

Hartcran House, 231 Kenton Lane, Harrow, Middlesex, HA3 8RP, England Tel: +44 (0) 20 8909 9595, Fax: +44 (0) 20 8909 2233, www.radiometrix.com

LMT3

Issue 1, 22 January 2013

NBFM Multi-channel transmitter for 868MHz SRD band

The LMT3 is a 25kHz channel narrowband multichannel transmitter offering up to 25mW RF power. LMT3 can be paired with the Category 1 compliant receiver intended for European 869.2-869.25MHz Social Alarm application. It can also be used for any 868 - 870MHz band Non-Specific SRD applications. The module offers a low power, reliable data link in an industry-standard pin out and footprint.

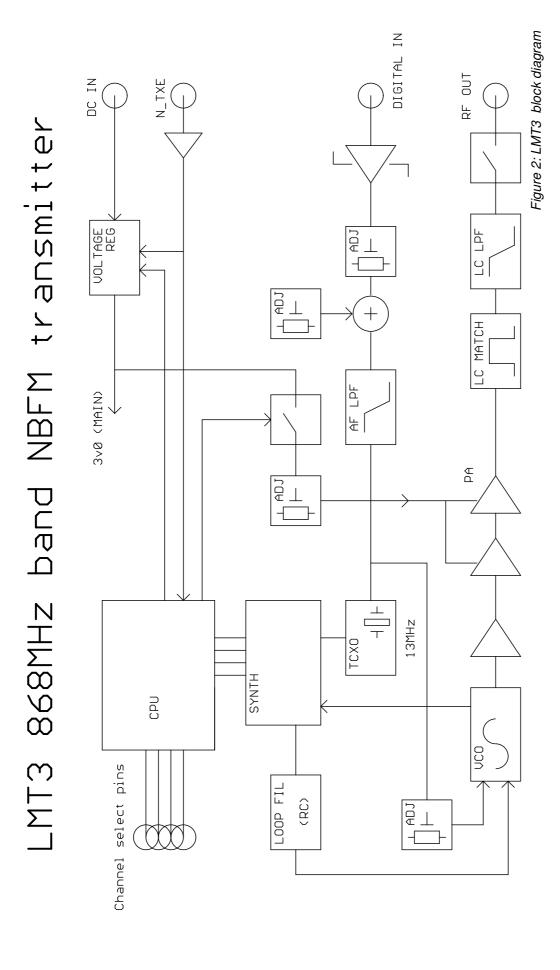
We're sorry, this image is temporarily unavailable.

Figure 1: LMT3 transmitter

Features

- Conforms to EN 300 220-3 and EN 301 489-3
- PLL synthesizer with TCXO
- Data rates up to 5 kbps for standard module
- Usable range over 500m @ 25mW
- Fully screened, Low profile
- Low power requirements

Applications


- Social Alarm
- Handheld terminals
- EPOS equipment, barcode scanners
- Data loggers
- Industrial telemetry and telecommand
- In-building environmental monitoring and control
- High-end security and fire alarms
- DGPS systems
- Vehicle data up/download
- Heavy vehicle/machinery controls

Technical Summary

- Social Alarm frequencies: CH0: 869.2125MHz, CH1: 869.2375MHz
- Custom frequency within 865MHz 870MHz
- 32 channels
- Transmit power: +10dBm (10mW) / +14dBm (25mW)
- Supply range: 3.1 15V (TX @ 10mW), 4.1 15V (TX @ 25mW)
- Current consumption: 34mA @ 10mW, 68mA @ 25mW
- Data bit rate: 5kbps max. (standard module)
- Serial configuration by inverted RS232 at 3V CMOS level

Evaluation platforms: NBEK + LM Series carrier

Matching receiver: COR3-869-5

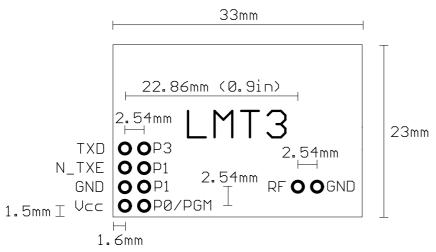


Figure 3: LMT3 footprint (top view)

Pin description - LMT3

Pin	Name	Function		
1a	Vcc	3.1 – 15V power supply (@ 10mW)		
		4.1 – 15V power supply (@ 25mW)		
2a	0V	Ground		
3a	TXE	Transmit Enable (active low)		
4a	TXD	DC coupled input for 3V CMOS logic. R_{in} =47k Ω		
5a	No pin	Not present in LMT3		
1b	P0/PGM	Parallel Channel select LSB		
		Serial frequency programming / configuration ¹		
2b	P1	Parallel Channel select		
3b	P2	Parallel Channel select		
4b	P3	Parallel Channel select MSB		
5b	No pin	Not present in LMT3		

Notes:

- 1. Serial programming is by an inverted, CMOS logic level, 2400 baud RS232 datastream applied to the P0 pin.
- 2. Channel select inputs have pullups $(50k\Omega)$ to 3v internal rail. Do not exceed 3V logic levels on this port.
- 3. Channel select inputs are active low
- 4. $\overline{\mathsf{TXE}}$ has a 100k Ω pullup to Vcc
- 5. All pins are on an 0.1" grid
- 6. The pins 5a/b are not present, but are included in footprint for compatibility with other units in this family
- 7. In the 'off' state a PIN switch open circuits the RF output pin. There are no 'off' state spuri.
- 8. 10mW unit will operate (with marginally reduced specifications and lower (6-8mW) output power) from a 3.0V rail. This must be well regulated and without noise or ripple, as in this state the unit's internal regulator no longer operates, and provides no supply rejection.

Serial interface commands

2400 baud RS232. 8 bit data, no parity, 1 start bit, 1 or 2 stop bits.

Serial data is sent to the unit on one of the parallel channel select pins (P0). It is very important that the unit does not 'decode' switch bounce in ordinary operation as a command string, or spurious re-writing of the e2prom will result. For this reason the user must send the 16 character string ENABLESERIALMODE (followed by a carriage return) to activate the serial command mode before sending any of the command strings listed below. Command mode is disabled on power down, or on reception of a # character. To successfully program the unit, it must be enabled (TXE low).

GOCHAN aa	Serially select channel aa, where aa is ch0 to ch31		
LOAD aa nnnnn	Set value of N register for channel aa, where aa is Channels 0 to 31		
SETPAR	Channel selected by 4 bit parallel inputs (ch0 to ch15 only)		
SETSER	Channel selected by most recent GOCHAN operation		
RVALUE rrrr	Set value for R register		
SINGLE nnnnn	Set value of N for single channel operation.		
	N value NOT stored in EEPROM		
<cr></cr>	Process entry		
/	Clear all buffers		
#	Disable command mode		

aa = a two digit channel number from 00 to 31 nnnnn = synthesizer N register value (up to 65535) rrrr = synthesizer R register value (up to 16383)

$$N_{\mathit{TX}} = \frac{f_{\mathit{RF}}}{f_{\mathit{Channelspacing}}} = \frac{869.200 \mathit{MHz}}{25 \mathit{kHz}} = 34768 \qquad \qquad R = \frac{f_{\mathit{TCXO}}}{f_{\mathit{channelspacing}}} = \frac{13 \mathit{MHz}}{25 \mathit{kHz}} \text{, So R=520}$$

Note: A pause of at least 50ms must be allowed between command strings (EEPROM programming time).

SINGLE mode does not store the N value in EEPROM. Therefore the unit is inoperative after a power down until either another valid SINGLE command is received, or mode is changed by a GOCHAN, SETPAR or SETSER command. SINGLE mode is intended for frequency agile applications.

If an N value greater than 65535 is needed then an offset of +65536 can be selected by setting bit 15 of the R value high (the N value is then reduced by 65536 of course)"

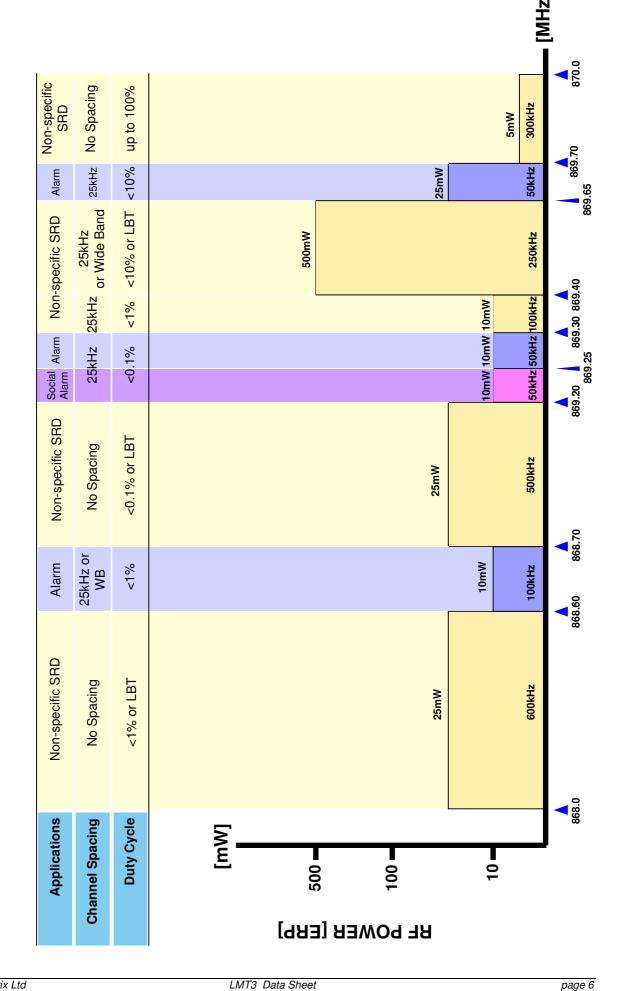
Example: Fout = 869.2125

Fcomp = 12.5KHz

N = 69537 This exceeds 65535, so: Bit 15 of R is set : RVALUE 33808 65536 is subtracted: LOAD00 4001

Condensed specifications

Frequency	Social Alarm (SAL) variant: CH0: 869.2125MHz, CH1: 869.2375MHz		
. ,	User customisable frequencies: 865MHz – 870MHz		
Frequency stability	±1.5kHz		
Channel spacing	25kHz		
Number of channels	16 channels controlled by parallel port		
	or 32 via RS232 interface		
Operating temperature	-10 °C to +60 °C (Storage -30 °C to +70 °C)		
Spurious radiations	Compliant with ETSI EN 300 220-3 and EN 301 489-3		
Transmitter			
Output power	+10dBm (10mW) ±1dB		
	+14dBm (25mW) ±1dB		
Peak deviation	±3kHz		
TX on switching time	30ms from TXE transition		
Modulation type	FSK (F3D)		
TX modulation bandwidth	DC – 5kHz (3V CMOS compatible)		
Adjacent channel TX power	<-37dBm		
TX spurious	<-45dBm (no RF output in Standby)		
Supply			
Voltage	3.1V – 15V (10mW)		
	4.1 – 15V (25mW)		
Current	34mA @ 10mW (nominal)		
	68mA @ 25mW_(nominal)		
	<5μA standby (TXE high or floating)		
Inputs	data (CMOS/TTL compatible)		
Size	33 x 23 x 9mm		
Interface User	10 (8) pin 0.1" pitch dual row (5+5) header		
RF	2pin 0.1" pitch		
Recommended PCB hole size	1.2mm		


Ordering Information:

Part No.	Frequency (MHz)	RF power (mW)	Channel spacing (kHz)	Data rate (kbps)
LMT3-869.2125-5	869.2125	10	25	5
LMT3-869-5-SAL	869.200 - 869.250	10	25	5
LMT3-869-5	868 - 870	10	25	5
LMT3-869-5-25mW	868 - 870	25	25	5

Matching COR3 receiver

Part Number	Frequency	Module mounting	Pins
COR3-869.2125-5-H	869.2125MHz	Horizontal Mounting, Perpendicular pins	RF, RFGND, RSSI, GND, VCC, AF, RXD
COR3-869-5-SAL	869.2-869.25MHz	Vertical Mounting, Parallel pins	RF, RFGND, RSSI, GND, VCC, AF, RXD P0/PGM
COR3-869-5-SAL-H	869.2-869.25MHz	Horizontal Mounting, Perpendicular pins	RF, RFGND, RSSI, GND, VCC, AF, RXD P0/PGM
COR3-869-5	868-870MHz	Vertical Mounting, Parallel pins	RF, RFGND, RSSI, GND, VCC, AF, RXD P3, P2, P1, P0/PGM

CEPT/ERC Rec 70-03, 868 MHz Band Plan

Radiometrix Ltd

Hartcran House 231 Kenton Lane Harrow, Middlesex HA3 8RP **ENGLAND**

Tel: +44 (0) 20 8909 9595 Fax: +44 (0) 20 8909 2233 sales@radiometrix.com www.radiometrix.com

Copyright notice

This product data sheet is the original work and copyrighted property of Radiometrix Ltd. Reproduction in whole or in part must give clear acknowledgement to the copyright owner.

Limitation of liability

The information furnished by Radiometrix Ltd is believed to be accurate and reliable. Radiometrix Ltd reserves the right to make changes or improvements in the design, specification or manufacture of its subassembly products without notice. Radiometrix Ltd does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. This data sheet neither states nor implies warranty of any kind, including fitness for any particular application. These radio devices may be subject to radio interference and may not function as intended if interference is present. We do NOT recommend their use for life critical applications.

The Intrastat commodity code for all our modules is: 8542 6000.

R&TTE Directive

After 7 April 2001 the manufacturer can only place finished product on the market under the provisions of the R&TTE Directive. Equipment within the scope of the R&TTE Directive may demonstrate compliance to the essential requirements specified in Article 3 of the Directive, as appropriate to the particular equipment.

www.ero.dk

Further details are available on The Office of Communications (Ofcom) web site:

http://www.ofcom.org.uk/radiocomms/ifi/

Information Requests Ofcom Riverside House 2a Southwark Bridge Road London SE1 9HA Tel: +44 (0)845 456 3000 or 020 7981 3040 Fax: +44 (0)20 7783 4033

information.requests@ofcom.org.uk

European Radiocommunications Office (ERO) **Peblingehus** Nansensgade 19 DK 1366 Copenhagen Tel. +45 33896300 Fax +45 33896330 ero@ero.dk