2 | ADC2:Input Gain Select (Bit 2)             |
| 7   | PUADC2   | Power Control (ADC2); $1 = ON$ , $0 = OFF$ |

# Table XVII. Control Register E Description

# **CONTROL REGISTER E**

| 7      | 6        | 5        | 4        | 3      | 2        | 1        | 0       |
|--------|----------|----------|----------|--------|----------|----------|---------|
|        |          |          |          |        |          |          |         |
| PUADC4 | IGADC4-2 | IGADC4-1 | IGADC4-0 | PUADC3 | IGADC3-2 | IGADC3-1 | IGADC3- |

| Bit | Name     | Description                                |
|-----|----------|--------------------------------------------|
| 0   | IGADC3-0 | ADC3:Input Gain Select (Bit 0)             |
| 1   | IGADC3-1 | ADC3:Input Gain Select (Bit 1)             |
| 2   | IGADC3-2 | ADC3:Input Gain Select (Bit 2)             |
| 3   | PUADC3   | Power Control (ADC3); $1 = ON$ , $0 = OFF$ |
| 4   | IGADC4-0 | ADC4:Input Gain Select (Bit 0)             |
| 5   | IGADC4-1 | ADC4:Input Gain Select (Bit 1)             |
| 6   | IGADC4-2 | ADC4:Input Gain Select (Bit 2)             |
| 7   | PUADC4   | Power Control (ADC4); $1 = ON$ , $0 = OFF$ |
|     |          |                                            |

# Table XVIII. Control Register F Description

# CONTROL REGISTER F

| 7      | 6        | 5        | 4        | 3      | 2        | 1        | 0        |
|--------|----------|----------|----------|--------|----------|----------|----------|
| PUADC6 | IGADC6-2 | IGADC6-1 | IGADC6-0 | PUADC5 | IGADC5-2 | IGADC5-1 | IGADC5-0 |

| Bit | Name     | Description                                |
|-----|----------|--------------------------------------------|
| 0   | IGADC5-0 | ADC5:Input Gain Select (Bit 0)             |
| 1   | IGADC5-1 | ADC5:Input Gain Select (Bit 1)             |
| 2   | IGADC5-2 | ADC5:Input Gain Select (Bit 2)             |
| 3   | PUADC5   | Power Control (ADC5); $1 = ON$ , $0 = OFF$ |
| 4   | IGADC6-0 | ADC6:Input Gain Select (Bit 0)             |
| 5   | IGADC6-1 | ADC6:Input Gain Select (Bit 1)             |
| 6   | IGADC6-2 | ADC6:Input Gain Select (Bit 2)             |
| 7   | PUADC6   | Power Control (ADC6); $1 = ON$ , $0 = OFF$ |