Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4-Bit Single Chip-Microcomputer

Data Sheet

Description

The μ PD75116(A) is one of the 4-bit single-chip microcomputer 75X series.

The μ PD75116(A) is a product with the extended ROM capacity of the μ PD75108(A). In addition of high-speed operations, it can manipulate data in units of 1, 4 and 8 bits. In particular, the I/O operation of the μ PD75116 have been improved by a wide variety of bit control instructions. The μ PD75116 is provided with interface inputs/outputs with peripheral circuits having different power voltages, and analog inputs and suitable for controlling automobile electrical equipment, etc. For the μ PD75116(A), an on-chip pin-compatible one-time PROM product (μ PD75P116) is separately available for system development evaluation.

Functions are described in detail in the following User's Manual, which should be read when carrying out design work.

 μ PD751×× Series User's Manual: IEM-992

Features

- Higher reliability than μ PD75116
- Architecture "75X" equivalent to 8-bit microcomputer
- Minimum instruction execution time (high-speed operation): 0.95 μs (when operated at 4.19 MHz and 5 V)
- Instruction execution variable function: 0.95μs/1.91μs/ 15.3 μs (when operated at 4.19 MHz)
- Many input/output ports: 58
- 3-channel on-chip 8-bit timers
- 8-bit on-chip serial interface
- Multi-interruptible vector interrupt function

Applications

Automobile electrical equipment, etc.

Ordering Code	Package	Qualty Grade
μPD75112CW(A)-×××	64-pin plastic shrink DIP	Special
μPD75112GF(A)-×××-3BE	(750 mil) 64-pin plastic QFP	Special
	(14 × 20 mm)	Special
μ PD75116CW(A)-XXX	64-pin plastic shrink DIP (750 mil)	Special
μPD75116GF(A)-XX-3BE	64-pin plastic QFP (14 × 20 mm)	

Remarks: XXX is a ROM code number.

Please refer to "Quality Grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Unless there are any particular functional differences, the μ PD75116(A) is described in this document as a representative product.

The information in this document is subject to change without notice. The mark \bigstar shows major revised points.

Defferences between μ PD75112(A), 75116(A) and μ PD75112, 75116

	Product Name		
ltem		μPD75112(A), 75116(A)	μPD75112, 75116
Quality grade		Special	Standard
Electrical specifications Absolute maximum ratings		Different high-level output current and	ow-level output current
DC characteristics		Different low-level output voltage	
Direct LED drive		Not possible	Possible

Outline of Functions

ltem		Description	
No. of basic instruction		43	
Min. instruction exect	ution time	0.95 μ s/1.91 μ s/15.3 μ s (when operated at 4.19 MHz), switchable at 3 levels	
On-chip memory	ROM	12160 × 8 (μPD75112(A)), 16256 × 8 (μPD75116(A))	
	RAM	512 × 4	
General register		4 bits \times 8 \times 4 banks (memory mapping)	
Accumulator		Three accumulated in compliance with controlled date lengths •1-bit accumulator (CY), 4-bit accumulator (A), 8-bit accumulator (XA)	
Input/output port		 58 in total CMOS input pin : 10 CMOS input/output pin (LED direct drive enable): 32 Intermediate withstand voltage N-ch open drain : 12 input/output pin (bit-wise pull-up resistor inscorporation possible) Comparator input pin (4-bit accuracy) : 4 	
Timer/counter		 8-bit timer/event counter × 2 8-bit basic interval timer (applicable to watchdog timer) 	
Serial interface		 8-bits First LSB/first MSB switchable Two transfer modes (transmit and receiver/receive dedicated mode) 	
Vector interrupt		External : 3, Internal : 4	
Test input		External : 2	
Standby		STOP/HALT mode	
Operating temperatu	re range	-40 to +85°C	
Operating voltage		2.7 to 6.0 V	
Others		 On-chip power-on reset circuit (mask option) On-chip bit contol memory (bit sequential buffer) 	
Package		 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20 mm) 	

Phase-out/Discontinued

μ**PD75112(A), 75116(A)**

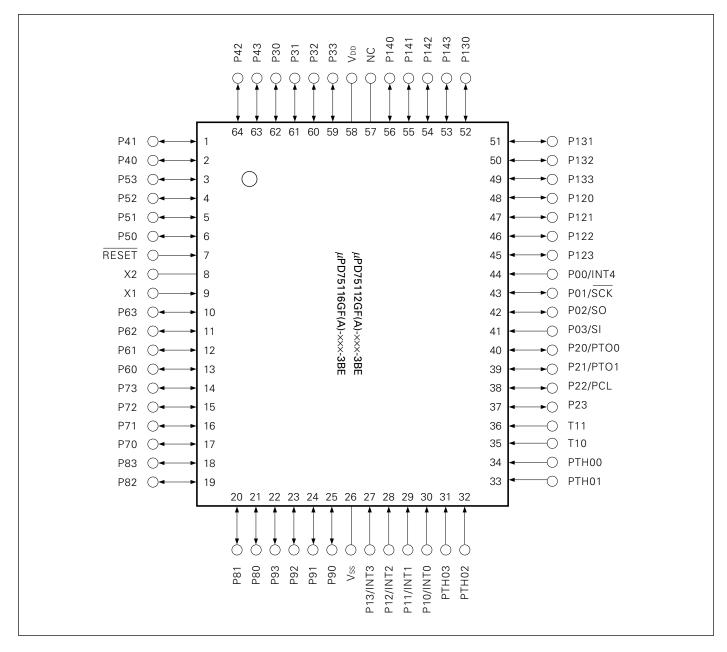
CONTENTS

1.	Pin Configuration (Top View)	4
2.	Block Diagram	. 6
3.	Pin Functions. 3.1 Port Pins. 3.2 Non-Port Pins. 3.3 Pin Input/Output Circuits. 3.4 Recommended Connection of Unused Pins.	. 7 8 9
4.	3.5 Caution Relating to Use of P00/INT4 Pin and RESET Pin Memory Configuration	10
5.	Peripheral Hardware Functions	14
	 5.2 Clock Generator	14 16 16 17 17 19 21 . 22
6.	5.9 Power-On Flag (Mask Option)	
7.	Standby Functions	25
8.	Reset Functions	26
9.	Instruction Set	29
	Mask Option Selection	37
	Electrical Specifications	
	Package Information	
	Recommended Soldering Conditions	51
API	PENDIX A. Diffeences between µPD751××(A) Series Products and Related PROM Products	52
API	PENDIX B. Development Tools	53
API	PENDIX C. Related Documentations	54

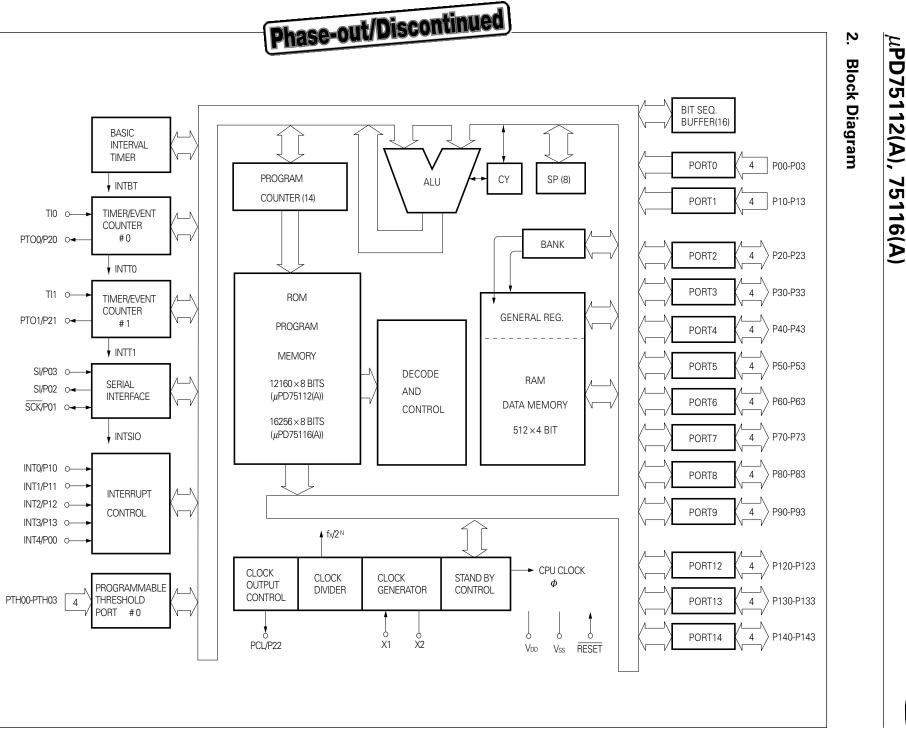
1. Pin Configuration (Top View)

Г

64-Pin Plastic Shrink DIP (750 mil)


P13/INT3 🔘	1		64 ————————————————————————————————————	Vss
P12/INT2 〇	→ 2	6	63 →→ ○	P90
P11/INT1 🔘	→ 3	6	52 ←→○	P91
P10/INT0 🔿	→ 4	6	51 ▲→ ○	P92
PTH03 🔘	→ 5	6		P93
PTH02 🔿	6	Ę	59 ←→○	P80
PTH01 🔿	→ 7	Ę	58	P81
PTH00 🔿		Ę	57 ◀-►○	P82
TIO 🔘	▶ 9	Ę	6 ←→○	P83
TI1 🔘	→ 10	Ę	55	P70
P23 ()	◀ ▶ 11	Ę	54 ◄►○	P71
P22/PCL 🔿	◀ ▶ 12	Ę	53 ◀━►○	P72
P21/PTO1 🔿	◀ → 13	3 4 4	52 ◀ ◄ ► ◯	P73
,	◀ ▶ 14	PD7	51	P60
P03/SI ()	→ 15	µPD75112CW(A)->>> µPD75116CW(A)->>>>	50 	P61
P02/SO 🔿	◀ ▶ 16	6CW 4	l9 ►○	P62
P01/SCK 🔿	◄ ► 17	/(A)	8	P63
P00/INT4 🔿	→ 18	××× 4	7	X1
P123 ()	◀ ▶ 19		46 <u> </u>	X2
P122 ()	→ 20	2	45 -	RESET
P121 ()	◄ ► 21	2	4 ◀━━◯	P50
P120 🔿	←→ 22	2	43 ◀━►○	P51
P133 🔘	←→ 23	2	2 ←→○	P52
P132 🔿	◄ ► 24	2	1 ←→○	P53
P131 🔘	◄ ► 25	2	0 →→	P40
P130 🔿	◄ ► 26		89 ←→○	P41
P143 🔘	◄ 27	(88	P42
P142 🔘	◄ 28	(37 ◀—▶○	P43
P141 🔘	←→ 29	C	36 ◀-►○	P30
P140 🔿	→ 30	:	85 ◀━►○	P31
NC 🔾	31	:	34 ◀┻◯	P32
Vdd 🔿	32		33 ◀—▶○	P33

Phase-out/Discontinued


μ**PD75112(A)**, 75116(A)

64-Pin Plastic QFP (14 \times 20 mm)

Pin Name *

P00-P03	: Port0	SCK	: Serial Clock
P10-P13	: Port1	SO	: Serial Output
P20-P23	: Port2	SI	: Serial Input
P30-P33	: Port3	PTO0, PTO1	: Programmable Timer Output
P40-P43	: Port4	PCL	: Programmable Clock
P50-P53	: Port5	PTH00-PTH03	: Programmable Threshold Input
P60-P63	: Port6	INT0, INT1, INT4	: External Vectored Interrupt Input
P70-P73	: Port7	INT2, INT3	: External Test Input
P80-P83	: Port8	TI0, TI1	: Timer Input
P90-P93	: Port9	<u>X1, X2</u>	: Clock Oscillation
P120-P123	: Port12	RESET	: Reset
P130-P133	: Port13	NC	: No Connection
P140-P143	: Port14	Vdd	: Positive Power Supply
		Vss	: Ground

6

μ**PD75112(A)**,

3. Pin Functions

3.1 Port Pins

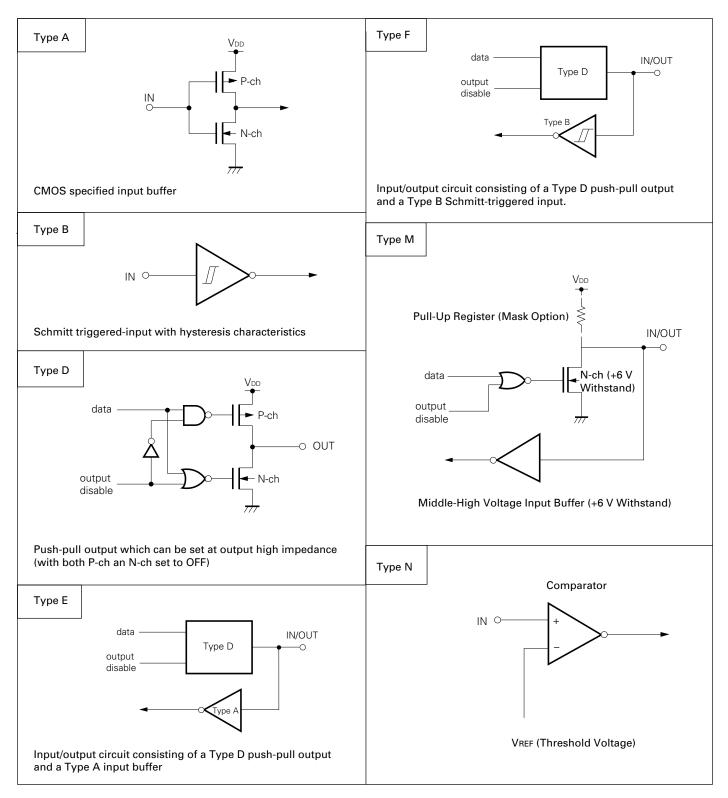
Pin Name	Input/ Output	Dual Function Pin	Function	8-Bit I/O	At Reset	I/O Circuit Type * 1
P00	Input	INT4	4-bit input port (PORT0)	×	Input	B
P01	Input/output	SCK				E
P02	Input/output	SO				E
P03	Input	SI				B
P10	Input	INT0	4-bit input port (PORT1)		Input	B
P11		INT1				
P12		INT2				
P13		INT3				
P20	Input/output	PTO0	4-bit input/output port (PORT2)	×	Input	E
P21		PTO1				
P22		PCL				
P23						
P30 to P33	Input/output		Programmable 4-bit input/output port (PORT3) Bit-wise input/output setting enable		Input	E
P40 to P43	Input/output		4-bit input/output port (PORT4)	0	Input	E
P50 to P53	Input/output		4-bit input/output port (PORT5)		Input	E
P60 to P63	Input/output		Programmable 4-bit input/output port (PORT6) Bit-wise input/output setting enable	0	Input	E
P70 to P73	Input/output		4-bit input/output port (PORT7)		Input	E
P80 to P83	Input/output		4-bit input/output port (PORT8)	0	Input	E
P90 to P93	Input/output		4-bit input/output port (PORT9)		Input	E
P120 to P123	Input/output		N-ch open drain 4-bit input/ output port (PORT12) Bit-wise pull-up resistor incorporation enable (mask option) 2 V withstand for open drain	0	Input* 2	М
P130 to P133	Input/output		N-ch open drain 4-bit input/ output port (PORT13) Bit-wise pull-up resistor incorporation enable (mask option) 12 V withstand for open drain		Input* 2	М
P140 to P143	Input/output		N-ch open drain 4-bit input/output port (PORT14) Bit-wise pull-up resistor incorporation enable (mask option) 12 V withstand for open drain		Input* 2	М

^{* 1:} Circles indicate Schmitt trigger inputs.

2: High impedance for open drain High level for on-chip pull-up resistors

3.2 Non-Port Pins

	Input/Output	Dual Function Pin	Function	At Reset	l/O Circuit Type* 1
PTH00 to PTH03	Input		Threshold voltage ariable 4-bit analogy input port.		N
TIO TI1	Input		External event pulse input for the timer/event counter or edge detect vector interrupt input. 1-bit input enable.		В
PTO0	Input/output	P20	Timer/event counter output.	Input	E
PTO1		P21			
SCK	Input/output	P01	Serial clock input/output.	Input	F
SO	Input/output	P02	Serial data output.	Input	E
SI	Input	P03	Serial data input.	Input	В
INT4	Input	P00	Edge detect vector interrupt input (for detecting both rising and falling edges).	Input	B
INT0	Input	P10	Edge detect vector interrupt input (detected edge selectable).	Input	В
INT1		P11			
INT2	Input	P12	Edge detect testable input (for rising edge detection).	Input	В
INT3		P13			
PCL	Input/output	P22	Clock output.	Input	E
X1, X2			Crystal/ceramic connect pin (system clock oscillation). In case with the external clock, input a signal to X1 and the antiphase to X2.		
RESET	Input		System reset input (low level active).		В
NC*2			No Connection		
Vdd			Positive power supply.		
Vss			GND potential.		


* 1: Circles indicate Schmitt trigger inputs. 2: When the PWB is shared with the μ PD75P116, connect the NC pin to VDD directly.

NEC

3.3 Pin Input/Output Circuits

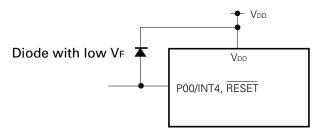
 $\mu \text{PD75116}(\text{A})$ pin input/output crcuit are shown in schematic form.

Figure 3-1 Pin Input/Output Circuits

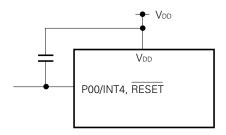
3.4 Recommended Connection of Unused Pins

Pin	Recommended Connecting Method
PTH00 to PTH03	Connect to Vss or VDD
тю	
TI1	
P00	Connect to Vss
P01 to P03	Connect to Vss or VDD
P10 to P13	Connect to Vss
P20 to P23	Input state : Connect to Vss or VDD
P30 to P33	Output state: Leave open
P40 to P43	
P50 to P53	
P60 to P63	
P70 to P73	
P80 to P83	
P90 to P93	
P120 to P123	
P130 to P133	
P140 to P143	
RESET	Connect to VDD*1
NC	Leave open or connect to VDD*2

- *1: Only when a power-on reset generator is built in by mask option, connect t VDD.
- 2: When the PWB is shared with the $\mu \rm PD75P116,$ connect the NC pin to VDD directly.


3.5 Caution Relating to Use of P00/INT4 Pin and RESET Pin In addition to the functions described in sections 3.1 and 3.2, the P00/INT4 pin and the RESET pin have the function to set the IC test mode for testing the μ PD75116(A) internal operations.

When a voltage larger than VDD is applied to one of these two pins, the test mode is set. Thus, if noise exceeding VDD is applied even during normal operations, the test mode is set and normal operations may be discontinued.

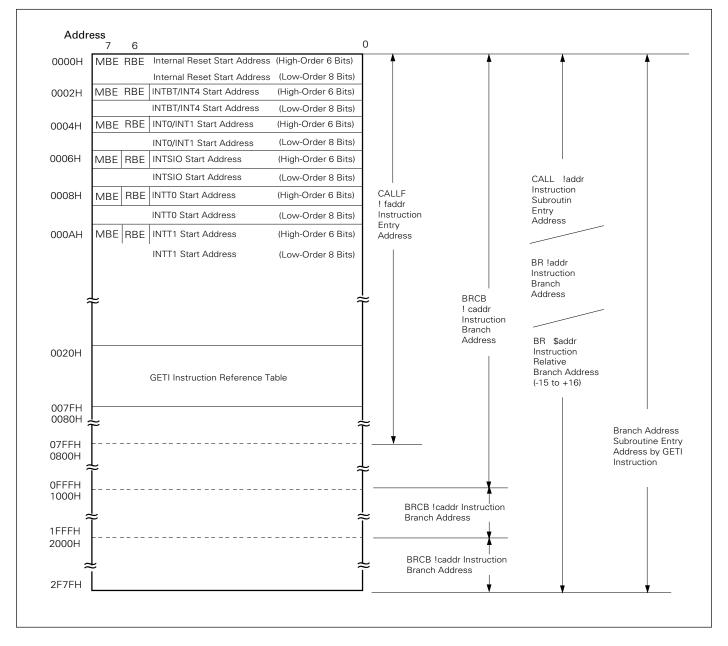

For example, if a cable from the P00/INT4 or RESET pin is too long, inter-wiring noise may be applied to the pin, the pin voltage may become larger than VDD, causing malfunctioning.

Thus, carry out wiring to minimize inter-wiring noise. If the noise cannot be suppressed completely, carry out the following countermeasure against noise using an externally mounted component.

o Connect a diode with low VF (max 0.3 V) between VDDs

o Connect acapacitor between VDDs

Phase-out/Discontinued


μ**PD75112(A), 75116(A)**

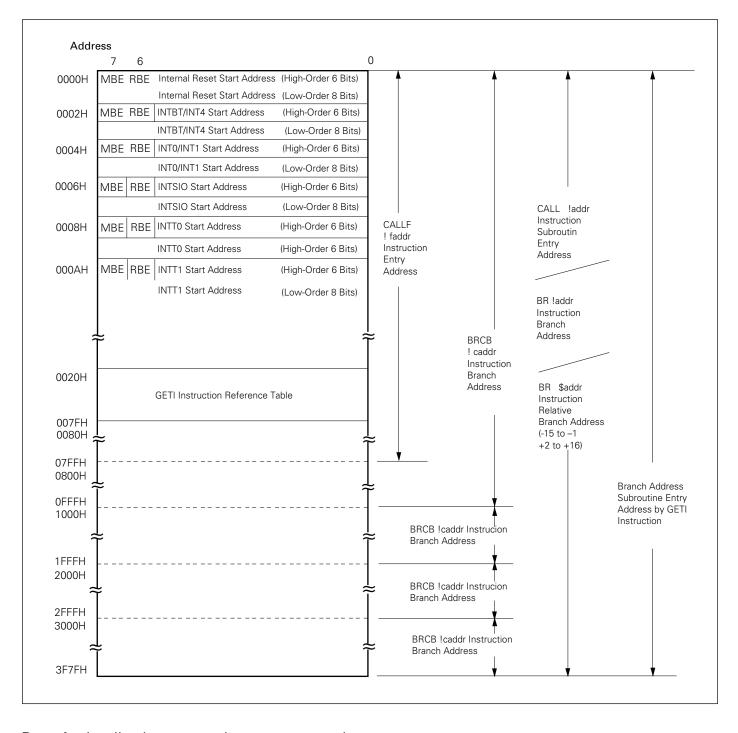
4. Memory Configuration

- Program Memory (ROM) 12160 × 8 bits (0000H to 2F7FH): μPD75112(A) 16256 × 8 bits (0000H to 3F7FH): μPD75116(A)
 - 0000H to 0001H: Vector table for writing the program start address by reset
 - 0002H to 000BH: Vector table for writing the program start address by interrupt

Figure 4-1 Program Memory Map (µPD75112(A))

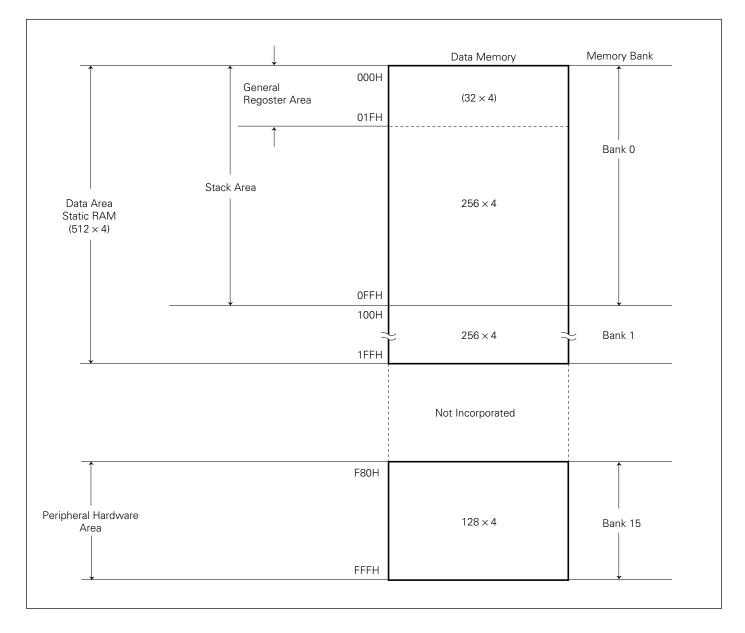
- 0020H to 007FH: Table area to be referred to by the GETI instruction
- Data Memory
 - Data area 512 × 4 bits (000H to 1FFH)
 - Peripheral hardware area
 - 128 imes 4 bits (F80H to FFFH)

Remarks: In all other cases, the program can be branched by the BR PCDE and BR PCXA


instructions to an address with only the lower 8 bits of PC changed.

μ**PD75112(A)**, **75116(A)**

Figure 4-2 Program Memory Map (µPD75116(A))


Remarks: In all other cases, the program can be branched by the BR PCDE and BR PCXA instructions to an address with only the lower 8 bits of PC changed.

Phase-out/Discontinued

μ**PD75112(A), 75116(A)**

Figure 4-3 Data Memory Map

52

5. Peripheral Hardware Functions

5.1 Digital Input/Output Port

The digital input/output port has the following tree types.

- CMOS input (PORT0, 1) : 8
- CMOS input/output (PORT 2 to PORT 9) : 32
- N-ch open-drain input/output (PORT 12 to PORT 14): 12

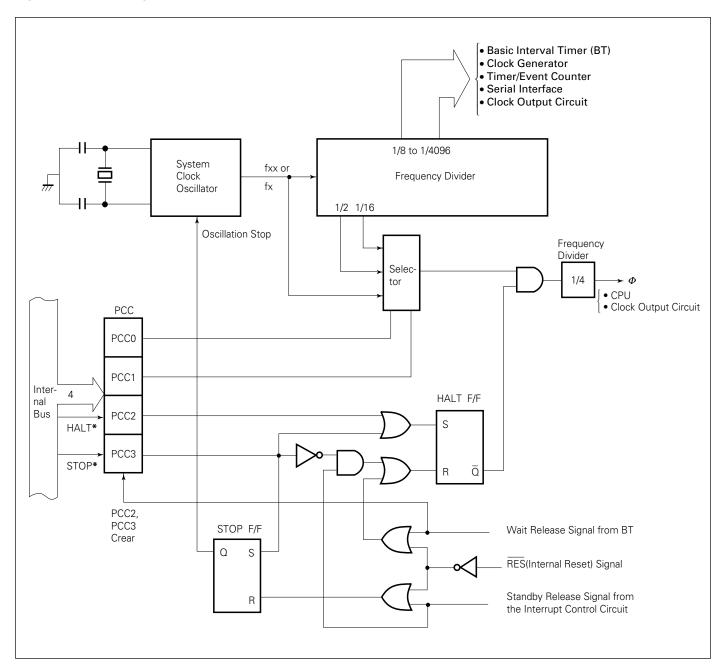
Total

Table 5-1 Functions of Digital Ports

Port (Code)	Functions	Operations and Features	Remarks
PORT0 PORT1	4-bit input	Read or test always enable irrespectively of the operating mode of dual-function pins.	Share the pins with SI, SO, SCK and INT0 to 4.
PORT3 PORT6	4-bit input/ output	Can be set bit-wise to the input or output mode.	
PORT2 PORT4 PORT5 PORT7 PORT8 PORT9		Can be set in 4-bit units to the input or output mode. Ports 4 and 5, 6 and 7, 8 and 9 can form pairs and data can be input/output in 8-bit units.	Port 2 shares the pin with PTO0, PTO1 and PCL.
PORT12 PORT13 PORT14	4-bit input/ output (N-ch open- drain, 12 V withstand voltage)	Can be set in 4-bit units the input or output mode. Ports 12 and 13 can form a pair and data can be input/output in 8- bit units.	On-chip pull-up registers can be specified bit-wise by mask option.

5.2 Clock Generator

The clock generator is a circuit which supplies the CPU and peripheral hardware with various clocks and controls the CPU operating mode.


The instruction execution time can be changed.

• 0.95 μs/1.91 μs/15.3 μs (at 4.19 MHz operation)

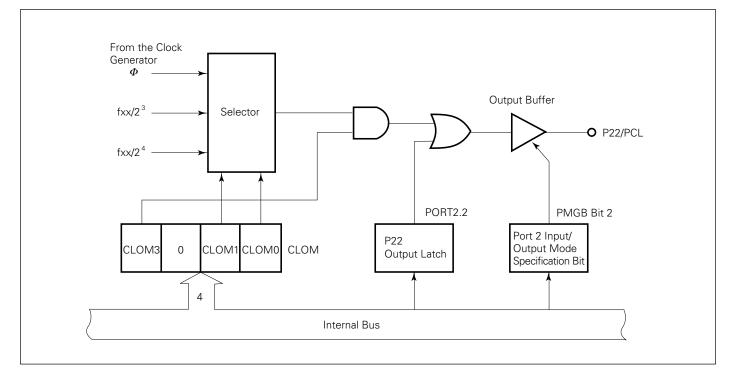
NEC

Phase-out/Discontinued µPD75112(A), 75116(A)

Figure 5-1 Block Diagram of Clock Generator ★

- **Remarks 1**: fxx=crystal/ceramic oscillator frequency.
 - 2: fx=external clock frequency.
 - 3: *Ф*=CPU clock
 - **4**: *indicates instruction execution.
 - 5: PCC (processor clock control register)
 - 6: 1 clock cycle (tcr) of Φ is 1 michine cycle of the instruction. For tcr, see the AC characteristics in the 11."Electrical Specifications".


5.3 Clock Output Circuit


μ**PD75112(A)**, 75116(A)

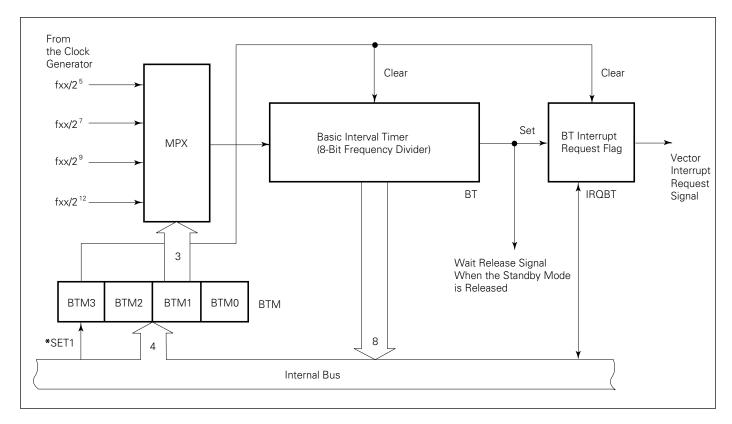
The clock output circuit is a circuit to generate clock pulses from the P22/PCL pin. It is used to supply the peripheral LSIs with clock pulses.

•Clock output (PCL): Φ , 524 kHz, 262 kHz (at 4.19 MHz operation)

The clock output cicuit configuration is shown as the following.

5.4 Basic Interval Timer

The basic interval timer has the following functions;


- Interval timer operation to generate reference time interrupts
- Watchdog timer application to detect program overrun
- Wait time selection and count when the standby mode is released
- Count content read

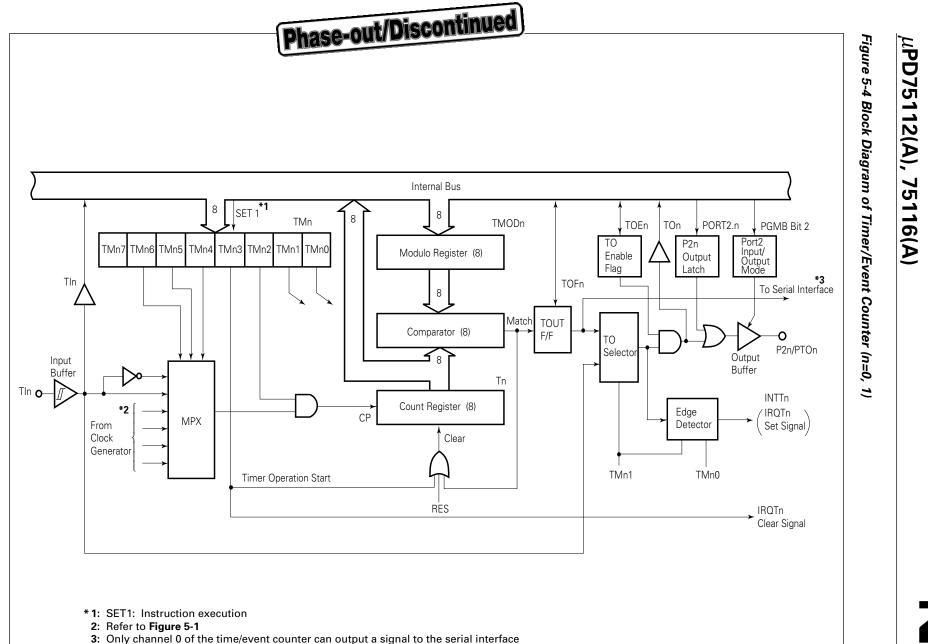
NEC

Phase-out/Discontinued

μ**PD75112(A), 75116(A)**

Figure 5-3 Basic Interval Timer Configuration

Remark: * indicates instruction execution.

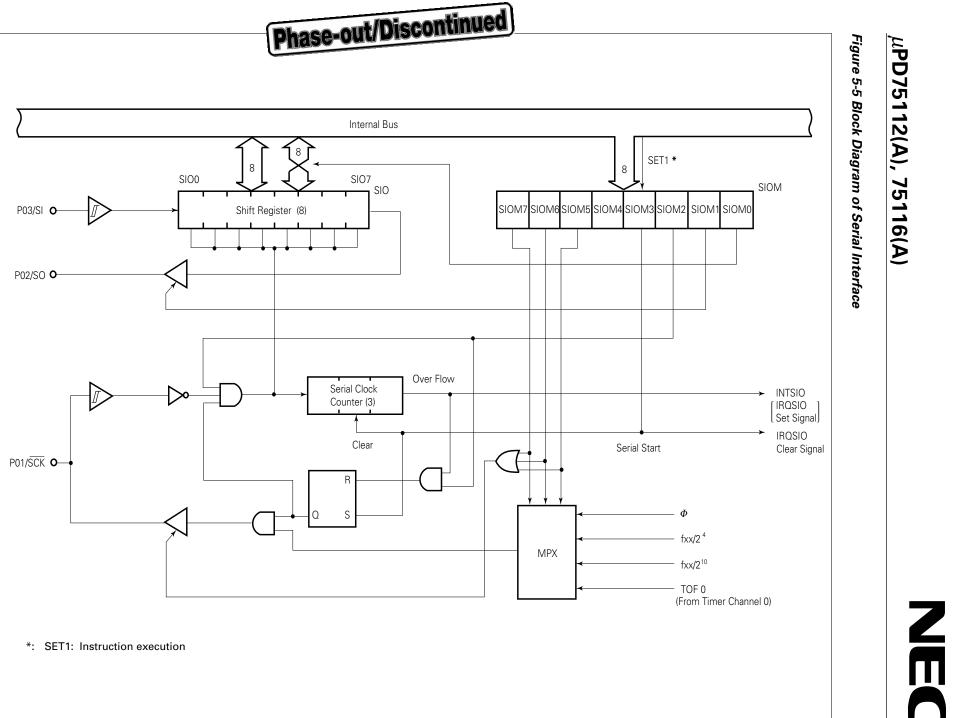

5.5 Timer/Event Counter

The μ PD75116(A) has a two-channel on-chip timer/ event counters.

Channels 0 and 1 of the timer/event counter have the same configuration and functions. They differ only in the selectable count pulse (CP) and the function of supplying clocks to the serial interface.

The timer/event counter has the following functions:

- Programmable interval timer operation
- Output of square wave having any selected frequency to PTOn pin
- Event counter operation
- Use of TIn pin as an external interrupt input pin
- Output of TIn pin input divided by N to PTOn pin (frequency divider operation)
- Serial shift clock supply to the serial interface circuit (channel 0 only)
- Count status read function



5.6 Serial Interface

The μ PD75116(A) incorporates the clock synchronous 8-bit serial interface. The serial interface has the following two modes.

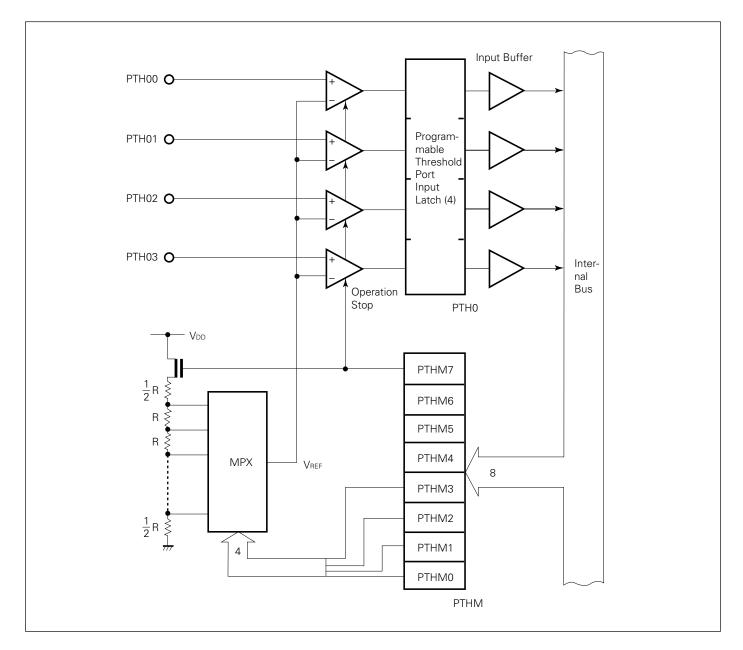
- Operation stop mode
- 3-wire serial I/O mode (MSB/LSB top switching possible)

Connection with the μ PD75116(A) and the 75X series, 78K series and various I/O devices is possible in the 3-wire serial I/O mode.

20

µPD75112(A), 75116(A)

μ PD75112(A), 75116(A)

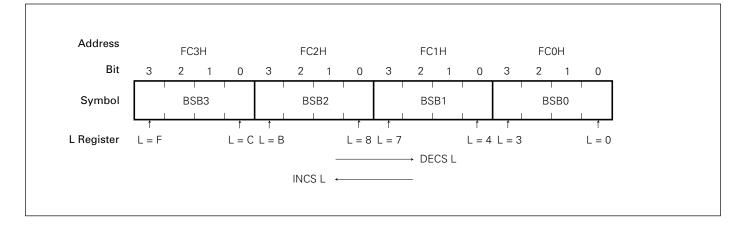

5.7 ProgrammableThreshold Port (Analog Input Port)

The μ PD75116(A) is equipped with 4-bit analog input pins (PTH00 to PTH03) capable of changing the threshold voltage. These pins are configured as shown in Figure 5-6.

Sixteen threshold voltage (VREF) values (V_{DD} $\times \frac{0.5}{16}$ -V_{DD} $\times \frac{15.5}{16}$) are available and analog signals can be directly input.

The analog input port can also be used as a digital signal input port by selecting $V_{\text{DD}} \times \frac{7.5}{16}$ for VREF.

Figure 5-6 Block Diagram of Programmable Threshold Port



5.8 Bit Sequential Buffer ... 16 bit

The bit sequential buffer is a special data memory for bit control. Since this buffer can easily operate bits by sequentially changing address and bit specifications, it can be conveniently be used for bit-wise processing of data having long bit lengths.

Remarks: In pmen. @L addressing, the specified bit moves in accordance with the L register.

5.9 Power-On Flag (Mask Option)

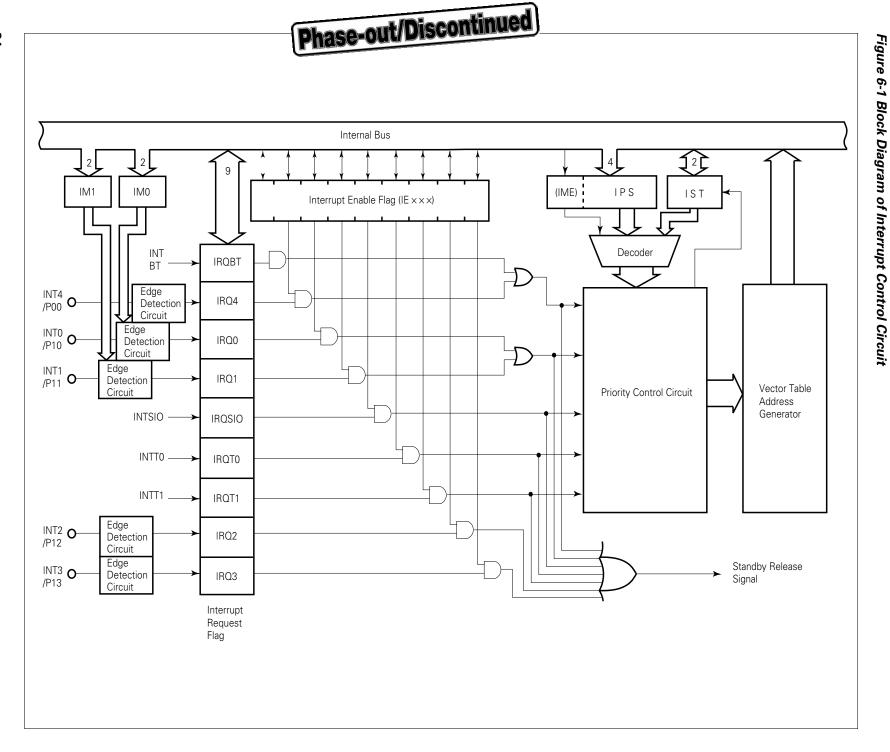
The power-on flag (PONF) is only set (1) when the power-on reset circuit is activated and the power-on reset signal is generated (see **Figure 8-1**).

PONF is mapped on bit 0 at address FD1H of the data memory space and is manipulated by a bit manipulation instruction

However, it cannot be set(1) by the SET1 instruction.

6. Interrupt Functions

There are seven types of interrupt sources for the μ PD75116(A) to allow multi-interruption with priority.


The μ PD75116(A) is also provided with two types of edge detection testable inputs.

The μ PD75116 interrupt control circuit has the following functions;

- Hardware controlled vector interrupt function which enables to control by the interrupt enable flag (IE×××) and the interrupt master enable flag (IME) whether an interrupt should be enabled.
- Interrupt start address can be set freely.
- Multiple interrupt function which enables to specify priority by the interrupt priority select register (IPS).
- Interrupt request flag (IRQ×××) test function (interrupt generation can be checked by the software).
- Standby mode release (the interrupt to be released can be selected by the interrupt enable flag).

µPD75112(A), 75116(A)

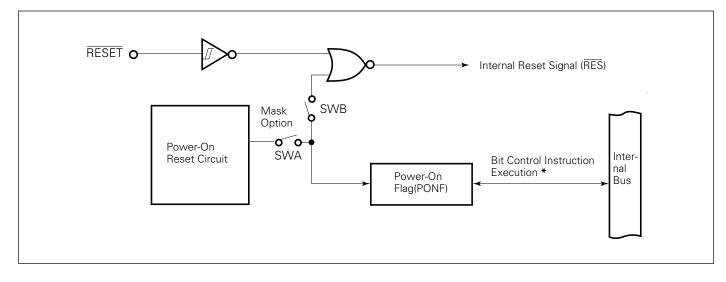
24

7. Stanby Functions

Two types of standby modes (STOP and HALT modes) are available for the μ PD75116(A) to decrease power consumption during standby for program.

Table 7-1 Operation Statuses in Standby Mode

		STOP Mode	HALT Mode
Set instructi	on	STOP instruction	HALT instruction
Operation status	Clock generator	Clock oscillation stop	Only CPU clock $arPhi$ stop
Status	Basic interval timer	Operation stop	Operation (IRQBT set at reference time intervals)
	Serial interface	Operation enabled only when external SCK input and TO0 clock are set for serial clocks (when timer/event counter 0 is set to external TI0 input) is selected	Operation enabled when aclock other than $arPhi$ is specified for the serial clock
	Timer/event counter	Operation enabled only when TIn pin input is specified for the count clock	Operation enabled
	Clock output circuit	Operation stop	Clock other than CPU clock $arPhi$ enabled for output
	CPU	Operation stop	Operation stop
Release sig	nal	Interrupt request signal enabled by interrupt enable flag or RESET input	


μ**PD75112(A), 75116(A)**

8. Reset Functions

The reset signal (RES) generator is configured as shown in Figure 8-1.

Figure 8-1 Reset Signal Generator

*: PONF setting (1) by SET1 instruction is not possible.

The power-on reset circuit generates the internal reset signal by rising of supply voltage. This pulse is used in the three ways according to the specification of mask option of SWA and SWB shown in Figure 8-1 (refer to "10. Mask Option Selection").

Reset operations are shown in Figures 8-2 and 8-3.

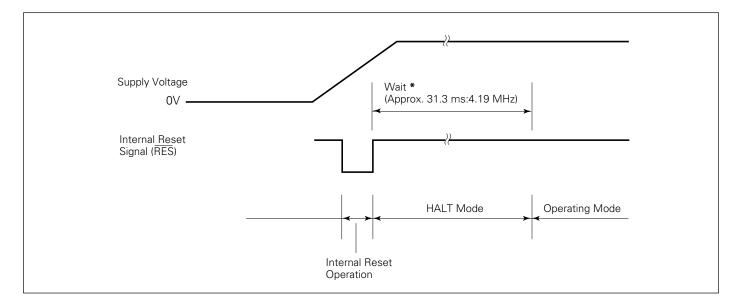



Figure 8-3 Reset Operation by Reset Input

*: The wait time does not include a time from the generation of RES signal to the start of oscillation.

Each hardware status after reset operation is shown in Table 8-1.

μ PD75112(A), 75116(A)

Table 8-1 Hardware Statuses after Reset

Hardware			lware	RESET Input in Standby Mode	RESET Input in Power-On Reset or Operation
Program counter (PC)				Lower 6 bits of address 0000H of the program memory are set to PC13 to PC8 and the content of address 0001H is set to PC7 to PC0.	same as left
PWS Carry flag (CY)		CY)	Hold	Undefined	
	Skip fl	lag (SK	0 to SK2)	0	0
	Interru	upt stat	tus flag (IST0, 1)	0	0
	Bank e	enable	flags (MBE, RBE)	Bits 6 and 7 of address 0000H of the program memory are set to RBE and MBE, respectively.	same as left
Stack poir	ter (SP	')		Undefined	Undefined
Data mem	ory (RA	AM)		Hold *1	Undefined
General re	gisters	(X, A,	H, L, D, E, B, C)	Hold	Undefined
Bank selec	t regist	ters (M	BS, RBS)	0, 0	0, 0
Basic inte	erval ti	imer	Counter (BT)	Undefined	Undefined
			Mode register (BTM)	0	0
Timer/ ev	ent	Cou	nter (Tn)	0	0
counter (n = 0, 1)		Modulo register (TMODn)		FFH	FFH
		Мос	le register (TMn)	0	0
		TOE	n, TOFn	0, 0	0, 0
Serial	S	Shift register (SIO)		Hold	Undefined
interface	М	Mode register (SIOM)		0	0
Clock generator, clock		rocesso egister	or clock control (PCC)	0	0
output circuit			tput mode (CLOM)	0	0
Interrupt	In	iterrupt	t request flag (IRQ×××)	Reset (0)	Reset (0)
	In	iterrupt	t enable flag (IE×××)	0	0
	Pi	riority s	select resister (IPS)	0	0
	IN	JT0, 1 r	node resisters (IM0, IM1)	le resisters (IM0, IM1) 0, 0	
Digital port	0	utput buffer Off		Off	
μοτι	0	utput la	atch	Clear (0)	
		Input/output mode registers (PMGA, PMGB, PMGC)		0	0
Analog	P	TH00 to	o PTH03 input latches	Undefined	Undefined
port	М	lode re	gister (PTHM)	0	0
Power-on	flag (P0	ONF)		Hold	1 or undefined *2
Bit seauer	tial but	ffers (B	SB0 to BSB3)	0	0

Phase-out/Discontinued

μ**PD75112(A)**, 75116(A)

9. Instruction Set

(1) Operand identifier and description method

In the operand column of each instruction, describe the corresponding operand in accordance with the description method for the operand identifier of the instruction (refer to the **"RA75X Assembler Package User's Manual Language Volume" (EEU-730)** for details). If more than one description method is available, select one of them. Capital alphabetic letters, plus and minus signs are key words. Describe them as they are.

In the case of immediate data, describe appropriate numeric values or labels.

Symbols of various registers and flags can be described as labels instead of mem, fmem, pmem, bit, etc. (Refer to the " μ PD751×× Series User's Manual (IEM-922)" for details). Labels which can be described are limited for fmem and pmem.

Identifier		Description Method				
reg reg1	X, A, B, C, D, E, H, L X, B, C, D, E, H, L					
rp rp1 rp2 rp' rp'1	XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'					
rpa rpa1	HL, HL+, HL-, DE, DL DE, DL					
n4 n8	4-bit immediate data or label 8-bit immediate data or label					
mem bit	8-bit immediate data or label* 2-bit immediate data or label					
fmem pmem	FB0H to FBFH and FF0H to FFFH immediate data or labels FC0H to FFFH immediate data or labels					
addr	μPD75112(A) 0000H to 2F7FH immediate data or labels					
	μPD75116(A) 0000H to 3F7FH immediate data or labels					
caddr	12-bit immediate data or label					
faddr	11-bit immediate data or label					
taddr	20H to 7FH immediate data (bit = 0) or labels					
PORTn IE××× RBn MBn	PORT0 to PORT9, PORT12 to PORT14 IEBT, IESIO, IET0, IET1, IE0 to IE4 RB0 to RB3 MB0, MB1, MB15					

*: In the case of 8-bit data processing, only even address can be described for "mem".

 μ PD75112(A), 75116(A) Phase-out/Discontinued

(2) Legend in the description of operations

А	:	A register; 4-bit accumulator
В	:	B register
С	:	C register
D	:	D register
Е	:	E register
Н	:	H register
L	:	L register
Х	:	X register
XA	:	Register pair (XA); 8-bit accumulator
BC	:	Register pair (BC)
DE	:	Register pair (DE)
HL	:	Register pair (HL)
XA'	:	Extended register pair (XA')
BC'	:	Extended register pair (BC')
DE'	:	Extended register pair (DE')
HL′	:	Extended register pair (HL')
PC	:	Program counter
SP	:	Stack pointer
CY	:	Carry flag; bit accumulator
PSW	:	Program status word
MBE	:	Memory bank enable flag
RBE	:	Register bank enable flag
PORTn	:	Port n (n = 0 to 9, 12 to 14)
IME	:	Interrupt mask enable flag
IPS	:	Interrupt priority select register
IE×××	:	Interrupt enable flag
RBS	:	Register bank select register
MBS	:	Memory bank select register
PCC	:	Processor clock control register
	:	Address and bit division
(××)	:	Content addressed by xx
××Н	:	Hexadecimal data

(3) Description of symbols in the addressing area column

		1		
*1	MB=MBE•MBS (MBS=0, 1, 15)			
*2	MB=0			
*3	MBE=0 : MB=0 (00H-7FH) MB=15 (80H-FFH) MBE=1 : MB=MBS (MBS=0, 1, 15)	Data Memory Addressing		
*4	MB=15, fmem=FB0H-FBFH, FF0H=FFFH			
*5	MB=15, pmem=FC0H-FFFH			
*6	addr=0000H-2F7FH (µPD75112(A)) =0000H-3F7FH (µPD75116(A))	A A A A A A A A A A A A A A A A A A A		
*7	addr=(Current PC) -15 to (Current PC) +16			
*8	*8 caddr=0000H-0FFFH (PC13, PC12=00B : μPD75112(A), 116(A)) or =1000H-1FFFH (PC13, PC12=01B : μPD75112(A), 116(A)) or =2000H-2F7FH (PC13, PC12=10B : μPD75112(A)) or =2000H-2FFFH (PC13, PC12=10B : μPD75116(A)) or =3000H-3F7FH (PC13, PC12=11B : μPD75116(A))			
*9	faddr=0000H-07FFH			
*10	taddr=0020H-007FH			

Remarks 1: MB indicates an accessible memory bank.

- 2: In *2, MB = 0 irrespectively of MBE and MBS.
 3: In *4 and *5, MB = 15 irrespectively of MBE and MBS.
- 4: ***6** to ***10** indicate addressable areas.
- (4) Description of machine cycle column

S indicates the number of machine cycles required for the instruction having skip function to execute skip operation. The value of S varies as follows:

- When no skip S = 0
- When 3-byte instruction (BR !addr, CALL !addr instructions) is skipped S = 2
- Note: GETI instruction is skipped in one-machine cycle.

One machine cycle is equal to one cycle (=tcy)of CPU clock. Three values are available for the one machine cycle by PCC setting.

Phase-out/Discontinued

μ**PD75112(A), 75116(A)**

Instructions	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Transfer	MOV	A, #n4	1	1	A←n4		Stack A
		reg1, #n4	2	2	reg1←n4		
		XA, #n8	2	2	XA←n8		Stack A
		HL, #n8	2	2	HL←n8		Stack B
		rp2, #n8	2	2	rp2←n8		
		A, @HL	1	1	A←(HL)	*1	
		A, @HL+	1	2+S	A←(HL), then L←L+1	*1	L=0
		A, @HL-	1	2+S	A←(HL), then L←L-1	*1	L=FH
		A, @rpa1	1	1	A←(rpa1)	*2	
		XA, @HL	2	2	XA←(HL)	*1	
		@HL, A	1	1	(HL)←A	*1	
		@HL, XA	2	2	(HL)←XA	*1	
		A, mem	2	2	A←(mem)	*3	
		XA, mem	2	2	XA←(mem)	*3	
		mem, A	2	2	(mem)←A	*3	
		mem, XA	2	2	(mem)←XA	*3	
		A, reg	2	2	A←reg		
		XA, rp'	2	2	XA←rp'		
		reg1, A	2	2	reg1←A		
		rp'1 XA	2	2	rp'1←XA		
-	ХСН	A, @HL	1	1	A↔(HL)	*1	
		A, @HL+	1	2+S	A \leftrightarrow (HL), then L \leftarrow L+1	*1	L=0
		A, @HL-	1	2+S	A↔(HL), then L←L-1	*1	L=FH
		A, @rpa1	1	1	A⇔(rpa1)	*2	
		XA, @HL	2	2	XA↔(HL)	*1	
		A, mem	2	2	A⇔(mem)	*3	
		XA, mem	2	2	XA↔(mem)	*3	
		A, reg1	1	1	A⇔reg1		
		XA, rp'	2	2	XA⇔rp'		
Table	MOVT	XA, @PCDE	1	3	ХА←(PC13-8+DE)ком		
Reference		XA, @PCXA	1	3	ХА←(PC13-8+ХА)ROM		
Bit Transfer	MOV1	CY, fmem. bit	2	2	CY←(fmem.bit)	*4	
		CY, pmem. @L	2	2	CY←(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem. bit	2	2	CY←(H+mem₃-₀.bit)	*1	
		fmem. bit, CY	2	2	(fmem.bit)←CY	*4	
		pmem. @L, CY	2	2	(pmem7-2+L3-2.bit(L1-0))←CY	*5	
		@H+mem. bit, CY	2	2	(H+mem₃₋₀.bit)←CY	*1	

Phase-out/Discontinued

μ**PD75112(A)**, 75116(A)

Instructions	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Arithmetic	ADDS	A, #n4	1	1+S	A←A+n4		Carry
		XA, #n8	2	2+S	XA←XA+n8		Carry
	-	A, @HL	1	1+S	A←A+(HL)	*1	Carry
		XA, rp'	2	2+S	XA←XA+rp'		Carry
		rp'1, XA	2	2+S	rp'1←rp'1+XA		Carry
	ADDC	A, @HL	1	1	A, CY←A+(HL)+CY	*1	
		XA, rp'	2	2	XA, CY←XA+rp'+CY		
		rp'1, XA	2	2	rp'1, CY←rp'1+XA+CY		
	SUBS	A, @HL	1	1+S	A←A–(HL)	*1	borrow
	-	XA, rp'	2	2+S	XA←XA-rp'		borrow
		rp'1, XA	2	2+S	rp'1←rp'1-XA		borrow
	SUBC	A, @HL	1	1	A, CY←A-(HL)-CY	*1	
		XA, rp'	2	2	XA, CY←XA-rp'-CY		
		rp'1, XA	2	2	rp'1, CY←rp'1-XA-CY		
Ī	AND	A, #n4	2	2	A←A∧n4		
		A, @HL	1	1	A←A∧(HL)	*1	
	·	XA, rp'	2	2	XA←XA∧rp'		
		rp'1, XA	2	2	rp'1←rp'1∧XA		
	OR	A, #n4	2	2	A←A∨n4		
		A, @HL	1	1	A←A∨(HL)	*1	
		XA, rp'	2	2	XA←XA∨rp'		
		rp'1, XA	2	2	rp'1←rp'1∨XA		
	XOR	A, #n4	2	2	A←A∀n4		
		A, @HL	1	1	A←A∀(HL)	*1	
		XA, rp'	2	2	XA←XA∀rp'		
		rp'1, XA	2	2	rp'1←rp'1∀XA		
Accumulator	RORC	А	1	1	CY←A₀, A₃←CY, An-1←An		
Operation	NOT	А	2	2	A←Ā		
Increase/	INCS	reg	1	1+S	reg←reg+1		reg=0
Decrease		rp1	1	1+S	rp1←rp1+1		rp1=00H
		@HL	2	2+S	(HL)←(HL)+1	*1	(HL)=0
		mem	2	2+S	(mem)←(mem)+1	*3	(mem)=0
F	DECS	reg	1	1+S	reg←reg-1		reg=FH
		rp'	2	2+S	rp'←rp'-1		rp'=FFH
Compare	SKE	reg, #n4	2	2+S	Skip if reg=n4		reg=n4
		@HL, #n4	2	2+S	Skip if (HL)=n4	*1	(HL)=n4
		A, @HL	1	1+S	Skip if A=(HL)	*1	A=(HL)

μ**PD75112(A), 75116(A)**

Instructions	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Compare	SKE	XA, @HL	2	2+S	Skip if XA=(HL)	*1	XA=(HL)
		A, reg	2	2+S	Skip if A=reg		A=reg
		XA, rp'	2	2+S	Skip if XA=rp'		XA=rp'
Carry Flag Operation	SET1	CY	1	1	CY←1		
	CLR1	CY	1	1	CY←0		
	SKT	CY	1	1+S	Skip if CY=1		CY=1
	NOT1	CY	1	1	CY←CY —		

Phase-out/Discontinued

Phase-out/Discontinued

μ**PD75112(A), 75116(A)**

Instructions	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Memory Bit Manipulation	SET1	mem. bit	2	2	(mem.bit)←1	*3	
wanipulation		fmem. bit	2	2	(fmem.bit)←1	*4	
		pmem. @L	2	2	(pmem7-2+L3-2.bit(L1-0))←1	*5	
		@H+mem. bit	2	2	(H+mem₃₀.bit)←1	*1	
	CLR1	mem. bit	2	2	(mem.bit)←0	*3	
		fmem. bit	2	2	(fmem.bit)←0	*4	
		pmem. @L	2	2	(pmem7-2+L3-2.bit(L1-0))←0	*5	
		@H+mem. bit	2	2	(H+mem₃₀.bit)←0	*1	
	SKT	mem. bit	2	2+S	Skip if (mem.bit)=1	*3	(mem.bit)=1
		fmem. bit	2	2+S	Skip if (fmem.bit)=1	*4	(fmem.bit)=1
		pmem. @L	2	2+S	Skip if (pmem7-2+L3-2.bit(L1-0))=1	*5	(pmem.@L)=1
		@H+mem. bit	2	2+S	Skip if (H+mem3-0.bit)=1	*1	(@H+mem.bit)=
	SKF	mem. bit	2	2+S	Skip if (mem.bit)=0	*3	(mem.bit)=0
		fmem. bit	2	2+S	Skip if (fmem.bit)=0	*4	(fmem.bit)=0
		pmem. @L	2	2+S	Skip if (pmem7-2+L3-2.bit(L1-0))=0	*5	(pmem.@L)=0
		@H+mem. bit	2	2+S	Skip if (H+mem3-0.bit)=0	*1	(@H+mem.bit)=
SKTCL	SKTCLR	fmem. bit	2	2+S	Skip if (fmem.bit)=1 and clear	*4	(fmem.bit)=1
		pmem. @L	2	2+S	Skip if (pmem7-2+L3-2.bit(L1-0)) =1 and clear	*5	(pmem.@L)=1
		@H+mem. bit	2	2+S	Skip if (H+mem3-0.bit)=1 and clear	*1	(@H+mem.bit)=
	AND1	CY, fmem. bit	2	2	CY ←CY∧(fmem.bit)	*4	
		CY, pmem. @L	2	2	CY ←CY∧(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem. bit	2	2	CY ←CY∧(H+mem₃-₀.bit)	*1	
	OR1	CY, fmem. bit	2	2	CY ←CY∨(fmem.bit)	*4	
		CY, pmem. @L	2	2	CY ←CY∨(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem. bit	2	2	CY ←CY∨(H+mem₃-₀.bit)	*1	
	XOR1	CY, fmem. bit	2	2	CY ←CY∀(fmem.bit)	*4	
		CY, pmem. @L	2	2	CY ←CY∀(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem. bit	2	2	CY ←CY∀(H+mem₃-₀.bit)	*1	
Branch BR	BR	addr			PC13-0 ←addr (Most appropriate instruction is selected by assembler from among BR !addr, BRCB !caddr and BR \$addr)	*6	
		!addr	3	3	PC13-0 ←addr	*6	
		\$addr	1	2	PC13-0 ←addr	*7	
	BRCB	!caddr	2	2	PC13-0←PC13, 12+caddr11-0	*8	
	BR	PCDE	2	3	PC13-0 ←PC13-8+DE		
		PCXA	2	3	PC13-0 ←PC13-8+XA		

μ**PD75112(A), 75116(A)**

Instructions	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Subroutine Stack Control	CALL	!addr	3	3	(SP-4)(SP-1)(SP-2)←PC11-0 (SP-3)←MBE, RBE, PC13, 12 PC13-0←addr, SP←SP-4	*6	
	CALLF	!faddr	2	2	(SP-4)(SP-1)(SP-2)←PC11-0 (SP-3)←MBE, RBE, PC13, 12 PC13-0←00, faddr, SP←SP-4	*9	
	RET		1	3	MBE, RBE, PC13, 12-(SP+1) PC11-0-(SP)(SP+3)(SP+2) SP-(SP+4		
	RETS		1	3+S	MBE, RBE, PC13, 12←(SP+1) PC11-0←(SP)(SP+3)(SP+2) SP←SP+4, then skip unconditionally		Unconditional
	RETI		1	3	PC13, 12←(SP+1) PC11-0←(SP)(SP+3)(SP+2) PSW←(SP+4)(SP+5), SP←SP+6		
	PUSH	rp	1	1	(SP-1)(SP-2)←rp, SP←SP-2		
		BS	2	2	(SP-1)←MBS, (SP-2)←RBS, SP←SP-2		
	POP	rp	1	1	rp←(SP-1)(SP), SP←SP-2		
		BS	2	2	$MBS{\leftarrow}(SP+1), RBS{\leftarrow}(SP), SP{\leftarrow}SP+2$		
Interrupt	EI		2	2	IME (IPS.3)←1		
Control		IExxx	2	2	IE×××←1		
	DI		2	2	IME (IPS.3)←0		
		IExxx	2	2	IExxx←0		
Input/Output	IN* 1	A, PORTn	2	2	A←PORTn (n=0-9, 12-14)		
		XA, PORTn	2	2	XA←PORTn+1, PORTn (n=4, 6, 8, 12)		
	OUT* 1	PORTn, A	2	2	PORTn←4 (n=2-9, 12-14)		
		PORTn, XA	2	2	PORTn+1, PORTn←XA (n=4, 6, 8, 12)		
CPU Control	HALT		2	2	Set HALT Mode (PCC.2←1)		
	STOP		2	2	Set STOP Mode (PCC.3←1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS←n(n=0-3)		
		MBn	2	2	MBS←n (n=0, 1, 15)		
	GETI* 2	taddr	1	3	TBR Instruction PC13-0←(taddr)4-0+(taddr+1)	*10	
					TCALL Instruction (SP-4)(SP-1)(SP-2)←PC11-0 (SP-3)←MBE, RBE, PC13, 12 PC13-0←(taddr)5-0+(taddr+1) SP←SP-4		
					 When not TBR and TCALL instructions, (taddr) and (taddr+1) instructions are executed. 		Depends on the instruction referred to.

Phase-out/Discontinued

NEC

* 1: MBE=0 or 1 and MBS=15 must be set for execution of IN/OUT instruction.
 2: TBR and TCALL instructions are assembler pseudo-instructions for GETI instruction table definition.

10. Mask Option Selection

The following mask options are available for the \star μ PD75116(A).

Whether or not they should be incorporated can be selected.

(1) Pins

Pin	Mask Option
P120 to P123	Bit-wise pull-up resistor incorporation enable
P130 to P133	
P140 to P143	

(2) Power-on reset circuit and power-on flag (PONF)

One of the following three settings can be selected.

Mask Option	Mask Option Specification		Selection igure 8-1)	Internal Reset Signal (RES)
Power-on Reset Circuit	Power-on Flag (PONF)	SWA	SWB	
Incorporated	Incorporated	ON	ON	Generated automatically
Not incorporated	Incorporated	ON	OFF	Not generated automatically
Not incorporated	Not incorporated	OFF	OFF	

NEL

11. Electrical Specifications

Absolute Maximum Ratings

(Ta = 25 °C)

Parameter	Symbol	Test Condition	าร	Ratings	Unit
Power supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	VI1	Except for ports 12 to 14		-0.3 to VDD +0.3	V
	V12 *1	Ports 12 to 14	On-chip pull-up resistor	-0.3 to VDD +0.3	V
			Open drain	–0.3 to +13	v
Output voltage	Vo			-0.3 to VDD +0.3	V
Output current high	Іон	1 pin	Peak value	-10	mA
			Effective value	-5	mA
		All pins	Peak value	-30	mA
			Effective value	-15	mA
Output current low	Iol *2	1 pin	Peak value	10	mA
			Effective value	5	mA
		Total current of ports 0, 2 to 4, 12 to 14	Peak value	50	mA
			Effective value	25	mA
			Peak value	50	mA
			Effective value	25	mA
Operation temperature	Topt			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

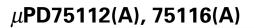
- * 1: When applying a voltage larger than 10 V to ports 12, 13 and 14 each, set the power impedance (pull-up resistor) to 50 k Ω or more.
- 2: Calculate each effective value using the following expression:

[Effective value]=[Peak value] $\times \sqrt{duty}$

Note: Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

Operating Voltage *

(Ta = -40 to +85 °C)


Parameter	Test Conditions	MIN.	MAX.	Unit
CPU*1		*2	6.0	V
Programmable threshold port (comparator input)		4.5	6.0	V
Power-on reset circuit*3		4.5	6.0	V
Other hardware* 1		2.7	6.0	V

*1: Except system clock oscillator, programmable threshold port and power-on reset circuit

2: Operating voltage range depends on the cycle time. See the **AC Characteristics**.

3: Whether or not it should be incorporated can be selected by mask options.

See the **Power-On Reset Circuit Characteristics (Mask Option)**.

Oscillate Characteristics

 $(Ta = -40 \text{ to } +85 \circ C, V_{DD} = 2.7 \text{ to } 6.0 \text{ V})$

Oscillator	Recommended Constant	Parameter	Test Condition	MIN.	TYP.	MAX.	Unit
Ceramic oscillation		Oscillator frequency (fxx)*1	VDD = oscillation voltage range	2.0		5.0* 3	MHz
		Oscillation stabilizing time*2	Oscillation voltage range MIN.	4			ms
Crystal oscillator		Oscillator frequency (fxx)*1		2.0	4.19	5.0* 3	MHz
		Oscillation stabilizing time* 2	VDD = 4.5 to 6.0 V	10			ms
	7/77			30			ms
External clock		X1 input frequency (fx)*1		2.0		5.0* 3	MHz
		X1 input high and low level widths (txH, txL)		100		250	ns

- *1: Oscillator frequency and X1 input frequency indicate only characteristics of the oscillator. Refer to AC characteristics for the instruction execution time.
- 2: The oscillation stabilizing time is necessary for oscillation to stabilize after VDD reaches oscillation voltage range MIN. or the STOP mode is released.
- **3**: When the oscillator frequency is 4.19 MHz < fxx \le 5.0 MHz, PCC=0011 should not be selected as instruction execution time. If PCC=0011 is selected, 1 machine cycle becomes less than 0.95 μ s, with the result that the specified MIN. value of 0.95 μ s cannot be observed.
- Note: When using the main system clock oscillator, * wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.
 - Wiring should be as short as possible.
 - Wiring should not cross other signal lines.
 - Wiring should not be placed close to a varying high current.
 - The potential of the oscillator capacitor ground should be the same as VSS.
 Do not ground wiring to a ground pattern in which a high current flows.
 - Do not fetch a signal from the oscillator.

DC Characteristics

 $(Ta = -40 \text{ to } +85 \circ C, V_{DD} = 2.7 \text{ to } 6.0 \text{ V})$

Parameter	Symbol	Tes	t Conditions		MIN.	TYP.	MAX.	Unit
Input voltage high	VIH1	Except for ports listed b	elow		0.7Vdd		Vdd	V
	Vih2	Ports 0, 1, TI0, 1, RESET			0.8Vdd		Vdd	V
	Vінз	Ports 12 to 14	On-chip pull-	On-chip pull-upresistor			Vdd	V
			Open drain		0.7Vdd		12	V
	VIH4	X1, X2	1		Vdd-0.5		Vdd	V
Input vitage low	VIL1	Except for ports listed b	elow		0		0.3VDD	V
	VIL2	Ports 0, 1, TI0, 1, RESET			0		0.2VDD	V
	Vil3	X1, X2			0		0.4	V
Output voltage high	Vон	VDD = 4.5 to 6.0 V, IOH =	Vdd = 4.5 to 6.0 V, юн = –1 mA		Vdd-1.0			V
		Юн = -10	00µA		Vdd-0.5			V
Output voltage low	Vol	VDD = 4.5 to 6.0 V	.0 V Ports 0, 2 to 9, IoL = 5 mA			0.25	1.0	V
			Ports 12 to 14	, IoL = 5 mA		0.40	1.0	V
		VDD = 4.5 to 6.0V, IOL = 1	.6 mA				0.4	V
		IOL = 400)μA				0.5	V
Input leakage current high	Іцні	VIN = VDD	Except for ports listed below				3	μA
	ILIH2		X1, X2				20	μΑ
	Ілнз	VIN = 12 V	Ports 12 to 14	(for open drain)			20	μΑ
Input leakage current low	ILIL1	VIN = 0 V	Except for X1	, X2			-3	μA
	ILIL2		X1, X2				-20	μΑ
Output leakage current high	ILOH1	Vout = Vdd	Except for po	rts listed below			3	μA
	ILOH2	Vout = 12 V	Ports 12 to 14	(for open drain)			20	μA
Output leakage current low	Ilol	Vout = 0 V					-3	μA
On-chip pull-up resistor	R∟	Ports 12 to 14	VDD=5 V ±10%	, 0	15	40	70	kΩ
					10		80	kΩ
Supply current*1	IDD1	4.19 MHz	Vdd=5 V ±10%	ó* 2		3	9	mA
		crystal oscillation C1 = C2 = 22 pF	Vdd=3 V ±10%*3			0.55	1.5	mA
	IDD2		HALT mode	Vdd=5 V ±10%		600	1800	μΑ
				Vdd=3 V ±10%		200	600	μΑ
	Idd3	STOP mode, VDD = 3 V ±10%				0.1	10	μA

*1: Current for the on-chip pull-up resistor, power-on reset circuit (mask option) and comparator circuit is not included.

control resistor (PCC) set tp 0011.

3: When operated in the low-speed mode with the PCC set to 0000.

2: When operated in the hgh-speed mode with the processor clock

Capacitance

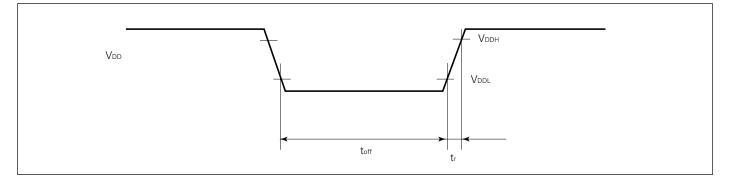
 $(Ta = 25 \circ C, VDD = 0 V)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz 0 V for pins except			15	pF
Output capacitance	Соит	the measured pins			15	pF
Input/output capacitance	Сю				15	pF

Comparator Characteristics

 $(Ta = -40 \text{ to } +85 \circ C, V_{DD} = 4.5 \text{ to } 6.0 \text{ V})$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Comparison accuracy	VACOMP				±100	mV
Threshold voltage	Vтн		0		V dd	V
PTH input voltage	Vipth		0		Vdd	V
Comparator circuit consumption		Set PTHM7 to "1".		1		mA


Power-On Reset Circuit Characteristics (Mask Option)

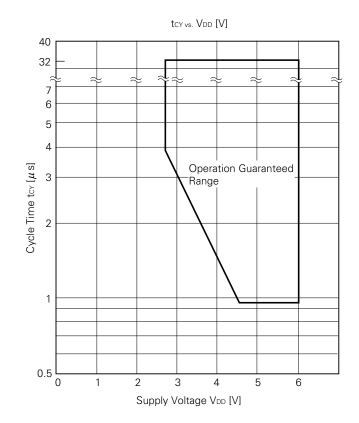
(Ta = -40 to +85 °C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power-on reset operating voltage high	Vddh		4.5		6.0	v
Power-on reset operating voltage low	Vddl		0		0.2	v
Supply voltage rise time	tr		10		*1	μs
Supply voltage off time	toff		1			s
Power-on reset circuit current consumption*2		VDD = 5 V ±10%		10	100	μA
	Iddpr	VDD = 2.5 V		2	20	μΑ

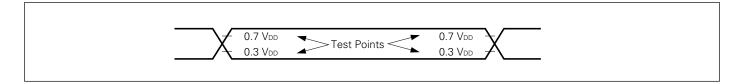
*1: 2¹⁷/fxx (31.3 ms when fxx = 4.19MHz)

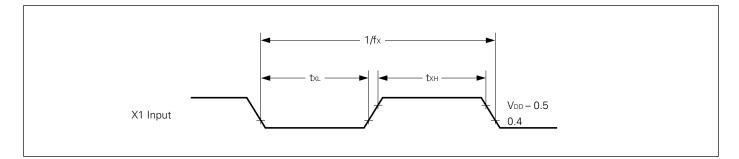
2: Current flow upon power-on reset or with an on-chip power-on flag

Note: Start the power supply smoothly.


AC Characteristics

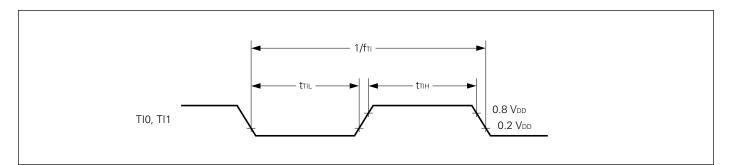
(Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)

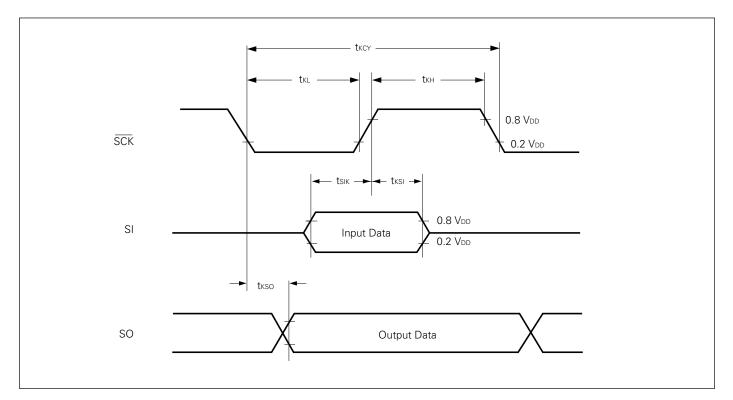

Parameter	Symbol	Test Condit	ions	MIN.	TYP.	MAX.	Unit
CPU clock cycle time* (min. instruction execution time	tCY	VDD = 4.5 to 6.0 V		0.95		32	μs
= 1 machine cycle)				3.8		32	μs
TI0, TI1 input frquency	fTI	VDD = 4.5 to 6.0 V		0		1	MHz
				0		275	kHz
TI0, TI1 input high and low-level widths	tтін, tтіL	VDD = 4.5 to 6.0 V		0.48			μs
				1.8			μs
SCK cycle time	tксү	VDD = 4.5 to 6.0 V	Input	0.8			μs
			Output	0.95			μs
			Input	3.2			μs
			Output	3.8			μs
SCK high and low-level widths	tкн, tĸ∟	VDD = 4.5 to 6.0 V	Input	0.4			μs
			Output	tксу/2-50			ns
			Input	1.6			μs
			Output	tксу/2-50			ns
SI setup time (to \overline{SCK})	tsıк			100			ns
SI hold time (from \overline{SCK})	tksi			400			ns
S0 output delay time from $\overline{\mathrm{SCK}}\downarrow$	tĸso	VDD = 4.5 to 6.0 V				300	ns
						1000	ns
INT0 to INT4 High and low-level widths	tinth, tintl			5			μs
RESET low-level sidth	trsl			5			μs


*: The cycle time of the CPU clock (Φ) is determined by the input frequency of the ceramic crystal oscillator and the setting of the processor clock control register (PCC). The cycle time (tcy) for VDD is shown below.

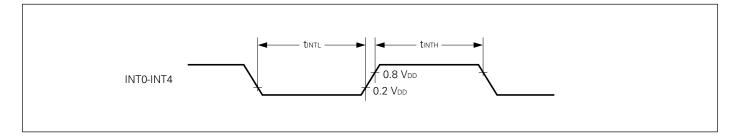
AC Timing Test Point (Except for Ports 0, 1, TI0, TI1, X1, X2 and RESET)

Clock Timing

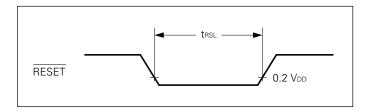



Phase-out/Discontinued

μ**PD75112(A)**, 75116(A)


TIO and TI1 Input Timing

Serial Transfer Timing



Interrupt Input Timing

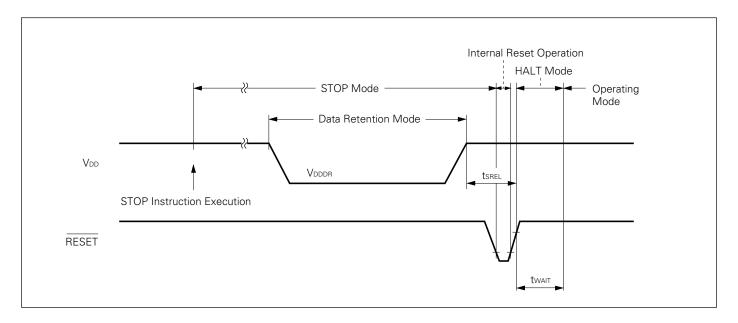
RESET Input Timing

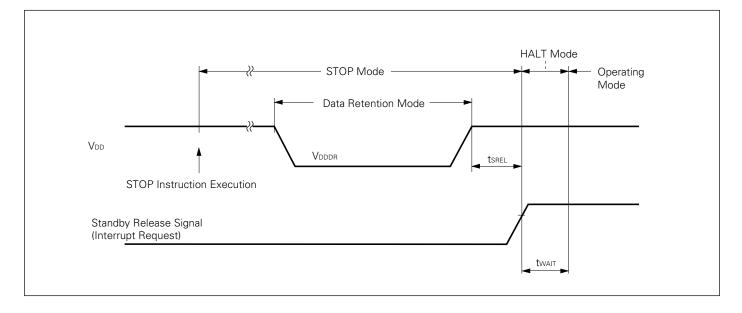
Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

(Ta = -40 to +85 °C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		2.0		6.0	v
Data retention supply current*1	Vdddr	VDDDR = 2.0 V		0.1	10	μA
Release signal set time	tSREL		0			μs
Oscillation stabilization	twait	Release by RESET		2 ¹⁷ /fx		ms
wait time* 2		Release by interrupt request		*3		ms

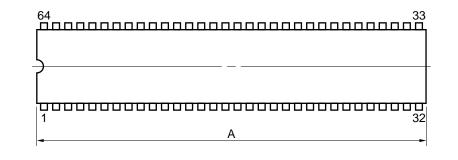
- *1: Current for the on-chip pull-up resistor, power-on circuit (mask option) and comparator circuit is not included.
- 2: The oscillation stabilizing time is intended to stop the CPU to prevent any unstable operation at the start of oscillation.
- 3: Depends on the following setting of the basic interval timer mode register (BTM).

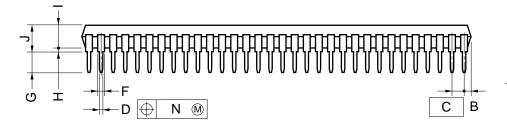

BTM3	BTM2	BTM1	BTM0	Wait Time (fxx=4.19 MHz Valu´s in Parentheses)
	0	0	0	2²º/fxx (approx. 250 ms)
	0	1	1	2 ¹⁷ /fxx (approx. 31.3 ms)
	1	0	1	2 ¹⁵ /fxx (approx. 7.82 ms)
	1	1	1	2 ¹³ /fxx (approx. 1.95 ms)


Phase-out/Discontinued

μ**PD75112(A)**, 75116(A)

Data Retention Timing (STOP Mode Release by RESET)


Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)



12. Packing Information

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

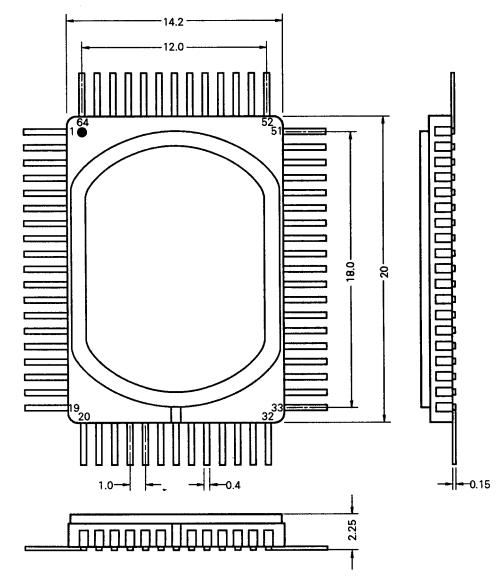
ITEM	MILLIMETERS	INCHES
А	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
N	0.17	0.007
R	0~15°	0~15°

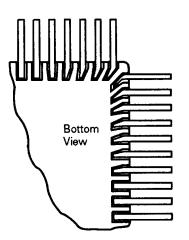
P64C-70-750A,C-1

64-Pin Plastic QFP (14 \times 20) (Unit: mm) \star

NOTE

Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition.


	P64GF-100-3B8,3BE,3BR-1			
ITEM	MILLIMETERS	INCHES		
А	23.6±0.4	0.929±0.016		
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$		
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$		
D	17.6±0.4	0.693±0.016		
F	1.0	0.039		
G	1.0	0.039		
Н	0.40±0.10	$0.016^{+0.004}_{-0.005}$		
Ι	0.20	0.008		
J	1.0 (T.P.)	0.039 (T.P.)		
К	1.8±0.2	$0.071\substack{+0.008\\-0.009}$		
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$		
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$		
Ν	0.12	0.005		
Р	2.7	0.106		
Q	0.1±0.1	0.004±0.004		
S	3.0 MAX.	0.119 MAX.		


μ**PD75112(A), 75116(A)**

Phase-out/Discontinued

64-Pin Ceramic QFP for ES (Reference Drawing) (Unit: mm)

Cautions

- 1: The metal cap is connected to pin 26 and is set to Vss (GND) level.
- 2: The lead wire at the bottom is formed diagonally.
- 3: Since the cutting treatment of the lead wire edge is not under process control, the lead lengths are not specified.

13. Recommended Soldering Conditions *

The μ PD75112(A) and 75116(A) should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **"Surface Mount Technol-ogy Manual"** (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our sales personnel.

Table 13-1 Surface Mounting Type Soldering Conditions

μ PD75112GF(A)-xxx-3BE : 64-pin plastic QFP (14 × 20mm) μ PD75116GF(A)-xxx-3BE : 64-pin plastic QFP (14 × 20mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 230 °C Duration: 30 sec. max. (at 210°C above) Number of times: Once	IR30-00-1
VPS	Package peak temperature: 215 °C Duration: 40 sec. max. (at 200°C above) Number of times: Once	VP15-00-1
Wave soldering	Solder bath temperature: 260 °C max. Duration: 10 sec. max. Number of times: Once Preliminary heat temperature: 120 °C max. (Package surface temperature)	WS60-00-1
Pin part heating	Pin part temperature: 300 °C max. Duration: 3 sec. max. (per device side)	

Note: Use more than one soldering method should be avoided (except in the case of pin part).

Table 13-2 Insertion Type Soldering Conditions

μ PD75112CW(A)-xxx: 64-pin plastic shrink DIP (750 mil) μ PD75116CW(A)-xxx: 64-pin plastic shrink DIP (750 mil)

Soldering Method	Soldering Conditions	
Wave soldering (lead part only)	Solder bath temperature: 260 °C max. Duration: 10 sec. max.	
Pin part heating Pin part temperature: 260 °C max. Duration: 10 sec. max.		

Note: Wave soldering is only for the lead part in order that jet solder can not contact with the chip.

Notice

A version of this product with improved recommended soldering conditions is available.

For details (improvements such as infrared reflow peak temperature extension (235 $^{\circ}$ C, number of times: twice, relaxation of time limit), contact NEC sales

* APPENDIX A. Differences between μ PD751××(A) Series Products and Related PROM Products

Proc	duct Name							
ltem		μPD75104(A)	μPD75106(A)	μPD75108(A)	μPD75112(A)	μPD75116(A)	μ PD75P108B	μPD75P116
ROM Config	guration	Mask ROM			PRO	PROM		
ROM (bit)		0000H to 0FFFH 4096 × 8	0FFFH 177FH 1F7FH 2F7FH 3F7FH		0000H to 1F7FH 8064 × 8	0000H to 3F7FH 16256 × 8		
RAM (bit)		Bank 0: 256 × 4 Bank 0: 256 × 4 Ban			Bank 0	2 × 4 : 256 × 4 : 256 × 4		
Instruction	set	High end (Or	ly μPD75104(A)	does not incorp	oorate BR !addr i	nstruction).	Hig	h end
I/O line	Total				58			
	Input/ output	 CMOS input/output: 32 +12 V withstand N-ch voltage open-drain input/output: 12 (Pull-up resistor can be on-chip by mask option.) CMOS input/output: 12 +12 V withstand N-ch open-drain input/ output: 12 Each pin can directly of LED: 44 			nd N-ch put/			
	Input	CMOS input/output: 10 Comparator: 4						
Power-on reset circuit Ca		Can be	on-chip by masl	k option		No	ne	
Power-on fl	ag							
Supply volta	age range			2.7 to 6.0 V			2.7 to 6.0 V	5 V±10%
Pin connect	ion	Differs depending on package Differs depending of (with VPP pin)			ing on package			
Quality grad	le			Special			Standard	
Package		 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20 mm) 				 64-pin plastic shrink DIP (750 mil) 64-pin ceramic shrink DIP (with window) 64-pin plastic QFP (14 × 20 mm) 	 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20 mm) 	

APPENDIX B. Development Tools

The following tools are available for the development of systems for which the μ PD75116(A) is used.

Hardware	IE-75000-R* 1 IE-75001-R	75X series in-circuit emulator	
	IE-75000-R-EM* 2	Emulation board for IE-75000R and IE-75001-R.	
	EP-75108CW-R	Emulation probe for μ PD75112CW(A) and 75116CW(A).	
	EP-75108GF-R	Emulation probe for μ PD75112GF(A) and 75116GF(A). 64-pin conversion socket EV-9200G64 added.	
	EV-9200G64		
	PG-1500	PROM programmer	
	PA-75P108CW	μ PD75P116CW PROM programmer adapter connected to PG-1500	
	PA-75P116GF	μ PD75P116GF PROM programmer adapter connected to PG-1500	
Software	IE control program		
	PG-1500 controller	 PC-9800 series (MS-DOS[™] Ver. 3.30 to 5.00A*3) IBM PC/AT[™] (PC DOS[™] Ver. 3.1) 	
	RA75X relocatable assembler		

***1**: Maintenance product

2: Not incorporated in the IE-75001-R.

3: The task swap function, which is provided with Ver. 5.00/5.00A, is not available with this software.

Remarks: For development tools manufactured by a third party, see the "75X Series Selection Guide" (IF-151)".

***** APPENDIX C. Related Documentations

List of Device Related Documentations

	Document Name	
User's Manual	User's Manual	
Instruction Application Table		—
Application Note	(I) Introductory Volume	IEM-1139
	(II) Remote Control Reception Volume	
	(III) Bar-Code Reader Volume	
(IV) IC Control for MSK Transmission/Reception Volume		IEA-1278
75X Series Selection Guide		IF-1027

List of Development Tools Related Documentations

Document Name			Document Number
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-1416
	IE-75000-R-EM User's Manual		EEU-1294
	EP-75108CW-R User's Manual		EEU-1308
	EP-75108GF-R User's Manual		EEU-1318
	PG-1500 User's Manual		EEU-1335
Software	RA75X Assembler Package User's Manual Operation Volume		EEU-1346
	Language Volume		EEU-1343
	PG-1500 Controller User's Manual		EEU-1291

List of Other Related Documentations

Document Name	Document Number	
Package Manual	IEI-1213	
Surface Mount Technology Manual	IEI-1207	
Quality Grade on NEC Semiconductor Devices	IEI-1209	
NEC Semiconductor Device Reliability & Quality Control	_	
Electrostatic Discharge (ESD) Test	—	
Semiconductor Devices Quality Guarantee Guide	MEI-1202	
Microcomputer Related Products Guide Other Manufactures Volume	—	

Note: The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

NEC

Phase-out/Discontinued

μ**PD75112(A)**, 75116(A)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may ppear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual propety rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

MS-DOS is a trademark of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporations.