Description

The HD404629 Series is part of the HMCS400-Series microcomputers designed to increase program productivity and also incorporate largecapacity memory. Each microcomputer has a high precision dual-tone multifrequency (DTMF) generator, LCD controller/driver, A/D converter, input capture circuit, 32-kHz oscillator for clock, and four low-power dissipation modes.

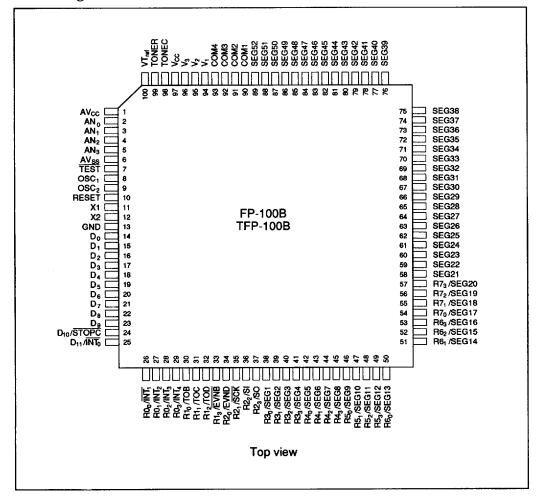
The HD404629 Series includes four chips: the HD404628 with 8-kword ROM; the HD4046212 with 12-kword ROM; the HD404629 with 16-kword ROM; the HD4074629 with 16-kword PROM.

A program can be written to the PROM by a PROM writer, which can dramatically shorten system development periods and smooth the process from debugging to mass production.

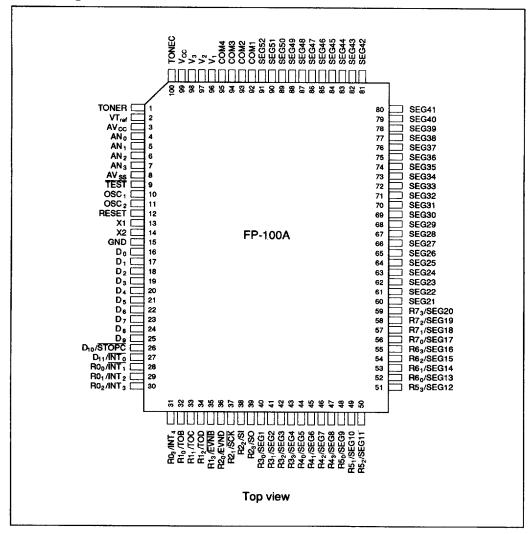
Features

- 16,384-word × 10-bit ROM (the ZTAT™ version is 27256-compatible)
- 1,876-digit × 4-bit RAM
- 44 I/O pins, including 10 high-current pins (15 mA, max.) and 20 pins multiplexed with LCD segment pins
- Four timer/counters
- 8-bit input capture circuit
- Three timer outputs (including two PWM outputs)

- Two event counter inputs (including one doubleedge function)
- · Clock-synchronous 8-bit serial interface
- A/D converter (4 channels × 8 bits)
- LCD controller/driver (52 segments × 4 commons)
- · On-chip DTMF generator
- · Built-in oscillators
 - Main clock: 4-MHz ceramic (an external clock is also possible)
 - Subclock: 32.768-kHz crystal
- · Eleven interrupt sources
 - Five by external sources, including three double-edge functions
 - Six by internal sources
- Subroutine stack up to 16 levels, including interrupts
- · Four low-power dissipation modes
 - Subactive mode
 - Standby mode
 - Watch mode
 - Stop mode
- One external input for transition from stop mode to active mode
- Instruction cycle time (min.): 1 μs (f_{OSC} = 4 MHz)
- Operation voltage

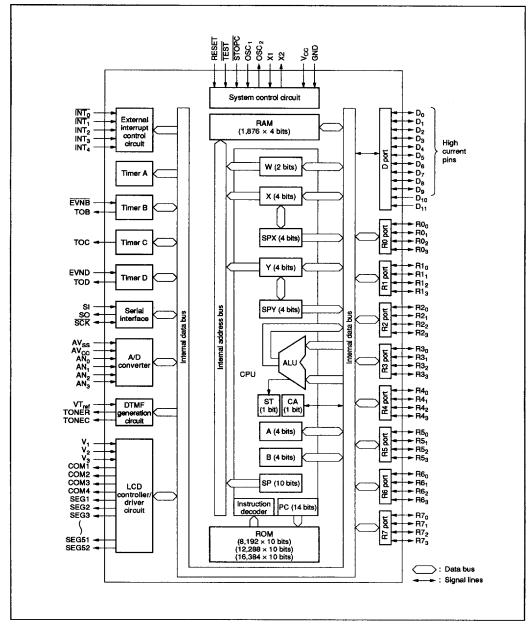

 $V_{CC} = 2.7 \text{ V to } 6.0 \text{ V (HD404629)}$ $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V (HD4074629)}$

- · Two operating modes
 - MCU mode
 - MCU/PROM mode (HD4074629 only)


Ordering Information

Туре	Product Name	Model Name	ROM (Words)	Package
Mask ROM	HD404628	HD404628H	8,192	100-pin plastic QFP (FP-100B)
		HD404628FS	_	100-pin plastic QFP (FP-100A)
		HD404628TF	_	100-pin plastic TQFP (TFP-100B)
	HD4046212	HD4046212H	12,288	100-pin plastic QFP (FP-100B)
		HD4046212FS		100-pin plastic QFP (FP-100A)
		HD4046212TF		100-pin plastic TQFP (TFP-100B)
	HD404629	HD404629H	16,384	100-pin plastic QFP (FP-100B)
		HD404629FS		100-pin plastic QFP (FP-100A)
		HD404629TF	_	100-pin plastic TQFP (TFP-100B)
ZTAT™	HD4074629	HD4074629H	16,384	100-pin plastic QFP (FP-100B)
		HD4074629FS		100-pin plastic QFP (FP-100A)
		HD4074629TF	_	100-pin plastic TQFP (TFP-100B)

Pin Arrangement


Pin Arrangement

Pin Description

	P		Pin Number		
Item	Symbol	FP-100B TFP-100B	FP-100A	I/O	Function
Power	V _{cc}	97	99		Applies power voltage
supply	GND	13	15		Connected to ground
Test	TEST	7	9	ı	Used for factory testing only: Connect this pin to V_{CC}
Reset	RESET	10	12	1	Resets the MCU
Oscillator	OSC ₁	8	10	ı	Input/output pins for the internal oscillator circuit:
	OSC ₂	9	11	0	Connect them to a ceramic oscillator or connect OSC ₁ to an external oscillator circuit
	X1	11	13	1	Used for a 32.768-kHz crystal for clock purposes.
	X2	12	14	0	If not to be used, fix the X1 pin to V _{CC} and leave the X2 pin open.
Port	D ₀ -D ₉	14–23	16–25	1/0	Input/output pins addressed by individual bits; pins D ₀ –D ₉ are high-current pins that can each supply up to 15 mA
	D ₁₀ , D ₁₁	24, 25	26, 27	ı	Input pins addressable by individual bits
	R0 ₀ -R7 ₃	26-57	28–59	1/0	Input/output pins addressable in 4-bit units
Interrupt	INT ₀ , INT ₁ , INT ₂ -INT ₄	2529	27–31	I	Input pins for external interrupts
Stop clear	STOPC	24	26	ı	Input pin for transition from stop mode to active mode
Serial	SCK	35	37	1/0	Serial interface clock input/output pin
interface	SI	36	38	ı	Serial interface receive data input pin
	so	37	39	0	Serial interface transmit data output pin
Timer	TOB, TOC, TOD	30–32	32–34	0	Timer output pins
	EVNB, EVND	33, 34	35, 36	1	Event count input pins
LCD	V ₁ , V ₂ , V ₃	94–96	96-98		Power pins for LCD controller/driver; may be left open during operation since they are connected by internal voltage division resistors. Voltage conditions are: $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge GND$
	COM1-COM4	90-93	92-95	0	Common signal pins for LCD
	SEG1-SEG52	38-89	40-91	0	Segment signal pins for LCD
A/D converter	AV _{CC}	1	3		Power pin for A/D converter: Connect it to the same potential as V_{CC} , as physically close to the V_{CC} pin as possible
	AV _{SS}	6	8		Ground for AV _{CC} : Connect it to the same potential as GND, as physically close to the GND pin as possible
	AN ₀ -AN ₃	2–5	4–7	1	Analog input pins for A/D converter
DTMF	TONER	99	1	0	Output pin for DTMF row signals
	TONEC	98	100	0	Output pin for DTMF column signals
	VT _{ref}	100	2		Reference voltage pin for DTMF signals. Voltage conditions are: V _{CC} ≥ VT _{ref} ≥ GND

Block Diagram

4496204 0048662 032 **##** 169 Hitachi

Memory Map

ROM Memory Map

The ROM memory map is shown in figure 1 and described below.

Vector Address Area (\$0000-\$000F): Reserved for JMPL instructions that branch to the start addresses of the reset and interrupt routines. After MCU reset or an interrupt, program execution continues from the vector address.

Zero-Page Subroutine Area (\$0000-\$003F): Reserved for subroutines. The program branches to a subroutine in this area in response to the CAL instruction.

Pattern Area (\$0000-\$0FFF): Contains ROM data that can be referenced with the P instruction.

Program Area (\$0000-\$1FFF: HD404628; \$0000-\$2FFF: HD4046212; \$0000-\$3FFF; HD404629, HD4074629); Used for program coding.

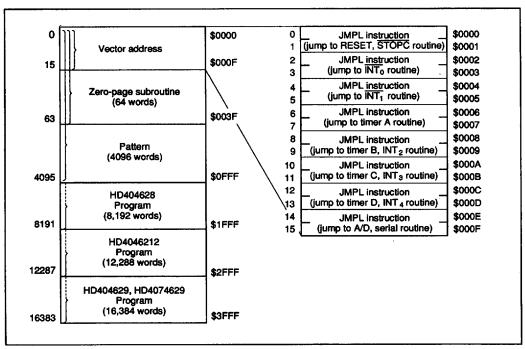


Figure 1 ROM Memory Map

RAM Memory Map

The MCU contains a 1,876-digit × 4-bit RAM area consisting of a memory register area, an LCD data area, a data area, and a stack area. In addition, an interrupt control bits area, special register area, and register flag area are mapped onto the same RAM memory space as a RAM-mapped register area outside the above areas. The RAM memory map is shown in figure 2 and described below.

RAM-Mapped Register Area (\$000-\$03F):

- Interrupt Control Bits Area (\$000-\$003)
 This area is used for interrupt control bits (figure 3). These bits can be accessed only by RAM bit manipulation instructions (SEM/SEMD, REM/REMD, and TM/TMD). However, note that not all the instructions can be used for each bit. Limitations on using the instructions are shown in figure 4.
- Special Function Register Area (\$004-\$01F, \$024-\$03F)
 This area is used as mode registers and data registers for external interrupts, serial interface, timer/counters, LCD, A/D converter, and as data control registers for I/O ports. The structure is shown in figures 2 and 5. These registers can be classified into three types: write-only (W), read-only (R), and read/write (R/W). The SEM, SEMD, REM, and REMD instructions can be used for the LCD control register (LCR: \$01B), but RAM bit manipulation instructions cannot be used for other registers.
- Register Flag Area (\$020-\$023)
 This area is used for the DTON, WDON, and other register flags and interrupt control bits (fig-

ure 3). These bits can be accessed only by RAM bit manipulation instructions (SEM/SEMD, REM/REMD, and TM/TMD). However, note that not all the instructions can be used for each bit. Limitations on using the instructions are shown in figure 4.

Memory Register (MR) Area (\$040-\$04F): Consisting of 16 addresses, this area (MR0-MR15) can be accessed by register-register instructions (LAMR and XMRA). The structure is shown in figure 6.

LCD Data Area (\$050-\$083): Used for storing 52-digit LCD data which is automatically output to LCD segments as display data. Data 1 lights the corresponding LCD segment; data 0 extinguishes it. Refer to the LCD description for details.

Data Area (\$090-\$3BF): 464 digits from \$090 to \$25F have three banks, which can be selected by setting the bank register (V: \$03F). Before accessing this area, set the bank register to the required value (figure 7). The area from \$260 to \$3BF is accessed without setting the bank register.

Stack Area (\$3C0-\$3FF): Used for saving the contents of the program counter (PC), status flag (ST), and carry flag (CA) at subroutine call (CAL or CALL instruction) and for interrupts. This area can be used as a 16-level nesting subroutine stack in which one level requires four digits. The data to be saved and the save conditions are shown in figure 6.

The program counter is restored by either the RTN or RTNI instruction, but the status and carry flags can only be restored by the RTNI instruction. Any unused space in this area is used for data storage.

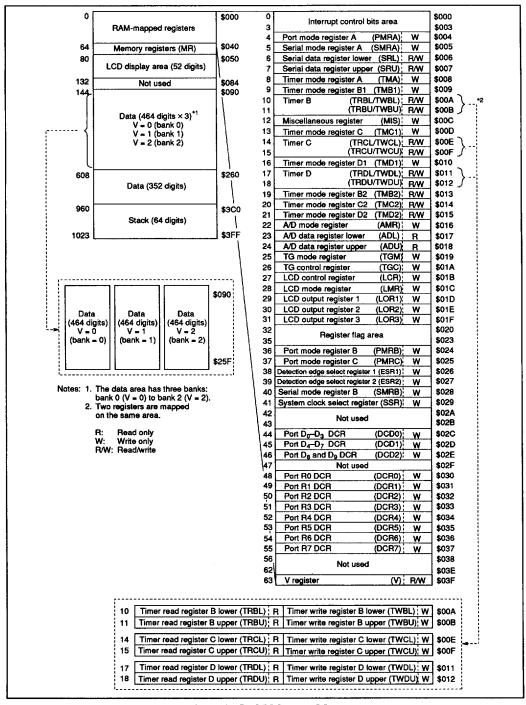


Figure 2 RAM Memory Map

. 4496204 0048665 84% **.**

Bit 3	Bit 2	Bit 1	Bit 0				
IMO (IM of INT ₀)	IF0 (IF of INT ₀)	RSP (Reset SP bit)	IE (Interrupt enable flag)	\$000			
IMTA (IM of timer A)	IFTA (IF of timer A)	IM1 (IM of INT ₁)	IF1 (IF of INT ₁)	\$001			
IMTC (IM of timer C)	IFTC (IF of timer C)	IMTB (IM of timer B)	IFTB (IF of timer B)	\$002			
IMAD (IM of A/D)	IFAD (IF of A/D)	IMTD (IM of timer D)	IFTD (IF of timer D)	\$003			
Interrupt control bits area							
Bit 3	Bit 2	Bit 1	Bit 0				
DTON (Direct transfer on flag)	ADSF (A/D start flag)	WDON (Watchdog on flag)	LSON (Low speed on flag)	\$020			
RAME (RAM enable flag)	Not used	ICEF (Input capture error flag)	ICSF (Input capture status flag)	\$021			
IM3 (IM of INT ₃)	IF3 (IF of INT ₃)	IM2 (IM of INT ₂)	IF2 (IF of INT ₂)	\$022	90		
IMS (IM of serial interface)	IFS (IF of serial interface)	IM4 (IM of INT ₄)	IF4 (IF of INT ₄)	\$023 IM: Interrupt mask IE: Interrupt enable fia	•		
	Register	flag area		J Stack pointer			
	IMO (IM of INTo) IMTA (IM of timer A) IMTC (IM of timer C) IMAD (IM of A/D) Bit 3 DTON (Direct transfer on flag) RAME (RAM enable flag) IM3 (IM of INT3) IMS (IM of serial	IMO (IM of INTo) IMTA (IF of INTo) IMTA (IF of timer A) IMTC (IF of timer C) IMAD (IF of timer C) IMAD (IF of A/D) Interrupt con Bit 3 Bit 2 DTON (Direct transfer on flag) RAME (RAM enable flag) IM3 (IF of INT3) IMS (IF of serial interface) IFS (IF of serial interface)	IMO (IM of INTo) IMO (IF of INTo) IMTA (IM of timer A) IFTA (IM of timer A) IMTC (IM of timer C) IMAD (IF of timer C) IMAD (IF of timer C) IMAD (IF of A/D) INTO (IM of timer B) IMAD (IF of A/D) INTO (IM of timer B) IMAD (IF of A/D) INTO (IM of timer D) Interrupt control bits area Bit 3 Bit 2 Bit 1 DTON (Direct transfer on flag) RAME (RAM enable flag) IMA (IM of INTa) IMA (IF of INTa) IMS (IF of INTa) IMS (IF of serial IMA (IM of INTa) IMA (IM of INTa) IMA (IM of INTa)	IMO (IM of INTo) (IM of INTo) (IF of INTo) (IM of Imer A) (IF of Imer A) (IF of Imer A) (IM of Imer B) (IF of Ime	IFO		

Figure 3 Configuration of Interrupt Control Bits and Register Flag Areas

	SEM/SEMD	REM/REMD	TM/TMD	
ΙE				
IM	Allowed	Allowed	Allowed	
LSON	1	ĺ		
IF				
ICSF] N-A	A11	***	
ICEF	Not executed	Allowed	Allowed	
RAME				
RSP	Not executed	Allowed	Inhibited	
WDON	Allowed	Not executed	Inhibited	
ADSF	Allowed	Inhibited	Allowed	
DTON	Not executed in active mode	Allamad	A II	
DTON	Used in subactive mode	Allowed	Allowed	
Not used	Not executed	Not executed	Inhibited	

Note: WDON is reset by MCU reset or by STOPC enable for stop mode cancellation.

The REM or REMD instruction must not be executed for ADSF during A/D conversion.

DTON is always reset in active mode.

If the TM or TMD instruction is executed for the inhibited bits or non-existing bits,

If the TM or TMD instruction is executed for the inhibited bits or non-existing bits the value in ST becomes invalid.

Figure 4 Usage Limitations of RAM Bit Manipulation Instructions

▮ 4496204 0048666 788 **■** 173 Hitachi

	Bit 3	Bit 2	Bit 1	Bit 0			
\$000							
\$003		Interrupt cont	rol bits area				
PMRA \$004	Not used	Not used	R2 ₂ /SI	R2 ₃ /SO			
SMRA \$005	R2 ₁ /SCK		nit clock speed				
SRL \$006	S	Serial data regis					
SRU \$007		erial data regis					
TMA \$008	*1	Clock so	urce selection (timer A)			
TMB1 \$009	*2	Clock so	urce selection (timer B)			
TRBL/TWBL \$00A		Timer B registe	er (lower digit)				
TRBU/TWBU \$00B		Timer B registe	r (upper digit)				
MIS \$00C	*3	R23/SO PMOS control	Interrupt frame j	period selection			
TMCI \$00D	*2	Clock sou	urce selection (timer C)			
TRCL/TWCL \$00E		Timer C registe	er (lower digit)				
TRCU/TWCU \$00F		Timer C registe					
TMDI \$010	*2		arce selection (timer D)			
TRDL/TWDL \$011		Timer D registe					
TRDU/TWDU \$012		Timer D registe					
TMB2 \$013	Not used	Not used	Timer-B output				
TMC2 \$014	Not used		output mode s				
TMD2 \$015	*4		output mode s				
AMR \$016	Analog chan		Not used	*5			
ADRL \$017		A/D data regist					
ADRU \$018		A/D data regist		u d from Longer			
\$019	*6	ut frequency *7	TONER outp	Not used			
\$01A LCR \$01B	Not used	*8	*9	*10			
LMR \$01C		source selection	LCD duty cy				
LOR1 \$01D	R3 ₃ /SEG4	R3 ₂ /SEG3	R3 ₁ /SEG2	R3 ₀ /SEG1			
LOR2 \$01E	R4 ₃ /SEG8	R4 ₂ /SEG7	R4 ₁ /SEG6	R4 ₀ /SEG5			
LOR3 \$01F	Not used	R7/SEG17-20					
\$020							
***		Register	flag area				
\$023							
PMRB \$024	R0₃/INT₄	R02/INT3	R0 ₁ /INT ₂	FIO _O /INT ₁			
PMRC \$025	D ₁₁ /INT ₀	D ₁₀ /STOPC	R2 ₀ /EVND	R1 ₃ /EVNB			
ESR1 \$026	INT ₃ detection	edge selection	INT ₂ detection	edge selection			
ESR2 \$027	EVND detection	n edge selection	INT ₄ detection	edge selection			
SMRB \$028	Not used	Not used	*11	*12			
SSR \$029	*13	*14	Clock select	Not used			
		Not	used				
DCD0 \$02C	Port D ₃ DCR	Port D ₂ DCR	Port D ₁ DCR	Port Do DCR			
DCD1 \$02D	Port D ₇ DCR	Port D ₆ DCR	Port D ₅ DCR	Port D ₄ DCR			
DCD2 \$02E	Not used	Not used	Port D ₉ DCR	Port D ₈ DCR			
			used	r	Notes:	1.	Timer-A/time-base
DCR0 \$030		Port R0 ₂ DCR				2.	Auto-reload on/off
DCR1 \$031		Port R1 ₂ DCR				3.	Pull-up MOS control Input capture selection
DCR2 \$032		Port R2 ₂ DCR				4. 5.	A/D conversion time
DCR3 \$033				Port R3 ₀ DCR		6.	TONEC output control
DCR4 \$034				Port R4 ₀ DCR			TONER output control Display on/off in watch mode
DCR5 \$035				Port R5 ₀ DCR			LCD power switch
DCR6 \$036		Port R6 ₂ DCR				10.	LCD display on/off
DCR7 \$037	Port R7 ₃ DCR	Port R7 ₂ DCR	Port R7 ₁ DCR	Port R7 ₀ DCR			SO output level control in idle states Transmit clock source selection
		Not	used			13.	32-kHz oscillation stop 32-kHz oscillation division ratio
V \$03F	Not used	Not used	Bank 0 to ba	nk 2 selection		••.	AT 14 15 CONSTITUTES GISTORIE ISSUE

Figure 5 Special Function Register Area

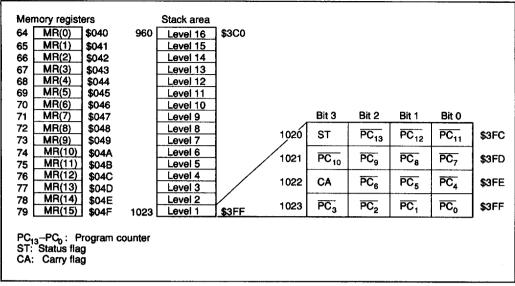


Figure 6 Configuration of Memory Registers and Stack Area, and Stack Position

Bit	3	3 2	1	0		
nitial valu	e -	- -	0	0		
Read/Writ	e –	-	R/W	R/W		
3it name	Not	used Not used	V 1	VO		
0	0	Bank 0 is sel	Bank 0 is selected			
^	0	Bank 0 is set	ected			
U		Bank 1 is selected				
	1	Bank 1 is sel	ected			
- - 1	1 0	Bank 1 is sel Bank 2 is sel				

Figure 7 Bank Register (V)

Functional Description

Registers and Flags

The MCU has nine registers and two flags for CPU operations. They are shown in figure 8 and described below.

Accumulator (A), B Register (B): Four-bit registers used to hold the results from the arithmetic logic unit (ALU) and transfer data between memory, I/O, and other registers.

W Register (W), X Register (X), Y Register (Y): Two-bit (W) and four-bit (X and Y) registers used for indirect RAM addressing. The Y register is also used for D-port addressing.

SPX Register (SPX), SPY Register (SPY): Fourbit registers used to supplement the X and Y registers.

Carry Flag (CA): One-bit flag that stores any ALU overflow generated by an arithmetic operation. CA is affected by the SEC, REC, ROTL, and ROTR instructions. A carry is pushed onto the stack during an interrupt and popped from the stack by the RTNI instruction—but not by the RTN instruction.



Figure 8 Registers and Flags

176 Hitachi

4496204 0048669 497

Status Flag (ST): One-bit flag that latches any overflow generated by an arithmetic or compare instruction, not-zero decision from the ALU, or result of a bit test. ST is used as a branch condition of the BR, BRL, CAL, and CALL instructions. The contents of ST remain unchanged until the next arithmetic, compare, or bit test instruction is executed, but become 1 after the BR, BRL, CAL, or CALL instruction is read, regardless of whether the instruction is executed or skipped. The contents of ST are pushed onto the stack during an interrupt and popped from the stack by the RTNI instruction—but not by the RTN instruction.

Program Counter (PC): 14-bit binary counter that points to the ROM address of the instruction being executed.

Stack Pointer (SP): Ten-bit pointer that contains the address of the stack area to be used next. The SP is initialized to \$3FF by MCU reset. It is decremented by 4 when data is pushed onto the stack, and incremented by 4 when data is popped from the stack. The top four bits of the SP are fixed at 1111, so a stack can be used up to 16 levels.

The SP can be initialized to \$3FF in another way: by resetting the RSP bit with the REM or REMD instruction.

Reset

The MCU is reset by inputting a high-level voltage to the RESET pin. At power-on or when stop mode is cancelled, RESET must be high for at least one t_{RC} to enable the oscillator to stabilize. During operation, RESET must be high for at least two instruction cycles.

Initial values after MCU reset are listed in table 1.

Interrupts

The MCU has 11 interrupt sources: five external signals ($\overline{INT_0}$, $\overline{INT_1}$, $\overline{INT_2}$ – $\overline{INT_4}$), four timer/counters (timers A, B, C, and D), serial interface, and A/D converter.

An interrupt request flag (IF), interrupt mask (IM), and vector address are provided for each interrupt source, and an interrupt enable flag (IE) controls the entire interrupt process.

Some vector addresses are shared by two different interrupts. They are timer B and INT₂, timer C and INT₃, timer D and INT₄, and A/D converter and serial interface interrupts. So the type of request that has occurred must be checked at the beginning of interrupt processing.

Interrupt Control Bits and Interrupt Processing: Locations \$000 to \$003 and \$022 to \$023 in RAM are reserved for the interrupt control bits which can be accessed by RAM bit manipulation instructions.

The interrupt request flag (IF) cannot be set by software. MCU reset initializes the interrupt enable flag (IE) and the IF to 0 and the interrupt mask (IM) to 1.

A block diagram of the interrupt control circuit is shown in figure 9, interrupt priorities and vector addresses are listed in table 2, and interrupt processing conditions for the 11 interrupt sources are listed in table 3.

An interrupt request occurs when the IF is set to 1 and the IM is set to 0. If the IE is 1 at that point, the interrupt is processed. A priority programmable logic array (PLA) generates the vector address assigned to that interrupt source.

The interrupt processing sequence is shown in figure 10 and an interrupt processing flowchart is shown in figure 11. After an interrupt is acknowledged, the previous instruction is completed in the first cycle. The IE is reset in the second cycle, the carry, status, and program counter values are pushed onto the stack during the second and third cycles, and the program jumps to the vector address to execute the instruction in the third cycle.

Program the JMPL instruction at each vector address, to branch the program to the start address of the interrupt program, and reset the IF by a software instruction within the interrupt program.

Table 1 Initial Values After MCU Reset

Item		Abbr.	Initial Value	Contents
Program cou	inter	(PC)	\$0000	Indicates program execution point from start address of ROM area
Status flag		(ST)	1	Enables conditional branching
Stack pointe	r	(SP)	\$3FF	Stack level 0
Interrupt	Interrupt enable flag	(IE)	0	Inhibits all interrupts
flags/mask	Interrupt request flag	(IF)	0	Indicates there is no interrupt request
	Interrupt mask	(IM)	1	Prevents (masks) interrupt requests
1/0	Port data register	(PDR)	All bits 1	Enables output at level 1
	Data control register	(DCD0, DCD1)	All bits 0	Turns output buffer off (to high impedance)
		(DCD2)	00	_
		(DCR0 -DCR7)	All bits 0	
	Port mode register A	(PMRA)	00	Refer to description of port mode register A
	Port mode register B	(PMRB)	0000	Refer to description of port mode register B
	Port mode register C bits 3, 1, 0	(PMRC3, PMRC1, PMRC0)	000	Refer to description of port mode register C
	Detection edge select register 1	(ESR1)	0000	Disables edge detection
	Detection edge select register 2	(ESR2)	0000	Disables edge detection
Timer/	Timer mode register A	(TMA)	0000	Refer to description of timer mode register A
counters, serial	Timer mode register B1	(TMB1)	0000	Refer to description of timer mode register B1
interface	Timer mode register B2	(TMB2)	00	Refer to description of timer mode register B2
	Timer mode register C1	(TMC1)	0000	Refer to description of timer mode register C1
	Timer mode register C2	(TMC2)	- 000	Refer to description of timer mode register C2
	Timer mode register D1	(TMD1)	0000	Refer to description of timer mode register D1
	Timer mode register D2	(TMD2)	0000	Refer to description of timer mode register D2
	Serial mode register A	(SMRA)	0000	Refer to description of serial mode register A
	Serial mode register B	(SMRB)	00	Refer to description of serial mode register B
	Prescaler S	(PSS)	\$000	_
	Prescaler W	(PSW)	\$00	
	Timer counter A	(TCA)	\$00	
	Timer counter B	(TCB)	\$00	
	Timer counter C	(TCC)	\$00	
	Timer counter D	(TCD)	\$00	
	Timer write register B	(TWBU, TWBL)	\$X0	
	Timer write register C	(TWCU, TWCL)	\$X0	_
	Timer write register D	(TWDU, TWDL)	\$X0	_
	Octal counter	(OC)	000	
A/D	A/D mode register	(AMR)	00 - 0	Refer to description of A/D mode register
	A/D data register	(ADRL, ADRU)	\$80	Refer to description of A/D data register

Table 1 Initial Values After MCU Reset (cont)

	Abbr.	Initial Value	Contents
LCD control register	(LCR)	- 000	Refer to description of LCD control register
LCD mode register	(LMR)	0000	Refer to description of LCD duty-cycle/clock control register
LCD output register 1	(LOR1)	0000	Sets R-port/LCD segment pins to R port mode
LCD output register 2	(LOR2)	0000	
LCD output register 3	(LOR3)	- 000	
Tone generator mode register	(TGM)	0000	Refer to description of tone generator mode register
Tone generator control register	(TGC)	000 -	Refer to description of tone generator control register
Low speed on flag	(LSON)	0	Refer to description of operating modes
Watchdog timer on flag	(WDON)	0	Refer to description of timer C
A/D start flag	(ADSF)	0	Refer to description of A/D converter
Direct transfer on flag	(DTON)	0	Refer to description of operating modes
input capture status flag	(ICSF)	0	Refer to description of timer D
input capture error flag	(ICEF)	0	Refer to description of timer D
Miscellaneous register	(MIS)	0000	Refer to description of operating modes, I/O, and serial interface
System clock select register bits 2–0	(SSR2 -SSR0)	000	Refer to description of operating modes, oscillation circuits, and DTMF generator
Bank register	(V)	00	Refer to description of RAM memory map
	LCD mode register LCD output register 1 LCD output register 2 LCD output register 3 Tone generator mode register Tone generator control register Low speed on flag Watchdog timer on flag A/D start flag Direct transfer on flag Input capture status flag Input capture error flag Miscellaneous register System clock select register bits 2–0	LCD control register (LCR) LCD mode register (LMR) LCD output register 1 (LOR1) LCD output register 2 (LOR2) LCD output register 3 (LOR3) Tone generator mode register Tone generator control register Low speed on flag (LSON) Watchdog timer on flag (WDON) A/D start flag (ADSF) Direct transfer on flag (ICSF) Input capture status flag (ICSF) Input capture error flag (ICEF) Miscellaneous register (MIS) System clock select register bits 2–0 —SSR0)	LCD control register (LCR) - 000 LCD mode register (LMR) 0000 LCD output register 1 (LOR1) 0000 LCD output register 2 (LOR2) 0000 LCD output register 3 (LOR3) - 000 Tone generator mode register Tone generator control (TGM) 0000 register Low speed on flag (LSON) 0 Watchdog timer on flag (WDON) 0 A/D start flag (ADSF) 0 Direct transfer on flag (ICSF) 0 Input capture status flag (ICSF) 0 Input capture error flag (ICEF) 0 Miscellaneous register (MIS) 0000 System clock select register (SSR2 0000 -SSR0)

Notes: 1. The statuses of other registers and flags after MCU reset are shown in the following table.

2. X indicates invalid value. - indicates that the bit does not exist.

Item	Abbr.	Status After Cancel- lation of Stop Mode by STOPC Input	Status After Cancel- lation of Stop Mode by RESET Input	Status After all Other Types of Reset	
Carry flag	(CA)		Pre-stop-mode values are not guaranteed;		
Accumulator	(A)	values must be initialize	zed by program	are not guaranteed; val- ues must be initialized by	
B register	(B)	_	program		
W register	(W)	_			
X/SPX register	(X/SPX)	-			
Y/SPY register	(Y/SPY)	_			
Serial data registe	r (SRL, SRU)	_			
RAM		Pre-stop-mode values	are retained		
RAM enable flag	(RAME)	1	0	0	
Port mode register 1 bit 2	(PMRC12)	Pre-stop-mode values are retained	0	0	
System clock select register bit :	(SSR3) 3				

Table 2 Vector Addresses and Interrupt Priorities

Priority	Vector Address
_	\$0000
1	\$0002
2	\$0004
3	\$0006
4	\$0008
5	\$000A
6	\$000C
7	\$000E
	1 2 3 4

Note: * The STOPC interrupt request is valid only in stop mode.

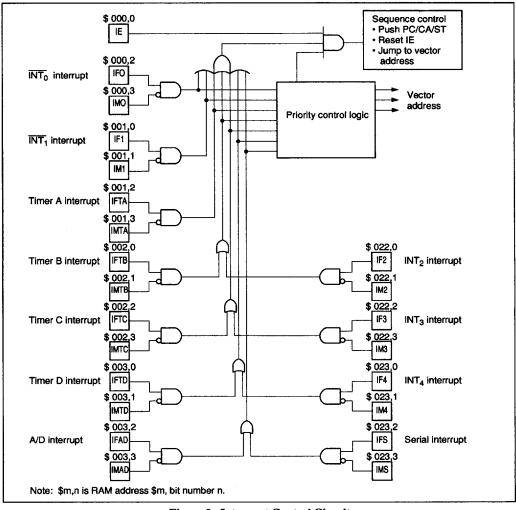


Figure 9 Interrupt Control Circuit

Table 3 Interrupt Processing and Activation Conditions

	Interrupt Source								
Interrupt Control Bit	INTo	ĪNT ₁	Timer A	Timer B or INT ₂	Timer C or INT ₃	Timer D or INT ₄	A/D or Serial		
IE	1	1	1	1	1	1	1		
IF0 · IMO	1	0	0	0	0	0	0		
IF1 · IM1	*	1	0	0	0	0	0		
IFTA · ĪMTĀ	*	*	1	0	0	0	0		
IFTB · <u>IMTB</u> + IF2 · IM2	*	*	*	1	0	0	0		
IFTC · <u>IMTC</u> + IF3 · IM3	*	*	*	*	1	0	0		
IFTD · <u>IMT</u> D + IF4 · IM4	*	*	*	*	*	1	0		
IFAD · IMAD + IFS · IMS	*	*	*	*	*	*	1		

Note: Bits marked * can be either 0 or 1. Their values have no effect on operation.

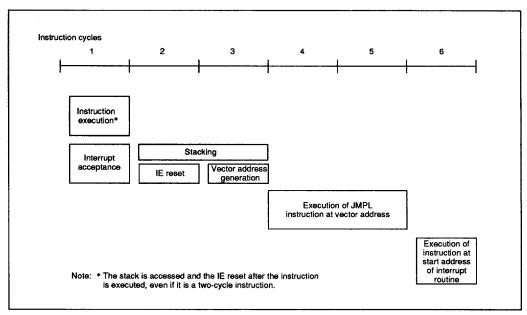


Figure 10 Interrupt Processing Sequence

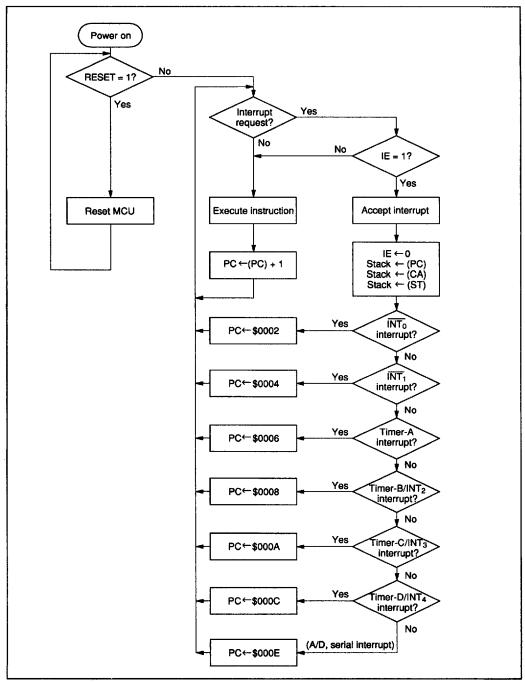


Figure 11 Interrupt Processing Flowchart

18 4496204 0048675 790 **18**

Interrupt Enable Flag (IE: \$000, Bit 0): Controls the entire interrupt process. It is reset by the interrupt processing and set by the RTNI instruction, as listed in table 4.

External Interrupts ($\overline{INT_0}$, $\overline{INT_1}$, $\overline{INT_2}$ - $\overline{INT_4}$): Five external interrupt signals.

External Interrupt Request Flags (IF0-IF4: \$000, \$001, \$022, \$023): IF0 and IF1 are set at the falling edge of signals input to $\overline{INT_0}$ and $\overline{INT_1}$, and IF2-IF4 are set at the rising or falling edge of signals input to $\overline{INT_2}$ -INT4, as listed in table 5. The $\overline{INT_2}$ -INT4 interrupt edges are selected by the detection edge select registers (ESR1, ESR2: \$026, \$027) as shown in figures 12 and 13.

External Interrupt Masks (IM0-IM4: \$000, \$001, \$022, \$023): Prevent (mask) interrupt

requests caused by the corresponding external interrupt request flags, as listed in table 6.

Timer A Interrupt Request Flag (IFTA: \$001, Bit 2): Set by overflow output from timer A, as listed in table 7.

Timer A Interrupt Mask (IMTA: \$001, Bit 3): Prevents (masks) an interrupt request caused by the timer A interrupt request flag, as listed in table 8.

Timer B Interrupt Request Flag (IFTB: \$002, Bit 0): Set by overflow output from timer B, as listed in table 9.

Timer B Interrupt Mask (IMTB: \$002, Bit 1): Prevents (masks) an interrupt request caused by the timer B interrupt request flag, as listed in table 10.

Table 4 Interrupt Enable Flag (IE: \$000, Bit 0)

IE	interrupt Enabled/Disabled
0	Disabled
1	Enabled

Table 5 External Interrupt Request Flags (IF0–IF4: \$000, \$001, \$022, \$023)

IFO-IF4	Interrupt Request	
0	No	
1	Yes	

Table 6 External Interrupt Masks (IM0-IM4: \$000, \$001, \$022, \$023)

IMO-IM4	Interrupt Request
0	Enabled
1	Disabled (masked)

Table 7 Timer A Interrupt Request Flag (IFTA: \$001, Bit 2)

IFTA	Interrupt Request	
0	No	
1	Yes	

Table 8 Timer A Interrupt Mask (IMTA: \$001, Bit 3)

IMTA	Interrupt Request	
0	Enabled	
1	Disabled (masked)	

Table 9 Timer B Interrupt Request Flag (IFTB: \$002, Bit 0)

IFTB	Interrupt Request
0	No
1	Yes

Table 10 Timer B Interrupt Mask (IMTB: \$002, Bit 1)

IMTB	Interrupt Request	
0	Enabled	
1	Disabled (masked)	

Detection edge selection register 1 (ESR1: \$026)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	w	W	W
Bit name	ESR13	ESR12	ESR11	ESR10

ESR13	ESR12	INT ₃ detection edge
0	0	No detection
	1	Falling-edge detection
1	0	Rising-edge detection
	1	Double-edge detection*

ESR11	ESR10	INT ₂ detection edge
0	0	No detection
	1	Falling-edge detection
1	0	Rising-edge detection
	1	Double-edge detection*

Note: * Both falling and rising edges are detected.

Figure 12 Detection Edge Selection Register 1 (ESR1)

Detection edge selection register 2 (ESR2: \$027)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	W	W
Bit name	ESR23	ESR22	ESR21	ESR20

ESR23	ESR22	EVND detection edge
0	0	No detection
	1	Falling-edge detection
1	0	Rising-edge detection
	1	Double-edge detection*

ESR21	ESR20	INT₄ detection edge
0	0	No detection
	1	Falling-edge detection
1	0	Rising-edge detection
	1	Double-edge detection*

Note: * Both falling and rising edges are detected.

Figure 13 Detection Edge Selection Register 2 (ESR2)

Timer C Interrupt Request Flag (IFTC: \$002, Bit 2): Set by overflow output from timer C, as listed in table 11.

Timer C Interrupt Mask (IMTC: \$002, Bit 3): Prevents (masks) an interrupt request caused by the timer C interrupt request flag, as listed in table 12.

Timer D Interrupt Request Flag (IFTD: \$003, Bit 0): Set by overflow output from timer D, or by the rising or falling of signals input to EVND when the input capture function is used, as listed in table 13.

Timer D Interrupt Mask (IMTD: \$003, Bit 1): Prevents (masks) an interrupt request caused by the timer D interrupt request flag, as listed in table 14.

Serial Interrupt Request Flag (IFS: \$023, Bit 2): Set when data transfer is completed or when data transfer is suspended, as listed in table 15.

Serial Interrupt Mask (IMS: \$023, Bit 3): Prevents (masks) an interrupt request caused by the serial interrupt request flag, as listed in table 16.

A/D Interrupt Request Flag (IFAD: \$003, Bit 2): Set at the completion of A/D conversion, as listed in table 17.

A/D Interrupt Mask (IMAD: \$003, Bit 3): Prevents (masks) an interrupt request caused by the A/D interrupt request flag, as listed in table 18.

Table 11 Timer C Interrupt Request Flag (IFTC: \$002, Bit 2)

IFTC	Interrupt Request		
0	No		
1	Yes		

Table 15 Serial Interrupt Request Flag (IFS: \$023, Bit 2)

IFS	Interrupt Request		
0	No		
1	Yes		

Table 12 Timer C Interrupt Mask (IMTC: \$002, Bit 3)

IMTC	Interrupt Request		
0	Enabled		
1	Disabled (masked)		

Table 16 Serial Interrupt Mask (IMS: \$023, Bit 3)

IMS	Interrupt Request
0	Enabled
1	Disabled (masked)

Table 13 Timer D Interrupt Request Flag
(IFTD: \$003, Bit 0)

IFTD	Interrupt Request		
0	No		
1	Yes		

Table 17 A/D Interrupt Request Flag (IFAD: \$003, Bit 2)

IFAD	Interrupt Request		
0	No		
1	Yes		

Table 14 Timer D Interrupt Mask (IMTD: \$003, Bit 1)

IMTD	Interrupt Request		
0	Enabled		
1	Disabled (masked)		

Table 18 A/D Interrupt Mask (IMAD: \$003, Bit 3)

IMAD	Interrupt Request		
0	Enabled		
1	Disabled (masked)		

Operating Modes

The MCU has five operating modes as shown in table 19. The operations in each mode are listed in tables 20 and 21. Transitions between operating modes are shown in figure 14.

Active Mode: All MCU functions operate according to the clock generated by the system oscillator OSC₁ and OSC₂.

Table 19 Operating Modes and Clock Status

		Mode Name				
	_	Active	Standby	Stop	Watch	Subactive*2
Activation method	1	RESET cancellation, interrupt request, STOPC cancellation in stop mode, STOP/SBY instruction in subactive mode (when direct transfer is selected)	SBY instruction	STOP instruction when TMA3 = 0	STOP instruction when TMA3 = 1	INT ₀ or timer A interrupt reques from watch mode
Status	System oscillator			Stopped	Stopped	Stopped
	Subsysten oscillator	1		*1		
Cancella method	ition	RESET input, STOP/SBY instruction	RESET input, interrupt request	RESET input, STOPC input in stop mode	RESET input, INT ₀ or timer A interrupt request	RESET input, STOP/SBY instruction

Notes: implies in operation.

- Operating or stopping the oscillator can be selected by setting bit 3 of the system clock select register (SSR: \$029).
- 2. Subactive mode is an optional function; specify it on the function option list.

Table 20 Operations in Low-Power Dissipation Modes

Function	Stop Mode	Watch Mode	Standby Mode	Subactive Mode*2
CPU	Reset	Retained	Retained	
RAM	Retained	Retained	Retained	
Timer A	Reset			
Timer B	Reset	Stopped		
Timer C	Reset	Stopped		
Timer D	Reset	Stopped		
Serial interface	Reset	Stopped*3		
A/D	Reset	Stopped		Stopped
LCD	Reset	*4		Сторрец
DTMF	Reset	Reset	Stopped	Reset
1/0	Reset*1	Retained	Retained	110301

Notes: implies in operation.

- 1. Output pins are at high impedance.
- 2. Subactive mode is an optional function specified on the function option list.
- Transmission/Reception is activated if a clock is input in external clock mode. However, interrupts stop.
- 4. When a 32-kHz clock source is used.

Table 21 I/O Status in Low-Power Dissipation Modes

Output		Input	
Standby Mode, Watch Mode	Stop Mode	Active Mode, Subactive Mode	
Retained	High impedance	Input enabled	
_		Input enabled	
Retained or output of peripheral functions	High impedance	Input enabled	
	Standby Mode, Watch Mode Retained Retained or output	Standby Mode, Watch Mode Retained High impedance Retained or output High impedance	

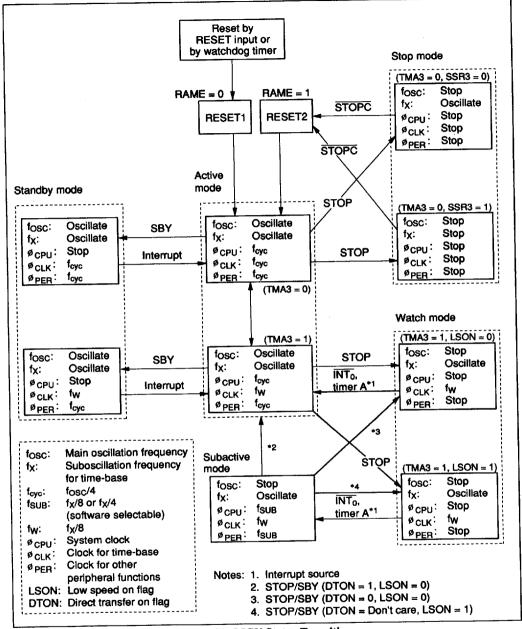


Figure 14 MCU Status Transitions

Standby Mode: In standby mode, the oscillators continue to operate, but the clocks related to instruction execution stop. Therefore, the CPU operation stops, but all RAM and register contents are retained, and the D or R port status, when set to output, is maintained. Peripheral functions such as interrupts, timers, and serial interface continue to operate. The power dissipation in this mode is lower than in active mode because the CPU stops.

The MCU enters standby mode when the SBY instruction is executed in active mode.

Standby mode is terminated by a RESET input or an interrupt request. If it is terminated by RESET input, the MCU is reset as well. After an interrupt request, the MCU enters active mode and executes the next instruction after the SBY instruction. If the interrupt enable flag is 1, the interrupt is then processed; if it is 0, the interrupt request is left pending and normal instruction execution continues. A flowchart of operation in standby mode is shown in figure 15.

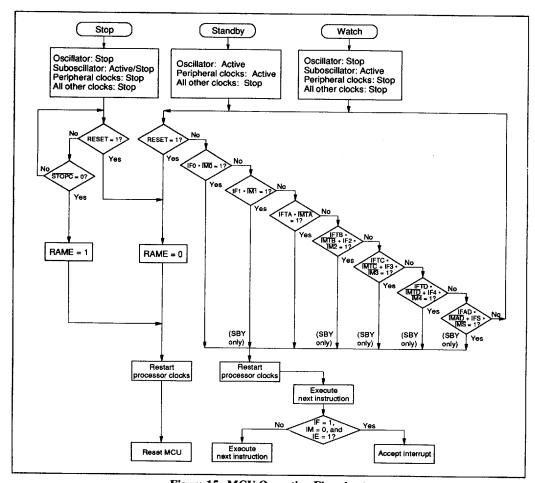


Figure 15 MCU Operation Flowchart

Stop Mode: In stop mode, all MCU operations stop and RAM data is retained. Therefore, the power dissipation in this mode is the least of all modes. The OSC₁ and OSC₂ oscillator stops. For the X1 and X2 oscillator to operate or stop can be selected by setting bit 3 of the system clock select register (SSR: \$029; operating: SSR3 = 0, stop: SSR3 = 1) (figure 27). The MCU enters stop mode if the STOP instruction is executed in active mode when bit 3 of timer mode register A (TMA: \$008) is set to 0 (TMA3 = 0) (figure 44).

Stop mode is terminated by a RESET input or a STOPC input as shown in figure 16. RESET or STOPC must be applied for at least one t_{RC} to stabilize oscillation (refer to the AC Characteristics section). When the MCU restarts after stop mode is cancelled, all RAM contents before entering stop mode are retained, but the accuracy of the contents of the accumulator, B register, W register, X/SPX register, Y/SPY register, carry flag, and serial data register cannot be guaranteed.

Watch Mode: In watch mode, the clock function (timer A) using the X1 and X2 oscillator and the

LCD function operate, but other function operations stop. Therefore, the power dissipation in this mode is the second least to stop mode, and this mode is convenient when only clock display is used. In this mode, the OSC₁ and OSC₂ oscillator stops, but the X1 and X2 oscillator operates. The MCU enters watch mode if the STOP instruction is executed in active mode when TMA3 = 1, or if the STOP or SBY instruction is executed in subactive mode.

Watch mode is terminated by a RESET input or a timer-A/INT₀ interrupt request. For details of RESET input, refer to the Stop Mode section. When terminated by a timer-A/INT₀ interrupt request, the MCU enters active mode if LSON = 0, or subactive mode if LSON = 1. After an interrupt request is generated, the time required to enter active mode is t_{RC} for a timer A interrupt, and T_X (where $T + t_{RC} < T_X < 2T + t_{RC}$) for an $\overline{INT_0}$ interrupt, as shown in figures 17 and 18.

Operation during mode transition is the same as that at standby mode cancellation (figure 15).

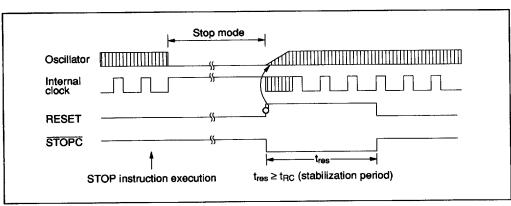


Figure 16 Timing of Stop Mode Cancellation

Subactive Mode: The OSC₁ and OSC₂ oscillator stops and the MCU operates with a clock generated by the X1 and X2 oscillator. In this mode, functions except the A/D conversion operate. However, because the operating clock is slow, the power dissipation becomes low, next to watch mode.

The CPU instruction execution speed can be selected as 244 µs or 122 µs by setting bit 2 (SSR2) of the system clock select register (SSR: \$029). Note that the SSR2 value must be changed in active mode. If the value is changed in subactive mode, the MCU may malfunction.

When the STOP or SBY instruction is executed in subactive mode, the MCU enters either watch or active mode, depending on the statuses of the low speed on flag (LSON: \$020, bit 0) and the direct transfer on flag (DTON: \$020, bit 3).

Subactive mode is an optional function that the user must specify on the function option list.

Interrupt Frame: In watch and subactive modes, ϕ_{CLK} is applied to timer A and the $\overline{INT_0}$ circuit. Prescaler W and timer A operate as the time-base and generate the timing clock for the interrupt frame. Three interrupt frame lengths (T) can be selected by setting the miscellaneous register (MIS: \$00C) (figure 18).

In watch and subactive modes, the timer- $A/\overline{INT_0}$ interrupt is generated synchronously with the interrupt frame. The interrupt request is generated synchronously with the interrupt strobe timing except during transition to active mode. The falling edge of the $\overline{INT_0}$ signal is input asynchronously with the interrupt frame timing, but it is regarded as input synchronously with the second interrupt strobe clock after the falling edge. An overflow and interrupt request in timer A is generated synchronously with the interrupt strobe timing.

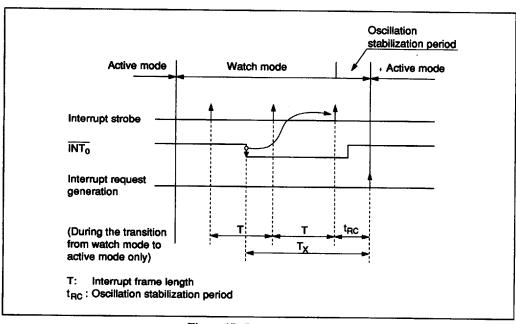


Figure 17 Interrupt Frame

Direct Transition from Subactive Mode to Active Mode: Available by controlling the direct transfer on flag (DTON: \$020, bit 3) and the low speed on flag (LSON: \$020, bit 0). The procedures are described below:

- Set LSON to 0 and DTON to 1 in subactive mode.
- Execute the STOP or SBY instruction.
- The MCU automatically enters active mode

from subactive mode after waiting for the MCU internal processing time and oscillation stabilization time (figure 19).

- Notes: 1. The DTON flag can be set only in subactive mode. It is always reset in active mode.
 - The transition time (T_D) from subactive mode to active mode: t_{RC} < T_D < T + t_{RC}

	_	

3it	3	2	1	0		
nitial value 0		0	0	0		
Read/Write	W	W	W	W		
Bit name	MIS3	MIS2	MIS1	MIS0		
MIS3	MIS2	MIS1	MIS0	T*1	t _{RC} *1	Oscillation circuit conditions
Buffer control. Refer to figure 41.		0 0	0	0.24414 ms	0.12207 ms 0.24414 ms ^{*2}	External clock input
		0	1	15.625 ms	7.8125 ms	Ceramic oscillator
		1	0	62.5 ms	31.25 ms	
		1	1	Not used		_

Figure 18 Miscellaneous Register (MIS)

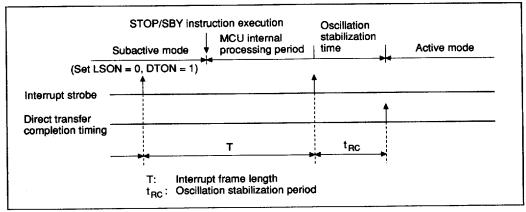


Figure 19 Direct Transition Timing

192 Hitachi

■ 4496204 0048685 63T

Stop Mode Cancellation by STOPC: The MCU enters active mode from stop mode by inputting STOPC as well as by RESET. In either case, the MCU starts instruction execution from the starting address (address 0) of the program. However, the value of the RAM enable flag (RAME: \$021, bit 3) differs between cancellation by STOPC and by RESET. When stop mode is cancelled by RESET, RAME = 0; when cancelled by $\overline{\text{STOPC}}$, RAME = 1. RESET can cancel all modes, but STOPC is valid only in stop mode; STOPC input is ignored in other modes. Therefore, when the program requires to confirm that stop mode has been cancelled by STOPC (for example, when the RAM contents before entering stop mode is used after transition to active mode), execute the TEST instruction to the RAM enable flag (RAME) at the

beginning of the program.

MCU Operation Sequence: The MCU operates in the sequence shown in figures 20 to 22. It is reset by an asynchronous RESET input, regardless of its status.

The low-power mode operation sequence is shown in figure 22. With the IE flag cleared and an interrupt flag set together with its interrupt mask cleared, if a STOP/SBY instruction is executed, the instruction is cancelled (regarded as an NOP) and the following instruction is executed. Before executing a STOP/SBY instruction, make sure all interrupt flags are cleared or all interrupts are masked.

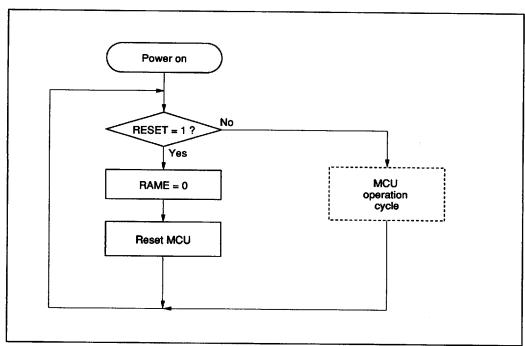


Figure 20 MCU Operating Sequence (Power On)

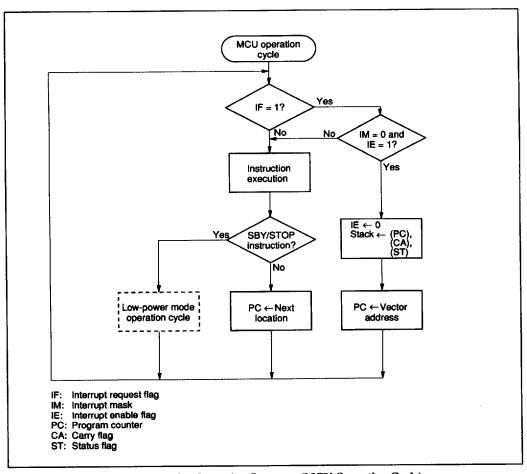


Figure 21 MCU Operating Sequence (MCU Operation Cycle)

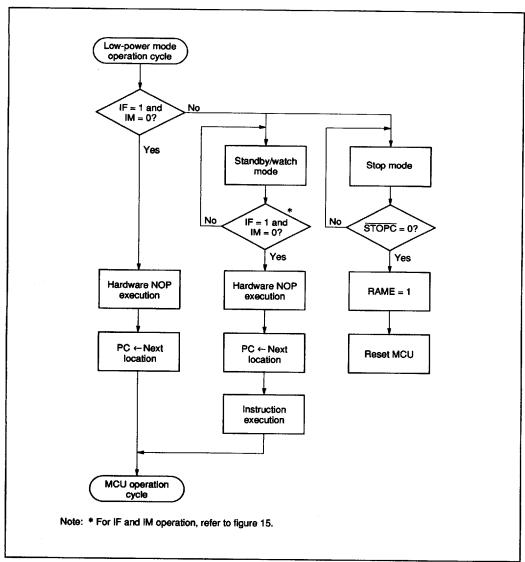


Figure 22 MCU Operating Sequence (Low-Power Mode Operation)

Notes: 1. LCD display off in watch or subactive mode.

If the HD404629/HD4074629 is to be used with the LCD display off in watch mode or subactive mode, execute the following operations before the MCU enters watch mode (i.e., before the STOP instruction is executed).

First: LOAD \$0 to LCR Second: LOAD \$3 to LMR

When the MCU enters active mode again from watch or subactive mode, execute the following operations.

First: LOAD appropriate value to LMR for active mode

Second: LOAD appropriate value to LCR for active mode

These operations are shown in figure 23.

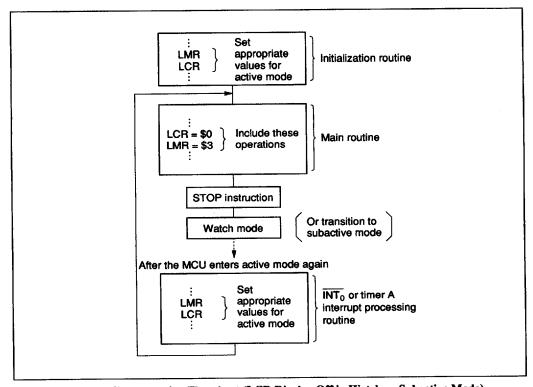


Figure 23 Programming Flowchart (LCD Display Off in Watch or Subactive Mode)

Notes: 2. When the MCU is in watch mode or subactive mode, if the high level period before the falling edge of $\overline{INT_0}$ is shorter than the interrupt frame, $\overline{INT_0}$ is not detected. Also, if the low level period after the falling edge of $\overline{INT_0}$ is shorter than the interrupt frame, $\overline{INT_0}$ is not detected.

Edge detection is shown in figure 24. The level of the $\overline{\text{INT}_0}$ signal is sampled by a sampling clock. When this sampled value changes to low from high, a falling edge is detected.

In figure 25, the level of the INT₀ signal is sampled by an interrupt frame. In (a) the sampled value is low at point A, and also low at point B. Therefore, a falling edge is not detected. In (b), the sampled value is high at point A, and also high at point B. A falling edge is not detected in this case either.

When the MCU is in watch mode or subactive mode, keep the high level and low level period of $\overline{INT_0}$ longer than interrupt frame.

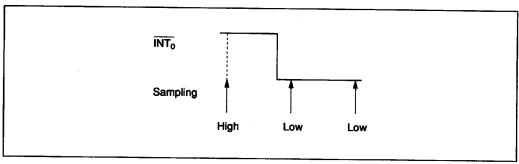


Figure 24 Edge Detection

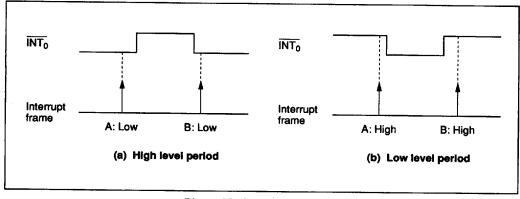


Figure 25 Sampling Example

Internal Oscillator Circuit

A block diagram of the clock generation circuit is shown in figure 26. As shown in table 22, a ceramic oscillator can be connected to OSC1 and OSC₂, and a 32.768-kHz oscillator can be connected to X1 and X2. The system oscillator can also be operated by an external clock. Bit 1 (SSR1) of the system clock select register (SSR: \$029) must be set according to the frequency of the oscillator connected to OSC₁ and OSC₂ (figure 27).

Note: If the system clock select register (SSR: \$029) setting does not match the oscillator frequency, DTMF generator and subsystems using the 32.768-kHz oscillation will malfunction.

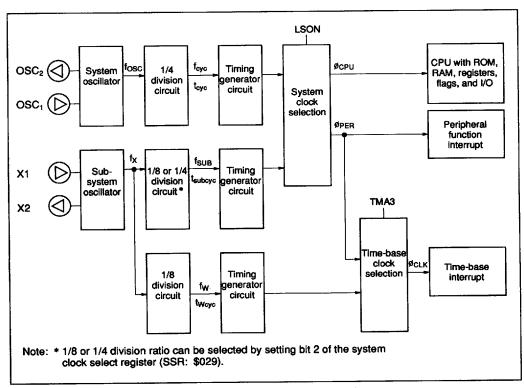


Figure 26 Clock Generation Circuit

System clock select register (SSR: \$029) Bit 3 2 0 Initial value 0 0 0 0 Read/Write W W W W Bit name SSR3 SSR2 SSR1 SSR0

SSR3	32-kHz oscillation stop	
0	Oscillation operates in stop mode	
1	Oscillation stops in stop mode	

SSR2	32-kHz oscillation division ratio selection	
0	fsug = fx/8	
1	f _{SUB} = f _X /4	

SSR1	SSR0	System clock selection
0	0	400 kHz
0	1	800 kHz
1	0	2 MHz
1	1	4 MHz

Note: SSR3 is cleared only by a RESET input. SSR3 will not be cleared by a STOPC input during stop mode, and will retain its value.

SSR3 will also not be cleared upon entering stop mode.

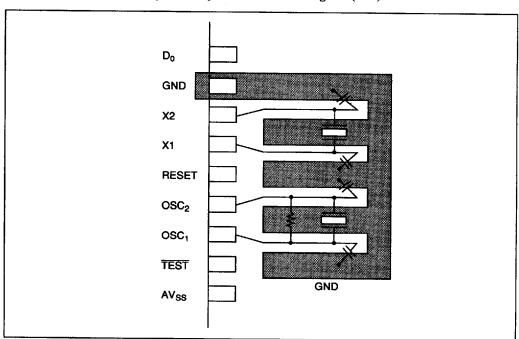


Figure 27 System Clock Select Register (SSR)

Figure 28 Typical Layouts of Crystal and Ceramic Oscillator

■ 4496204 0048692 87T **■**

Table 22 Oscillator Circuit Examples

Circuit Constants Circuit Configuration External clock operation External OSC, oscillator osc, Ореп Ceramic oscillator: CSB400P22 (Murata) Ceramic oscillator CSB400P (Murata) (OSC₁, OSC₂) $R_f = 1 M\Omega \pm 20\%$ $C_1 = C_2 = 220 \text{ pF} \pm 5\%$ C, Ceramic oscillator: CSB800J122 OSC₁ (Murata), CSB800J (Murata) Ceramic $R_t = 1 M\Omega \pm 20\%$ oscillator $C_1 = C_2 = 220 \text{ pF} \pm 5\%$ OSC₂ Ceramic oscillator: CSA2.00MG (Murata) C_2 $R_f = 1 M\Omega \pm 20\%$ GND $C_1 = C_2 = 30 \text{ pF} \pm 20\%$ Ceramic oscillator: CSA4.00MG (Murata) $R_f = 1 M\Omega \pm 20\%$ $C_1 = C_2 = 30 \text{ pF} \pm 20\%$ Crystal oscillator: 32.768 kHz: MX38T Crystal oscillator (Nippon Denpa) C₁ (X1, X2) $C_1 = C_2 = 20 \text{ pF} \pm 20\%$ **X1** R_S: 14 kΩ Crystal Co: 1.5 pF oscillator **X2** C_2 TT GND Cs Rs X2

- Notes: 1. Circuit constants differ by the different types of crystal oscillators, ceramic oscillators, and with the stray capacitance of the board, so consult the manufacturer of the oscillator to determine the circuit parameters.
 - The wiring between the OSC₁, OSC₂ (X1 and X2 pins), and the other elements should be as short as possible, and must not cross other wiring. Refer to figure 28.
 - 3. If not using a 32.768-kHz crystal oscillator, fix the X1 pin to V_{CC} and leave the X2 pin open.

Input/Output

The MCU has 42 input/output pins $(D_0-D_9, R0_0-R7_3)$ and 2 input pins (D_{10}, D_{11}) . The features are described below.

- Ten pins (D₀-D₉) are high-current input/output pins.
- The D₁₀ and D₁₁, and R0₀-R7₃ input/output pins are multiplexed with peripheral function pins such as for the timers or serial interface. For these pins, the peripheral function setting is done prior to the D or R port setting. Therefore, when a peripheral function is selected for a pin, the pin function and input/output selection are automatically switched according to the setting.
- · Input or output selection for input/output pins

- and port or peripheral function selection for multiplexed pins are set by software.
- Peripheral function output pins are CMOS output pins. Only the R2₃/SO pin can be set to NMOS open-drain output by software.
- In stop mode, the MCU is reset, and therefore peripheral function selection is cancelled. Input/output pins are in high-impedance state.
- Each input/output pin has a built-in pull-up MOS, which can be individually turned on or off by software.

I/O buffer configuration is shown in figure 29, programmable I/O circuits are listed in table 23, and I/O pin circuit types are shown in table 24.

Table 23 Programmable I/O Circuits

MIS3 (bit 3 of MIS) DCD, DCR				0		1			
		0		1		0		1	
PDR		0	1	0	1	0	1	0	1
CMOS buffer	PMOS	_	_		On	_	_	_	On
	NMOS	_		On	_	_		On	
Pull-up MOS			_	_		_	On		On

Note: - indicates off status.

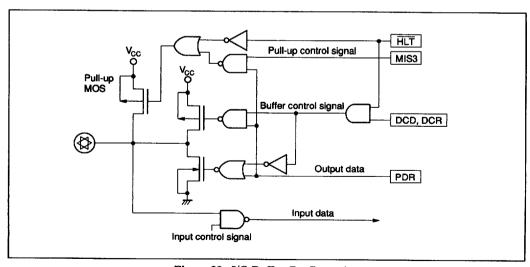
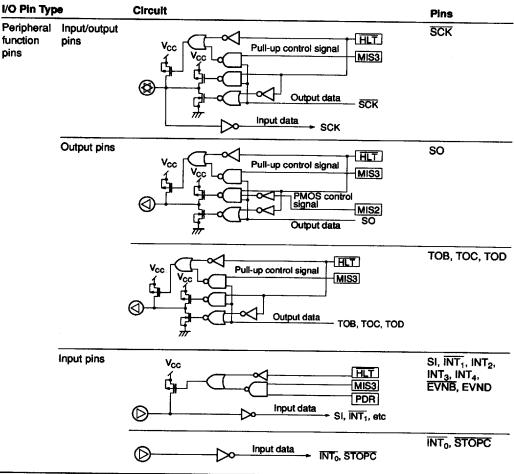


Figure 29 I/O Buffer Configuration


4496204 0048694 642 **■**

201 Hitachi

Table 24 Circuit Configurations of I/O Pins

I/O Pin Type	Circuit	Pins
Input/output pins	Pull-up control signal MIS3 Buffer control signal DCD, DCR Output data Input control signal	$\begin{array}{c} D_0 - D_9 \\ R0_0 - R0_3 \\ R1_0 - R1_3 \\ R2_0 - R2_2 \\ R3_0 - R3_3 \\ R4_0 - R4_3 \\ R5_0 - R5_3 \\ R6_0 - R6_3 \\ R7_0 - R7_3 \end{array}$
	Pull-up control signal Wis3 Buffer control signal DCR Mis2 PDR Input control signal	R2 ₃
Input pins	Input control signal	D ₁₀ , D ₁₁

Table 24 Circuit Configurations of I/O Pins (cont)

Notes: 1. The MCU is reset in stop mode, and peripheral function selection is cancelled. The HLT signal becomes low, and input/output pins enter high-impedance state.

2. The HLT signal is 1 in watch and subactive modes.

D Port (D_0 – D_{11}): Consist of 10 input/output pins and 2 input pins addressed by one bit. D_0 – D_9 are high-current I/O pins, and D_{10} and D_{11} are input-only pins.

Pins D_0 — D_0 are set by the SED and SEDD instructions, and reset by the RED and REDD instructions. Output data is stored in the port data register (PDR) for each pin. All pins D_0 — D_{11} are tested by the TD and TDD instructions.

The on/off statuses of the output buffers are controlled by D-port data control registers (DCD0-DCD2: \$02C-\$02E) that are mapped to memory addresses (figure 30).

Pins D_{10} and D_{11} are multiplexed with peripheral function pins STOPC and $\overline{INT_0}$, respectively. The peripheral function modes of these pins are selected by bits 2 and 3 (PMRC2, PMRC3) of port mode register C (PMRC: \$025) (figure 31).

R Ports (R0₀-R7₃): 32 input/output pins addressed in 4-bit units. Data is input to these ports by the LAR and LBR instructions, and output from them by the LRA and LRB instructions. Output data is stored in the port data register (PDR) for each pin. The on/off statuses of the output buffers of the R ports are controlled by R-port data control registers (DCR0-DCR7: \$030-\$037) that are mapped to memory addresses (figure 30).

Pins R0₀-R0₃ are multiplexed with peripheral pins INT₁-INT₄, respectively. The peripheral function modes of these pins are selected by bits 0-3 (PMRB0-PMRB3) of port mode register B (PMRB: \$024) (figure 32).

Pins R1₀–R1₂ are multiplexed with peripheral pins TOB, TOC, and TOD, respectively. The peripheral function modes of these pins are selected by bits 0 and 1 (TMB20, TMB21) of timer mode register B2 (TMB2: \$013), bits 0–2 (TMC20–TMC22) of timer mode register C2 (TMC2: \$014), and bits 0–3 (TMD20–TMD23) of timer mode register D2 (TMD2: \$015) (figures 33, 34, and 35).

Pins R13 and R20 are multiplexed with peripheral

pins EVNB and EVND, respectively. The peripheral function modes of these pins are selected by bits 0 and 1 (PMRC0, PMRC1) of port mode register C (PMRC: \$025) (figure 31).

Pins R2₁-R2₃ are multiplexed with peripheral pins SCK, SI, and SO, respectively. The peripheral function modes of these pins are selected by bit 3 (SMRA3) of serial mode register A (SMRA: \$005), and bits 0 and 1 (PMRA0, PMRA1) of port mode register A (PMRA: \$004), as shown in figures 36 and 37.

Ports R3 and R4 are multiplexed with segment pins SEG1-SEG8, respectively. The function modes of these pins can be selected by individual pins, by setting LCD output registers 1 and 2 (LOR1, LOR2: \$01D, \$01F) (figures 38 and 39).

Ports R5-R7 are multiplexed with segment pins SEG9-SEG20, respectively. The function modes of these pins can be selected in 4-pin units by setting LCD output register 3 (LOR3: \$01F) (figure 40).

Pull-Up MOS Transistor Control: A program-controlled pull-up MOS transistor is provided for each input/output pin other than input-only pins D₁₀ and D₁₁. The on/off status of all these transistors is controlled by bit 3 (MIS3) of the miscellaneous register (MIS: \$00C), and the on/off status of an individual transistor can also be controlled by the port data register (PDR) of the corresponding pin—enabling on/off control of that pin alone (table 23 and figure 41).

The on/off status of each transistor and the peripheral function mode of each pin can be set independently.

How to Deal with Unused I/O Pins: I/O pins that are not needed by the user system (floating) must be connected to V_{CC} to prevent LSI malfunctions due to noise. These pins must either be pulled up to V_{CC} by their pull-up MOS transistors or by resistors of about 100 k Ω .

			(DCR0 to	7: \$030 t	o \$037)	
	DCD0, DCD1					
	Bit	3	2	1	0	
	Initial value	0	0	0	0	
	Read/Write	W	W	W	W	
	Bit name	DCD03, DCD13	DCD02, DCD12	DCD01, DCD11	DCD00, DCD10	
	DCD2					
	Bit	3	2	1	0	
	Initial value			0	0	
	Read/Write		_	W	W	
	Bit name	Not used	Not used	DCD21	DCD20	
	DCR0 to DCR	17				
	Bit	3	2	1	0	
	Initial value	0	0	0	0	
	Read/Write	W	W	W	W	
	Bit name	DCR03- DCR73	DCR02- DCR72		DCR00- DCR70	
	All Bits	CMOS	Buffer On/	Off Selec	tion	
	1	Off (high	n-impedano	ce)		
	<u>'</u>					
Correspondence	between ports	and DCD/D	OCR bits			
						DU 0
	Bit 3		Bit 2		Bit 1	Bit 0
Register Name	Bit 3		Bit 2 D ₂		Bit 1	D ₀
Register Name						
Register Name DCD0 DCD1	D ₃		D ₂		O ₁	D ₀
Register Name DCD0 DCD1 DCD2	D ₃		D ₂		D ₁	D ₀
Register Name DCD0 DCD1 DCD2 DCR0	D ₃ D ₇ —		D ₂ D ₆ —	1	D ₁ D ₅ D ₉	D ₀ D ₄ D ₈
Register Name DCD0 DCD1 DCD2 DCR0 DCR1	D ₃ D ₇ R0 ₃		D ₂ D ₆ R0 ₂		D ₁ D ₅ D ₉	D ₀ D ₄ D ₈ R0 ₀
Register Name DCD0 DCD1 DCD2 DCR0 DCR1 DCR2	D ₃ D ₇ R0 ₃ R1 ₃		D ₂ D ₆ R0 ₂ R1 ₂		D ₁ D ₅ D ₉ RO ₁	D ₀ D ₄ D ₈ R0 ₀ R1 ₀ R2 ₀
Register Name DCD0 DCD1 DCD2 DCR0 DCR1 DCR2 DCR3	D ₃ D ₇ — R0 ₃ R1 ₃ R2 ₃		D ₂ D ₆ R0 ₂ R1 ₂ R2 ₂	1	D ₁ D ₅ D ₉ RO ₁ RO ₁ RO ₂ RO ₂ RO ₃ RO	D ₀ D ₄ D ₈ R0 ₀ R1 ₀ R2 ₀ R3 ₀
Register Name DCD0 DCD1 DCD2 DCR0 DCR1 DCR2 DCR3 DCR4	D ₃ D ₇ — R0 ₃ R1 ₃ R2 ₃ R3 ₃		D ₂ D ₆ R0 ₂ R1 ₂ R2 ₂ R3 ₂		D ₁ D ₅ D ₉ RRO1 RRO1 RRO1 RRO1 RRO1 RRO1 RRO1 RRO	D ₀ D ₄ D ₈ R0 ₀ R1 ₀ R2 ₀
Register Name DCD0 DCD1 DCD2 DCR0 DCR1 DCR2 DCR3 DCR4 DCR5 DCR6	D ₃ D ₇ — R0 ₃ R1 ₃ R2 ₃ R3 ₃ R4 ₃		D ₂ D ₆ R0 ₂ R1 ₂ R2 ₂ R3 ₂ R4 ₂		D ₁ D ₅ D ₉ RO ₁ RO ₁ RO ₂ RO ₂ RO ₃ RO	D ₀ D ₄ D ₈ RO ₀ R1 ₀ R2 ₀ R3 ₀ R4 ₀

Figure 30 Data Control Registers (DCD, DCR)

■ 4496204 0048698 298 ■ ²⁰⁵ Hitachi

Port mode register C (PMRC: \$025)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	W	W
Bit name	PMRC3	PMRC2*	PMRC1	PMRC0

PMRC3	D ₁₁ /INT ₀ mode selection	PMRC0	R1 ₃ /EVNB mode selection
0	D ₁₁	0	R1 ₃
1	INTo	1	EVNB

PMRC2	D ₁₀ /STOPC mode selection	PMRC1	R2 ₀ /EVND mode selection
0	D ₁₀	0	R2 ₀
1	STOPC	1	EVND

Note: * PMRC2 is reset to 0 only by RESET input. When STOPC is input in stop mode, PMRC2 is not reset but retains its value.

Figure 31 Port Mode Register C (PMRC)

Port mode register B (PMRB: \$024) Bit 3 2 1 0 Initial value 0 0 0 0 Read/Write W W W Bit name PMRB3 PMRB2 PMRB1 PMRB0

PMRB3		R0 ₃ /INT ₄ mode selection			
	0	R0 ₃			
	1	INT ₄			
		11414			

PMRB2	R0 ₂ /INT ₃ mode selection
0	R0 ₂
1	INT ₃

PMRB0	R0 ₀ /INT ₁ mode selection
0	R0 ₀
1	ĪNT ₁

PMRB1	R0 ₁ /INT ₂ mode selection			
0	R0 ₁			
1	INT ₂			

Figure 32 Port Mode Register B (PMRB)

Timer mode register B2 (TMB2: \$013)

Bit	3	2	1	0
Initial value	-	_	0	0
Read/Write			R/W	R/W
Bit name	Not used	Not used	TMB21	TMB20

TMB21	TMB20	R1 ₀ /TOB mode selection		
0	0	R1 ₀	R1 ₀ port	
	1	тов	Toggle output	
1	0	тов	0 output	
	1	ТОВ	1 output	

Figure 33 Timer Mode Register B2 (TMB2)

Bit 3 2 1 0 Initial value — 0 0 0 Read/Write — R/W R/W R/W Bit name Not used TMC22 TMC21 TMC20

Timer mode register C2 (TMC2: \$014)

TMC22	TMC21	TMC20	R1 ₁ /TC	R1 ₁ /TOC mode selection		
0	0	0	R1 ₁	R1 ₁ port		
		1	TOC	Toggle output		
	1	0	тос	0 output		
		1	TOC	1 output		
1	0	0	_	Inhibited		
]		1				
	1	0				
		1	TOC	PWM output		

Figure 34 Timer Mode Register C2 (TMC2)

Timer mode register D2 (TMD2: \$015)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W
Bit name	TMD23	TMD22	TMD21	TMD20

TMD23	TMD22	TMD21	TMD20	R1 ₂ /TC	D mode selection
0	0	0	0	R12	R1 ₂ port
			1	TOD	Toggle output
	į	1	0	TOD	0 output
			1	TOD	1 output
	1	0	0	_	Inhibited
			1	1	
		1	0		
			1	TOD	PWM output
1	×	×	×	R12	Input capture (R1 ₂ port)

X: Don't care

Figure 35 Timer Mode Register D2 (TMD2)

Serial mode register A (SMRA: \$005)

 Bit
 3
 2
 1
 0

 Initial value
 0
 0
 0
 0

 Read/Write
 W
 W
 W
 W

 Bit name
 SMRA3
 SMRA2
 SMRA1
 SMRA0

SMRA3	R2 ₁ /SCK mode selection
0	R2 ₁
1	SCK

SMRA2	SMRA1	SMRA0	SCK	Clock source	Prescaler division ratio
0	0	0	Output	Prescaler	+2048
		1	Output	Prescaler	+512
	1	0	Output	Prescaler	+128
	:	1	Output	Prescaler	+32
1	0	0	Output	Prescaler	+8
		1	Output	Prescaler	+2
1	1	0	Output	System clock	_
		1	Input	External clock	

Figure 36 Serial Mode Register A (SMRA)

4496204 0048701 602 **111** 208 Hitachi

Port mode register A (PMRA: \$004) Bit 0 Initial value 0 Read/Write Bit name Not used Not used PMRA1 PMRA0 PMRA1 R2₂/SI mode selection PMRA0 R2₃/SO mode selection 0 R22 R23 SI SO

Figure 37 Port Mode Register A (PMRA)

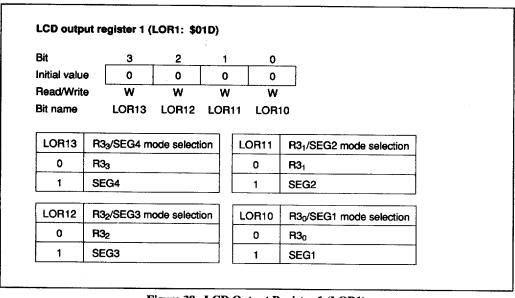


Figure 38 LCD Output Register 1 (LOR1)

LCD output register 2 (LOR2: \$01E)

Bit	3	2	11	0
Initial value	0	0	0	0
Read/Write	W	W	W	W
Bit name	LOR23	LOR22	LOR21	LOR20

LOR23	R4 ₃ /SEG8 mode selection
0	R4 ₃
1	SEG8

LOR21	R4 ₁ /SEG5 mode selection
0	R4 ₁
1	SEG5

LOR22	R4 ₂ /SEG7 mode selection
0	R4 ₂
1	SEG7

LOR20	R4 ₀ /SEG6 mode selection
0	R4 ₀
1	SEG6

Figure 39 LCD Output Register 2 (LOR2)

LCD output register 3 (LOR3: \$01F)

Bit	3	2	1	
Initial value	—	0	0	0
Read/Write		W	W	W
Bit name	Not used	LOR32	LOR31	LOR30

LOR32	R7/SEG17-SEG20 mode selection
0	R7
1	SEG17-SEG20

LOR31	R6/SEG13-SEG16 mode selection
0	R6
1	SEG13-SEG16

LOR30	R5/SEG9-SEG12 mode selection
0	R5
1	SEG9-SEG12

Figure 40 LCD Output Register 3 (LOR3)

	ous register	(MIG: 40	(C)				
Bit	3	2	1	0	_		
nitial value	0	0	0	0			
Read/Write	W	W	W	w	-J		
Bit name	MIS3	MIS2	MIS1	MISO			
MIS3	Pull-up MOS on/off selec		MIS2		buffer selection R2 ₃ /SO	MIS1	MISO
0	Off		0	On		t _{RC} selection	
1	On		1	Off		Refer to figure	re 18 in the odes section

Figure 41 Miscellaneous Register (MIS)

Prescalers

The MCU has the following two prescalers, S and W.

The prescalers operating conditions are listed in table 25, and the prescalers output supply is shown in figure 42. The timers A-D input clocks except external events, the serial transmit clock except the external clock, and the LCD circuit operating clock are selected from the prescaler outputs, depending on corresponding mode registers.

Prescaler Operation

Prescaler S: 11-bit counter that inputs the system clock signal. After being reset to \$000 by MCU reset, prescaler S divides the system clock. Prescaler S keeps counting, except in watch and subactive modes and at MCU reset.

Prescaler W: Five-bit counter that inputs the X1 input clock signal (32-kHz crystal oscillation) divided by eight. After being reset to \$00 by MCU reset, prescaler W divides the input clock. Prescaler W can be reset by software.

Table 25 Prescaler Operating Conditions

Prescaler	Input Clock	Reset Conditions	Stop Conditions
Prescaler S	System clock (in active and standby mode), Subsystem clock (in subactive mode)	MCU reset	MCU reset, stop mode, watch mode
Prescaler W	32-kHz crystal oscillation	MCU reset, software	MCU reset, stop mode

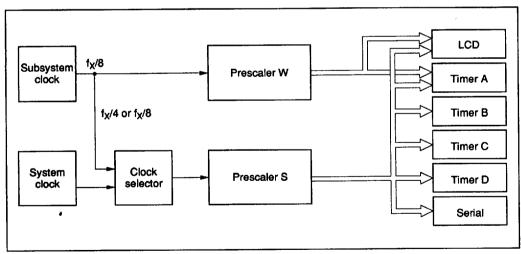


Figure 42 Prescaler Output Supply

Timers

The MCU has four timer/counters (A to D).

Timer A: Free-running timer
Timer B: Multifunction timer
Timer C: Multifunction timer
Timer D: Multifunction timer

Timer A is an 8-bit free-running timer. Timers B-D are 8-bit multifunction timers, whose functions are listed in table 26. The operating modes are selected by software.

Timer A

Timer A Functions: Timer A has the following functions.

· Free-running timer

· Clock time-base

The block diagram of timer A is shown in figure 43.

Timer A Operations:

 Free-running timer operation: The input clock for timer A is selected by timer mode register A (TMA: \$008). Timer A is reset to \$00 by MCU reset and incremented at each input clock. If an input clock is applied to timer A after it has reached \$FF, an overflow is generated, and timer A is reset to \$00. The overflow sets the timer A interrupt request flag (IFTA: \$001, bit 2). Timer A continues to be incremented after reset to \$00, and therefore it generates regular interrupts every 256 clocks.

Clock time-base operation: Timer A is used as a clock time-base by setting bit 3 (TMA3) of timer mode register A (TMA: \$008) to 1. The prescaler W output is applied to timer A, and timer A generates interrupts at the correct timing based on the 32.768-kHz crystal oscillation. In this case, prescaler W and timer A can be reset to \$00 by software.

Registers for Timer A Operation: Timer A operating modes are set by the following registers.

 Timer mode register A (TMA: \$008): Four-bit write-only register that selects timer A's operating mode and input clock source as shown in figure 44.

Table 26 Timer Functions

3	Timer A	Timer B	Timer C	Timer D
Prescaler S	Available	Available	Available	Available
Prescaler W	Available		_	_
External event	_	Available		Available
Free-running	Available	Available	Available	Available
Time-base	Available			
Event counter		Available		Available
Reload	_	Available	Available	Available
Watchdog	_		Available	-
Input capture		_	_	Available
Toggle	_	Available	Available	Available
0 output		Available	Available	Available
1 output	_	Available	Available	Available
PWM	_		Available	Available
	Prescaler S Prescaler W External event Free-running Time-base Event counter Reload Watchdog Input capture Toggle 0 output 1 output	Prescaler S Available Prescaler W Available External event — Free-running Available Time-base Available Event counter — Reload — Watchdog — Input capture — Toggle — 0 output — 1 output —	Prescaler S Available Available Prescaler W Available — External event — Available Free-running Available Available Time-base Available — Event counter — Available Reload — Available Watchdog — — Input capture — — Toggle — Available 0 output — Available 1 output — Available	Prescaler S Available Available Available Prescaler W Available — — — External event — Available — Available Free-running Available Available Available Time-base Available — — — Event counter — Available — Available Watchdog — Available Available Input capture — — — — — — — — — — — — — — — — — — —

Note: — implies not available.

4496204 0048706 194 ■ 213 Hitachi

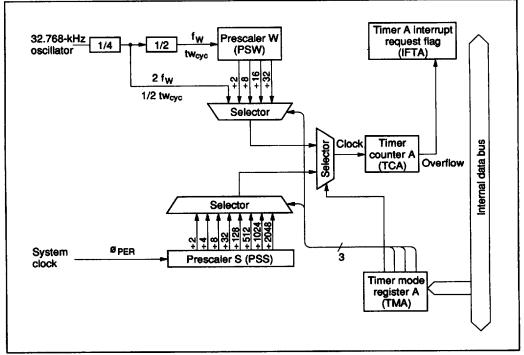


Figure 43 Block Diagram of Timer A

Timer mode register A (TMA: \$008)							
Bit	3	2	1	0			
Initial value	0	0	0	0			
Read/Write	W	W	W	W			
Bit name	ТМАЗ	TMA2	TMA1	TMA0			

тмаз	TMA2	TMA1	TMA0	Source prescaler	Input clock frequency	Operating mode
0	0	0	0	PSS	2048t _{cyc}	Timer A mode
			1	PSS	1024t _{cyc}]
		1	0	PSS	512t _{cyc}]
į .			1	PSS	128t _{cyc}]
	1	0	0	PSS	32t _{cyc}	1
			1	PSS	8t _{cyc}	
		1	0	PSS	4t _{cyc}	
			1	PSS	2t _{cyc}	1
1	0	0	0	PSW	32twcyc	Time-base
			1	PSW	16twcyc	mode
		1	0	PSW	8t _{Wcyc}]
			1	PSW	2t _{Wcyc}]
	1	0	0	PSW	1/2twcyc	
			1	Inhibited		
		1	×	PSW and	d TCA reset	

X : Don't care

Note: 1. twcyc = 244.14 µs (when a 32.768-kHz crystal oscillator is used)

2. Timer counter overflow output period (seconds) = input clock period (seconds) × 256.

If PSW of TCA reset is selected while the LCD is operating, LCD operation halts (power switch goes off and all SEG and COM pins are grounded).When an LCD is connected for display, the PSW and TCA reset periods must be set in the

program to the minimum.

The division ratio must not be modified during time-base mode operation, otherwise an overflow cycle error will occur.

Figure 44 Timer Mode Register A (TMA)

Timer B

Timer B Functions: Timer B has the following functions.

- · Free-running/reload timer
- · External event counter
- Timer output operation (toggle, 0, and 1 outputs)

The block diagram of timer B is shown in figure 45.

Timer B Operations:

 Free-running/reload timer operation: The freerunning/reload operation, input clock source, and prescaler division ratio are selected by timer mode register B1 (TMB1: \$009).

Timer B is initialized to the value set in timer write register B (TWBL: \$00A, TWBU: \$00B) by software and incremented by one at each clock input. If an input clock is applied to timer B after it has reached \$FF, an overflow is generated. In this case, if the reload timer function is enabled, timer B is initialized to its initial value set in timer write register B; if the free-running timer function is enabled, the timer is initialized to \$00 and then incremented again.

The overflow sets the timer B interrupt request flag (IFTB: \$002, bit 0). IFTB is reset by software or MCU reset. Refer to figure 3 and table 1 for details.

External event counter operation: Timer B is used as an external event counter by selecting external event input as input clock source. In this case, pin R1₃/EVNB must be set to EVNB by port mode register C (PMRC: \$025).

Timer B is incremented by one at each falling edge of signals input to pin $\overline{\text{EVNB}}$. The other operation is basically the same as the free-running/reload timer operation.

 Timer output operation: The following three output modes can be selected for timer B by setting timer mode register B2 (TMB2: \$013).

Toggle
0 output
1 output

By selecting the timer output mode, pin R1₀/TOB is set to TOB. The output from TOB is reset low by MCU reset.

- Toggle output: When toggle output mode is selected, the output level is inverted if a clock is input after timer B has reached \$FF. By using this function and reload timer function, clock signals can be output at a required frequency for the buzzer. The output waveform is shown in figure 46.
- 0 output: When 0 output mode is selected, the output level is pulled low if a clock is input after timer B has reached \$FF. Note that this function must be used only when the output level is high.
- 1 output: When 1 output mode is selected, the output level is set high if a clock is input after timer B has reached \$FF. Note that this function must be used only when the output level is low.

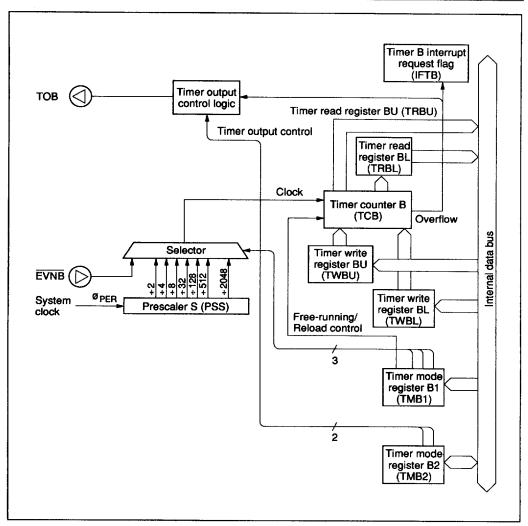


Figure 45 Block Diagram of Timer B

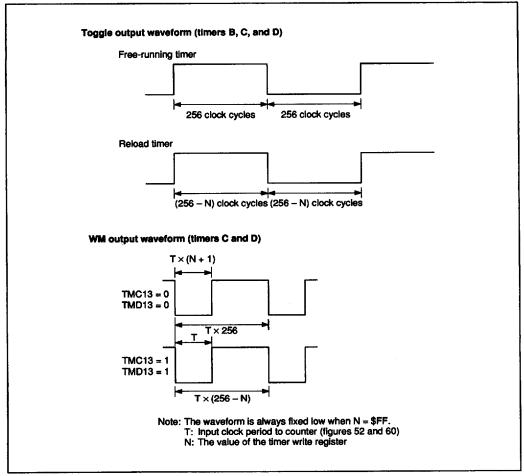


Figure 46 Timer Output Waveform

Registers for Timer B Operation: By using the following registers, timer B operation modes are selected and the timer B count is read and written.

Timer mode register B1 (TMB1: \$009) Timer mode register B2 (TMB2: \$013)

Timer write register B (TWBL: \$00A, TWBU:

\$00B)

Timer read register B (TRBL: \$00A, TRBU:

\$00B)

Port mode register C (PMRC: \$025)

• Timer mode register B1 (TMB1: \$009): Fourbit write-only register that selects the free-running/reload timer function, input clock source, and the prescaler division ratio as shown in figure 47. It is reset to \$0 by MCU reset.

Writing to this register is valid from the second instruction execution cycle after the execution of the previous timer mode register B1 write instruction. Setting timer B's initialization by writing to timer write register B (TWBL: \$00A, TWBU: \$00B) must be done after a mode change becomes valid.

Timer mode register B1 (TMB1: \$009)								
Bit	3	2	1	0				
Initial value	0	0	0	0				
Read/Write	W	W	W	w				
Bit name	TMB13	TMB12	TMB11	TMB10				

TMB13	Free-running/reload timer selection
0	Free-running timer
1	Reload timer

TMB12	TMB11	ТМВ10	Input clock period and input clock source
0	0	0	2048t _{cyc}
		1	512t _{cyc}
	1	0	128t _{cyc}
		1	32t _{cyc}
1	0	0	8t _{cyc}
		1	4t _{cyc}
	1	0	2t _{cyc}
		1	R1 ₃ /EVNB (external event input)

Figure 47 Timer Mode Register B1 (TMB1)

Bit	3	2	1	0				
Initial value	L -		0	0	TMB21	TMB20	R1 ₀ /TC	B mode selection
Read/Write	_	_	R/W	R/W	0	0	R1 ₀	R1 ₀ port
Bit name	Not used	Not used	TMB21	TMB20		1	тов	Toggle output
					1	0	TOB	0 output
						1	ТОВ	1 output

Figure 48 Timer Mode Register B2 (TMB2)

= 4496204 0048732 498 |

219 Hitachi

- Timer mode register B2 (TMB2: \$013): Two-bit read/write register that selects the timer B output mode as shown in figure 48. It is reset to \$0 by MCU reset.
- Timer write register B (TWBL: \$00A, TWBU: \$00B): Write-only register consisting of the lower digit (TWBL) and the upper digit (TWBU) as shown in figures 49 and 50. The lower digit is reset to \$0 by MCU reset, but the upper digit value is invalid.

Timer B is initialized by writing to timer write register B. In this case, the lower digit (TWBL) must be written to first, but writing only to the lower digit does not change the timer B value. Timer B is initialized to the value in timer write register B at the same time the upper digit (TWBU) is written to. When timer write register B is written to again and if the lower digit value

- needs no change, writing only to the upper digit initializes timer B.
- Timer read register B (TRBL: \$00A, TRBU: \$00B): Read-only register consisting of the lower digit (TRBL) and the upper digit (TRBU) that holds the count of the timer B upper digit (figures 51 and 52).

The upper digit (TRBU) must be read first. At this time, the count of the timer B upper digit is obtained, and the count of the timer B lower digit is latched to the lower digit (TRBL). After this, by reading TRBL, the count of timer B when TRBU is read can be obtained.

Port mode register C (PMRC: \$025): Write-only register that selects R1₃/EVNB pin function as shown in figure 53. It is reset to \$0 by MCU reset.

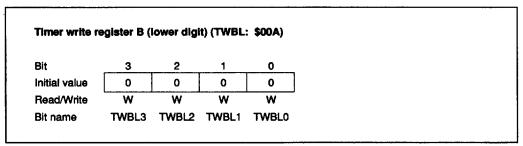


Figure 49 Timer Write Register B Lower Digit (TWBL)

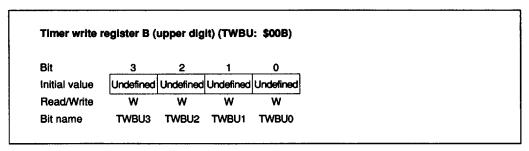


Figure 50 Timer Write Register B Upper Digit (TWBU)

4496204 0048713 324 **■** 220 Hitachi

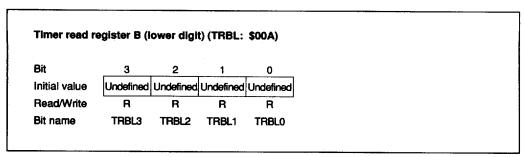


Figure 51 Timer Read Register B Lower Digit (TRBL)

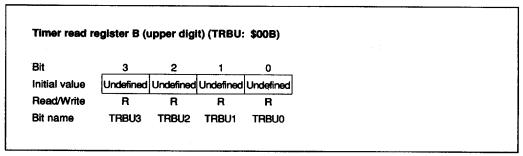


Figure 52 Timer Read Register B Upper Digit (TRBU)

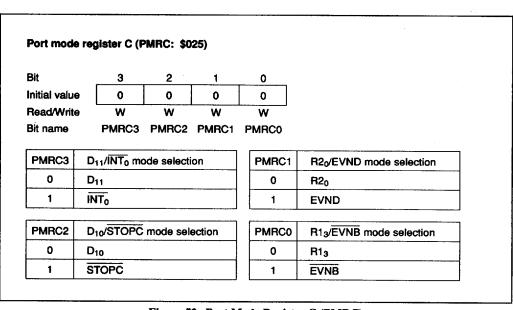


Figure 53 Port Mode Register C (PMRC)

Timer C

Timer C Functions: Timer C has the following functions.

- · Free-running/reload timer
- · Watchdog timer
- Timer output operation (toggle, 0, 1, and PWM outputs)

The block diagram of timer C is shown in figure 54.

Timer C Operations:

 Free-running/reload timer operation: The freerunning/reload operation, input clock source, and prescaler division ratio are selected by timer mode register C1 (TMC1: \$00D).

Timer C is initialized to the value set in timer write register C (TWCL: \$00E, TWCU: \$00F) by software and incremented by one at each clock input. If an input clock is applied to timer C after it has reached \$FF, an overflow is generated. In this case, if the reload timer function is enabled, timer C is initialized to its initial value set in timer write register C; if the free-running timer function is enabled, the timer is initialized to \$00 and then incremented again.

The overflow sets the timer C interrupt request flag (IFTC: \$002, bit 2). IFTC is reset by software or MCU reset. Refer to figure 3 and table 1 for details.

 Watchdog timer operation: Timer C is used as a watchdog timer for detecting out-of-control program routines by setting the watchdog on flag (WDON: \$020, bit 1) to 1. If a program routine runs out of control and an overflow is generated, the MCU is reset. Program run can be controlled by initializing timer C by software before it reaches \$FF.

Timer output operation: The following four output modes can be selected for timer C by setting timer mode register C2 (TMC2: \$014).

Toggle
0 output
1 output
PWM output

By selecting the timer output mode, pin R1₁/TOC is set to TOC. The output from TOC is reset low by MCU reset.

- Toggle output: The operation is basically the same as that of timer-B's toggle output.
- 0 output: The operation is basically the same as that of timer-B's 0 output.
- 1 output: The operation is basically the same as that of timer-B's 1 output.
- PWM output: When PWM output mode is selected, timer C provides the variable-duty pulse output function. The output waveform differs depending on the contents of timer mode register C1 (TMC1: \$00D) and timer write register C (TWCL: \$00E, TWCU: \$00F). The output waveform is shown in figure 46.

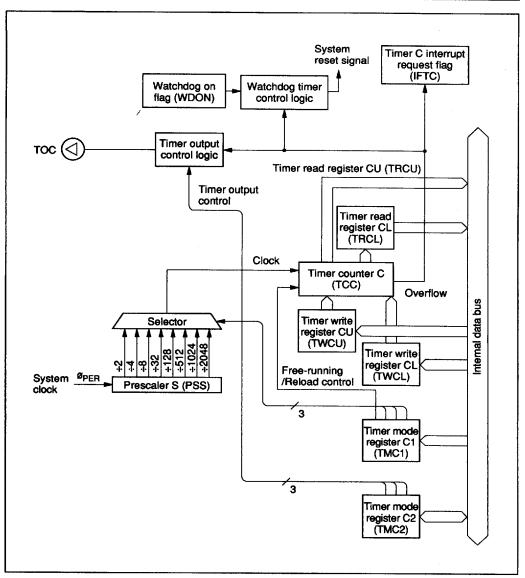


Figure 54 Block Diagram of Timer C

Registers for Timer C Operation: By using the following registers, timer C operation modes are selected and the timer C count is read and written.

Timer mode register C1 (TMC1: \$00D) Timer mode register C2 (TMC2: \$014)

Timer write register C (TWCL: \$00E, TWCU:

\$00F)

Timer read register C (TRCL: \$00E, TRCU:

\$00F)

• Timer mode register C1 (TMC1: \$00D): Fourbit write-only register that selects the free-running/reload timer function, input clock source, and the prescaler division ratio as shown in figure 55. It is reset to \$0 by MCU reset.

Writing to this register is valid from the second instruction execution cycle after the execution of the previous timer mode register C1 write instruction. Setting timer C's initialization by writing to timer write register C (TWCL: \$00E, TWCU: \$00F) must be done after a mode change becomes valid.

Timer mode register C1 (TMC1: \$00D)							
Bit	3	2	11	0			
Initial value	0	0	0	0			
Read/Write	W	W	W	W			
Bit name	TMC13	TMC12	TMC11	TMC10			

TMC13	Free-running/reload timer selection	
0	Free-running timer	
1	Reload timer	

TMC12	TMC11	TMC10	Input clock period
0	0	0	2048t _{cyc}
		1	1024t _{cyc}
	1	0	512t _{cyc}
		1	128t _{cyc}
1	0	0	32t _{cyc}
		1	8t _{cyc}
	1	0	4t _{cyc}
		1	2t _{cyc}

Figure 55 Timer Mode Register C1 (TMC1)

- Timer mode register C2 (TMC2: \$014): Threebit read/write register that selects the timer C output mode as shown in figure 56. It is reset to \$0 by MCU reset.
- Timer write register C (TWCL: \$00E, TWCU: \$00F): Write-only register consisting of the lower digit (TWCL) and the upper digit (TWCU). The operation of timer write register C is basically the same as that of timer write register B (TWBL: \$00A, TWBU: \$00B).
- Timer read register C (TRCL: \$00E, TRCU: \$00F): Read-only register consisting of the lower digit (TRCL) and the upper digit (TRCU) that holds the count of the timer C upper digit. The operation of timer read register C is basically the same as that of timer read register B (TRBL: \$00A, TRBU: \$00B).

3it	3	2	1	0		
nitial value		0	0	0		
lead/Write		R/W	R/W	R/W		
it name	Not used	TMC22	TMC21	TMC20		
		TMC22	TMC21	TMC20	R1 ₁ /TC	OC mode selection
		0	0	0	R1 ₁	R1 ₁ port
				1	TOC	Toggle output
			1	0	тос	0 output
				1	тос	1 output
		1	0	0	_	Inhibited
				1		
			1	0		
				1	TOC	PWM output

Figure 56 Timer Mode Register C2 (TMC2)

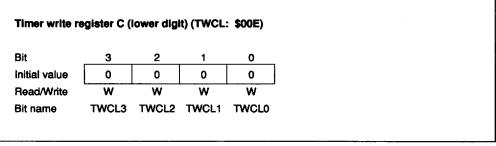


Figure 57 Timer Write Register C Lower Digit (TWCL)

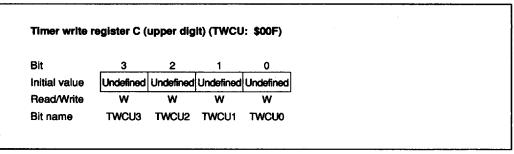


Figure 58 Timer Write Register C Upper Digit (TWCU)

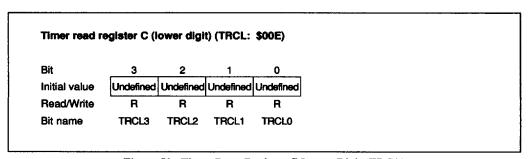


Figure 59 Timer Read Register C Lower Digit (TRCL)

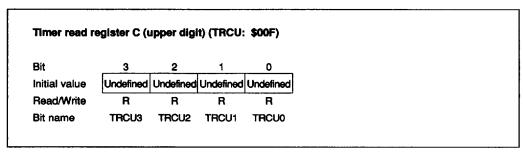


Figure 60 Timer Read Register C Upper Digit (TRCU)

■ 4496204 0048719 842 ■ 226 Hitachi

Timer D

Timer D Functions: Timer D has the following functions.

- · Free-running/reload timer
- · External event counter
- Timer output operation (toggle, 0, 1, and PWM outputs)
- · Input capture timer

The block diagram for each operation mode of timer D is shown in figures 61 and 62.

Timer D Operations:

 Free-running/reload timer operation: The freerunning/reload operation, input clock source, and prescaler division ratio are selected by timer mode register D1 (TMD1: \$010).

Timer D is initialized to the value set in timer write register D (TWDL: \$011, TWDU: \$012) by software and incremented by one at each clock input. If an input clock is applied to timer D after it has reached \$FF, an overflow is generated. In this case, if the reload timer function is enabled, timer D is initialized to its initial value set in timer write register D; if the free-running timer function is enabled, the timer is initialized to \$00 and then incremented again.

The overflow sets the timer D interrupt request flag (IFTD: \$003, bit 0). IFTD is reset by software or MCU reset. Refer to figure 3 and table 1 for details.

 External event counter operation: Timer D is used as an external event counter by selecting the external event input as an input clock source. In this case, pin R2₀/EVND must be set to EVND by port mode register C (PMRC: \$025).

Either falling or rising edge, or both falling and rising edges of input signals can be selected as the external event detection edge by detection edge select register 2 (ESR2: \$027). When both rising and falling edges detection is selected, the time between the falling edge and rising edge of input signals must be $2t_{cvc}$ or longer.

Timer D is incremented by one at each detection edge selected by detection edge select register 2

(ESR2: \$027). The other operation is basically the same as the free-running/reload timer operation.

Timer output operation: The following four output modes can be selected for timer D by setting timer mode register D2 (TMD2: \$015).

Toggle 0 output 1 output PWM output

By selecting the timer output mode, pin R1₂/TOD is set to TOD. The output from TOD is reset low by MCU reset.

- -- Toggle output: The operation is basically the same as that of timer-B's toggle output.
- 0 output: The operation is basically the same as that of timer-B's 0 output.
- 1 output: The operation is basically the same as that of timer-B's 1 output.
- PWM output: The operation is basically the same as that of timer-C's PWM output.
- Input capture timer operation: The input capture timer counts the clock cycles between trigger edges input to pin EVND.

Either falling or rising edge, or both falling and rising edges of input signals can be selected as the trigger input edge by detection edge select register 2 (ESR2: \$027).

When a trigger edge is input to EVND, the count of timer D is written to timer read register D (TRDL: \$011, TRDU: \$012), and the timer D interrupt request flag (IFTD: \$003, bit 0) and the input capture status flag (ICSF: \$021, bit 0) are set. Timer D is reset to \$00, and then incremented again. While ICSF is set, if a trigger input edge is applied to timer D, or if timer D generates an overflow, the input capture error flag (ICEF: \$021, bit 1) is set. ICSF and ICEF are reset to 0 by MCU reset or by writing 0.

By selecting the input capture operation, pin R1₂/TOD is set to R1₂ and timer D is reset to \$00.

227 Hitachi

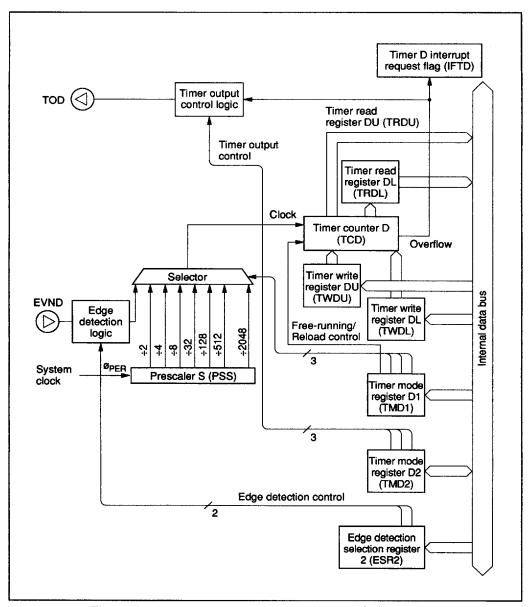


Figure 61 Block Diagram of Timer D (Free-Running/Reload Timer)

228 Hitachi

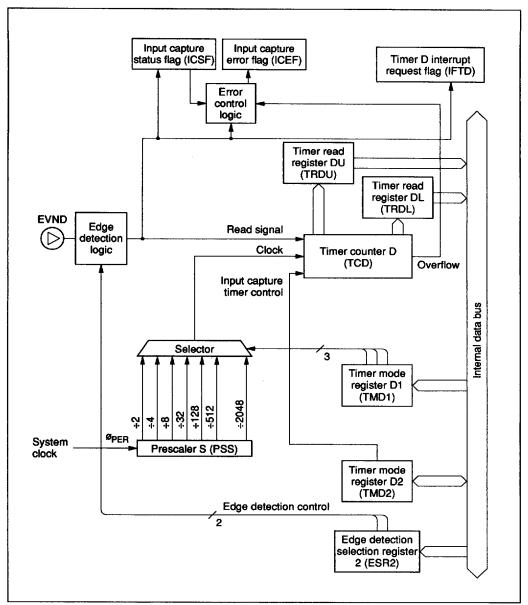


Figure 62 Block Diagram of Timer D (Input Capture Timer)

Registers for Timer D Operation: By using the following registers, timer D operation modes are selected and the timer D count is read and written.

Timer mode register D1 (TMD1: \$010) Timer mode register D2 (TMD2: \$015)

Timer write register D (TWDL: \$011, TWDU: \$012)

Timer read register D (TRDL: \$011, TRDU: \$012)

Port mode register C (PMRC: \$025)

Detection edge select register 2 (ESR2: \$027)

 Timer mode register D1 (TMD1: \$010): Fourbit write-only register that selects the free-running/reload timer function, input clock source, and the prescaler division ratio as shown in figure 63. It is reset to \$0 by MCU reset.

Writing to this register is valid from the second instruction execution cycle after the execution of the previous timer mode register D1 (TMD1: \$010) write instruction. Setting timer D's initialization by writing to timer write register D (TWDL: \$011, TWDU: \$012) must be done after a mode change becomes valid.

When selecting the input capture timer operation, select the internal clock as the input clock source.

Timer mode register D1 (TMD1: \$010)				
Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	w	W	W
Bit name	TMD13	TMD12	TMD11	TMD10

TMD13	Free-running/reload timer selection
0	Free-running timer
1	Reload timer

	TMD12	TMD11	TMD10	Input clock period and input clock source
	0	0	0	2048t _{cyc}
			1	512t _{cyc}
		1	0	128t _{cyc}
į			1	32t _{cyc}
	1	0	0	8t _{cyc}
			1	4t _{cyc}
		1	0	2t _{cyc}
			1	R2 ₀ /EVND (external event input)

Figure 63 Timer Mode Register D1 (TMD1)

- Timer mode register D2 (TMD2: \$015): Fourbit read/write register that selects the timer D output mode and input capture operation as shown in figure 64. It is reset to \$0 by MCU reset.
- Timer write register D (TWDL: \$011, TWDU: \$012): Write-only register consisting of the lower digit (TWDL) and the upper digit (TWDU). The operation of timer write register D is basically the same as that of timer write register B (TWBL: \$00A, TWBU: \$00B).
- Timer read register D (TRDL: \$011, TRDU: \$012): Read-only register consisting of the lower digit (TRDL) and the upper digit (TRDU). The operation of timer read register D is basical-

ly the same as that of timer read register B (TRBL: \$00A, TRBU: \$00B).

When the input capture timer operation is selected and if the count of timer D is read after a trigger is input, either the lower or upper digit can be read first.

- Port mode register C (PMRC: \$025): Write-only register that selects R2₀/EVND pin function as shown in figure 53. It is reset to \$0 by MCU reset.
- Detection edge select register 2 (ESR2: \$027):
 Write-only register that selects the detection edge of signals input to pin EVND as shown in figure 69. It is reset to \$0 by MCU reset.

Timer mode register D2 (TMD2: \$015)				
Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W
Bit name	TMD23	TMD22	TMD21	TMD20

TMD23	TMD22	TMD21	TMD20	R1 ₂ /TOD mode selection	
0	0	0	0	R1 ₂	R1 ₂ port
			1	TOD	Toggle output
		1	0	TOD	0 output
			1	TOD	1 output
	1	0	0	-	Inhibited
			1		
		1	0		
			1	TOD	PWM output
1	×	×	×	R12	Input capture (R1 ₂ port)

X: Don't care

Figure 64 Timer Mode Register D2 (TMD2)

231 Hitachi

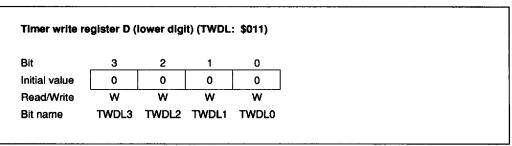


Figure 65 Timer Write Register D Lower Digit (TWDL)

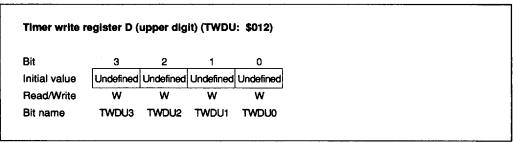


Figure 66 Timer Write Register D Upper Digit (TWDU)

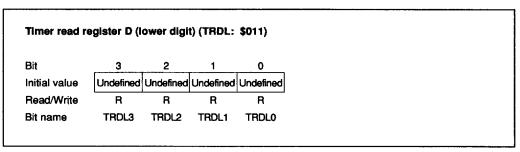


Figure 67 Timer Read Register D Lower Digit (TRDL)

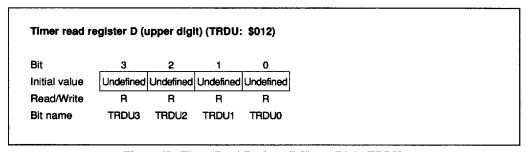


Figure 68 Timer Read Register D Upper Digit (TRDU)

-- 4496204 0048725 046 **--**

232 Hitachi

Detection edge register 2 (ESR2: \$027)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	W	w
Bit name	ESR23	ESR22	ESR21	ESR20

ESR23	ESR22	EVND detection edge
0	0	No detection
	1	Falling-edge detection
1	0	Rising-edge detection
	1	Double-edge detection*

ESR21	ESR20	INT ₄ detection edge
0	0	No detection
	1	Falling-edge detection
1	0	Rising-edge detection
	1	Double-edge detection*

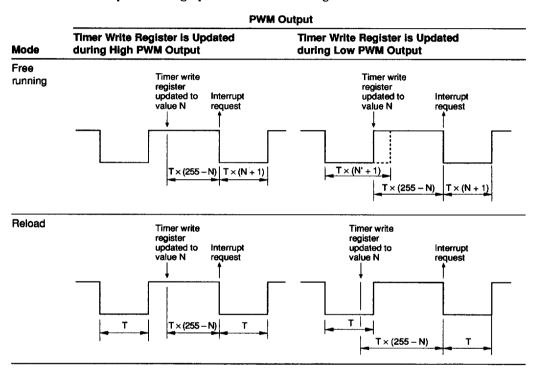

Note: * Both falling and rising edges are detected.

Figure 69 Detection Edge Select Register 2 (ESR2)

Note on Use

When using the timer output as PWM output, note the following point. From the update of the timer write register untill the occurrence of the overflow interrupt, the PWM output differs from the period and duty settings, as shown in table 27. The PWM output should therefore not be used until after the overflow interrupt following the update of the timer write register. After the overflow, the PWM output will have the set period and duty cycle.

Table 27 PWM Output Following Update of Timer Write Register

Serial Interface

The serial interface serially transfers and receives 8-bit data, and includes the following features.

- · Multiple transmit clock sources
 - -External clock
 - -Internal prescaler output clock
 - -System clock
- · Output level control in idle states

Five registers, an octal counter, and a multiplexer are also configured for the serial interface as follows.

Serial data register (SRL: \$006, SRU: \$007)

Serial mode register A (SMRA: \$005)

Serial mode register B (SMRB: \$028)

Miscellaneous register (MIS: \$00C) Octal counter (OC)

Selector

The block diagram of the serial interface is shown in figure 70.

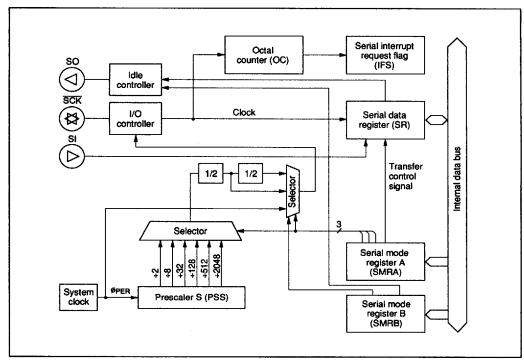


Figure 70 Block Diagram of Serial Interface

Serial Interface Operation

Selecting and Changing the Operating Mode: Table 28 lists the serial interface's operating modes. To select an operating mode, use one of these combinations of port mode register A (PMRA: \$004) and serial mode register A (SMRA: \$005) settings; to change the operating mode, always initialize the serial interface internally by writing data to serial mode register A. Note that the serial interface is initialized by writing data to serial mode register A. Refer to the following Serial Mode Register A section for details.

Pin Setting: The $R2_1/\overline{SCK}$ pin is controlled by writing data to serial mode register A (SMRA: \$005). The $R2_2/SI$ and $R2_3/SO$ pins are controlled by writing data to port mode register A (PMRA: \$004). Refer to the following Registers for Serial Interface section for details.

Transmit Clock Source Setting: The transmit clock source is set by writing data to serial mode register A (SMRA: \$005) and serial mode register B (SMRB: \$028). Refer to the following Registers for Serial Interface section for details.

Data Setting: Transmit data is set by writing data to the serial data register (SRL: \$006, SRU: \$007). Receive data is obtained by reading the contents of the serial data register. The serial data is shifted by the transmit clock and is input from or output to an external system.

The output level of the SO pin is invalid until the first data is output after MCU reset, or until the output level control in idle states is performed.

Transfer Control: The serial interface is activated by the STS instruction. The octal counter is reset to 000 by this instruction, and it increments at the rising edge of the transmit clock. When the eighth transmit clock signal is input or when serial transmission/receive is discontinued, the octal counter is reset to 000, the serial interrupt request flag (IFS: \$023, bit 2) is set, and the transfer stops.

When the prescaler output is selected as the transmit clock, the transmit clock frequency is selected as $4t_{cyc}$ to $8192t_{cyc}$ by setting bits 2 to 0 (SMRA2-SMRA0) of serial mode register A (SMRA: \$005)

and bit 0 (SMRB0) of serial mode register B (SMRB: \$028) as listed in table 29.

Operating States: The serial interface has the following operating states; transitions between them are shown in figure 71.

STS wait state

Transmit clock wait state

Transfer state

Continuous clock output state (only in internal clock mode)

- STS wait state: The serial interface enters STS
 wait state by MCU reset (00, 10 in figure 71). In
 STS wait state, the serial interface is initialized
 and the transmit clock is ignored. If the STS
 instruction is then executed (01, 11), the serial
 interface enters transmit clock wait state.
- Transmit clock wait state: Transmit clock wait state is between the STS execution and the falling edge of the first transmit clock. In transmit clock wait state, input of the transmit clock (02, 12) increments the octal counter, shifts the serial data register, and enters the serial interface in transfer state. However, note that if continuous clock output mode is selected in internal clock mode, the serial interface does not enter transfer state but enters continuous clock output state (17).

The serial interface enters STS wait state by writing data to serial mode register A (SMRA: \$005) (04, 14) in transmit clock wait state.

• Transfer state: Transfer state is between the falling edge of the first clock and the rising edge of the eighth clock. In transfer state, the input of eight clocks or the execution of the STS instruction sets the octal counter to 000, and the serial interface enters another state. When the STS instruction is executed (05, 15), transmit clock wait state is entered. When eight clocks are input, transmit clock wait state is entered (03) in external clock mode, and STS wait state is entered (13) in internal clock mode. In internal clock mode, the transmit clock stops after outputting eight clocks.

In transfer state, writing data to serial mode register A (SMRA: \$005) (06, 16) initializes the serial interface, and STS wait state is entered.

If the state changes from transfer to another state, the serial interrupt request flag (IFS: \$023, bit 2) is set by the octal counter that is reset to 000.

 Continuous clock output state (only in internal clock mode): Continuous clock output state is entered only in internal clock mode. In this state, the serial interface does not transmit/ receive data but only outputs the transmit clock from the SCK pin.

When bits 1 and 0 (PMRA1, PMRA0) of port mode register A (PMRA: \$004) are 00 in transmit clock wait state and if the transmit clock is input (17), the serial interface enters continuous

clock output state. If serial mode register A (SMRA: \$005) is written to in continuous clock output mode (18), STS wait state is entered.

Output Level Control in Idle States: In idle states, that is, STS wait state and transmit clock wait state, the output level of the SO pin can be controlled by setting bit 1 (SMRB1) of serial mode register B (SMRB: \$028) to 0 or 1. The output level control example is shown in figure 72. Note that the output level cannot be controlled in transfer state.

Transmit Clock Error Detection (In External Clock Mode): The serial interface will malfunction if a spurious pulse caused by external noise conflicts with a normal transmit clock during transfer. A transmit clock error of this type can be detected as shown in figure 73.

Table 28 Serial Interface Operating Modes

SMRA	PMRA				
Bit 3	Bit 1	Bit 0	Operating Mode		
1	0	0	Continuous clock output mode		
		1	Transmit mode		
•	1	0	Receive mode		
		1	Transmit/receive mode		

Table 29 Serial Transmit Clock (Prescaler Output)

SMRB		SMR	A		
Bit 0	Bit 2	Bit 1	Bit 0	Prescaler Division Ratio	Transmit Clock Frequency
0	0	0	0	+ 2048	4096t _{cyc}
			1	+ 512	1024t _{cyc}
		1	0	÷ 128	256t _{cyc}
			1	+ 32	64t _{cyc}
	1	0	0	÷ 8	16t _{cyc}
			1	÷ 2	4t _{cyc}
1	0	0	0	÷ 4096	8192t _{cyc}
			1	÷ 1024	2048t _{cyc}
		1	0	+ 256	512t _{cyc}
			1	+ 64	128t _{cyc}
	1	0	0	+ 16	32t _{cyc}
			1	+ 4	8t _{cyc}

If more than eight transmit clocks are input in transfer state, at the eighth clock including a spurious pulse by noise, the octal counter reaches 000, the serial interrupt request flag (IFS: \$023, bit 2) is set, and transmit clock wait state is entered. At the falling edge of the next normal clock signal, the transfer state is entered. After the transfer completion processing is performed and IFS is reset, writing to serial mode register A (SMRA: \$005) changes the state from transfer to STS wait. At this time IFS is set again, and therefore the error can be detected.

Notes on Use:

· Initialization after writing to registers: If port

- mode register A (PMRA: \$004) is written to in transmit clock wait state or in transfer state, the serial interface must be initialized by writing to serial mode register A (SMRA: \$005) again.
- Serial interrupt request flag (IFS: \$023, bit 2) set: If the state is changed from transfer to another by writing to serial mode register A (SMRA: \$005) or executing the STS instruction during the first low pulse of the transmit clock, the serial interrupt request flag is not set. To set the serial interrupt request flag, serial mode register A write or STS instruction execution must be programmed to be executed after confirming that the SCK pin is at 1, that is, after executing the input instruction to port R2.

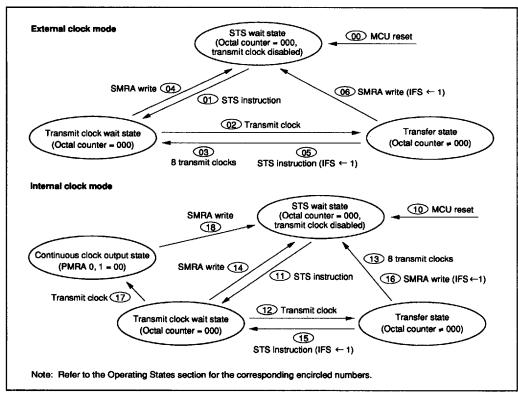


Figure 71 Serial Interface State Transitions

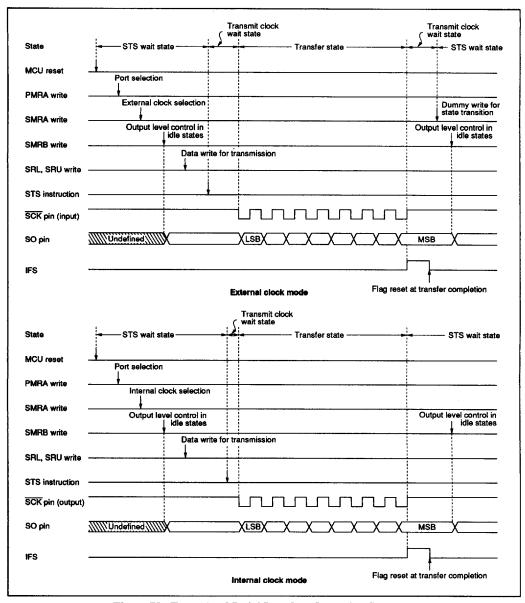


Figure 72 Example of Serial Interface Operation Sequence

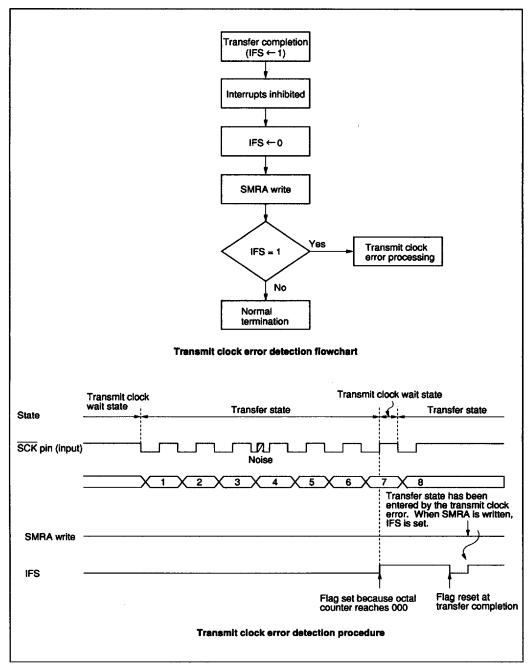


Figure 73 Transmit Clock Error Detection

■ 4496204 0048733 112 **■** 240 Hitachi

Registers for Serial Interface

The serial interface operation is selected, and serial data is read and written by the following registers.

Serial Mode Register A (SMRA: \$005) Serial Mode Register B (SMRB: \$028) Serial Data Register (SRL: \$006, SRU: \$007) Port Mode Register A (PMRA: \$004) Miscellaneous Register (MIS: \$00C)

Serial Mode Register A (SMRA: \$005): This register has the following functions (figure 74).

- R2₁/SCK pin function selection
- · Transfer clock selection
- · Prescaler division ratio selection
- Serial interface initialization

Serial mode register A (SMRA: \$005) is a 4-bit write-only register. It is reset to \$0 by MCU reset.

A write signal input to serial mode register A (SMRA: \$005) discontinues the input of the transmit clock to the serial data register and octal

counter, and the octal counter is reset to 000. Therefore, if a write is performed during data transfer, the serial interrupt request flag (IFS: \$023, bit 2) is set.

Written data is valid from the second instruction execution cycle after the write operation, so the STS instruction must be executed at least two cycles after that.

Serial Mode Register B (SMRB: \$028): This register has the following functions (figure 75).

- · Prescaler division ratio selection
- · Output level control in idle states

Serial mode register B is a 2-bit write-only register. It cannot be written during data transfer.

By setting bit 0 (SMRB0) of this register, the prescaler division ratio is selected. Only bit 0 (SMRB0) can be reset to 0 by MCU reset. By setting bit 1 (SMRB1), the output level of the SO pin is controlled in idle states. The output level changes at the same time that SMRB1 is written to.

Serial mo	de re	gister A	(SMRA	\: \$00 5)					
Bit	_	3	2	1	0				
Initial value	• [0	0	0	0				
Read/Write	• _	W	W	w	W				
Bit name		SMRA3	SMRA	A2 SMR	A1 SMRA	40			
SMRA3		SCK e selection	on	SMRA2	SMRA1	SMRA0	SCK	Clock source	Prescaler division rat
0	R2 ₁			0	0	0	Output	Prescaler	Refer to
1	SCK	<u> </u>				1			table 29
					1	0			
						1			
				1	0	0			
						1			
					1	0	Output	System clock	
						1	input	External clock	_

Figure 74 Serial Mode Register A (SMRA)

4496204 0048734 059 🖿

Serial Data Register (SRL: \$006, SRU: \$007): This register has the following functions (figures 76 and 77).

- · Transmission data write and shift
- · Receive data shift and read

Writing data in this register is output from the SO pin, LSB first, synchronously with the falling edge

of the transmit clock; data is input, LSB first, through the SI pin at the rising edge of the transmit clock. Input/output timing is shown in figure 78.

Data cannot be read or written during serial data transfer. If a read/write occurs during transfer, the accuracy of the resultant data cannot be guaranteed.

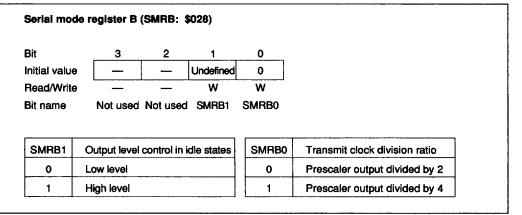


Figure 75 Serial Mode Register B (SMRB)

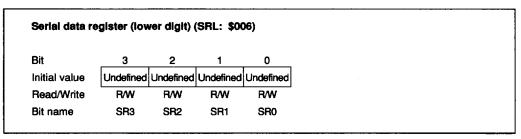


Figure 76 Serial Data Register (SRL)

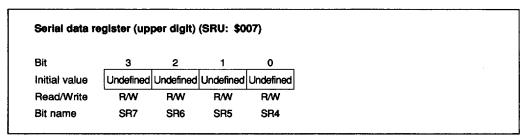


Figure 77 Serial Data Register (SRU)

■ 4496204 0048735 T95 ■ 242 Hitachi

Port Mode Register A (PMRA: \$004): This register has the following functions (figure 79).

- R2₂/SI pin function selection
- R2₃/SO pin function selection

Port mode register A (PMRA: \$004) is a 2-bit write-only register, and is reset to \$0 by MCU reset.

Miscellaneous Register (MIS: \$00C): This register has the following function (figure 80).

• R2₃/SO pin PMOS control

Miscellaneous register (MIS: \$00C) is a 4-bit write-only register and is reset to \$0 by MCU reset.

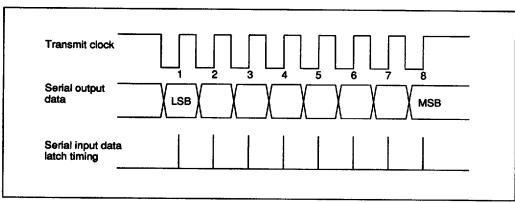


Figure 78 Serial Interface Output Timing

	register A (F	MKA: \$0	JO4}		
Bit	3	2	1	0	
Initial value	-		0	0	
Read/Write	_	_	W	W	
Bit name	Not used	Not used	PMRA1	PMRA0	
PMRA1	R2 ₂ /SI mode	e selectio	n	PMRA0	R2 ₃ /SO mode selection
0	R2 ₂			0	R2 ₃
	SI			_	SO

Figure 79 Port Mode Register A (PMRA)

Miscellaneous register (MIS: \$00C)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	W	W
Bit name	MIS3	MIS2	MIS1	MIS0

MIS3	Pull-up MOS on/off selection
0	Off
1	On

MIS2	R2 ₃ /SO PMOS on/off selection
0	On
1	Off

MIS1	MISO	t _{RC}
0	0	0.12207 ms
		0.24414 ms
	1	7.8125 ms
1	0	31.25 ms
	1	Not used

Figure 80 Miscellaneous Register (MIS)

A/D Converter

The MCU has a built-in A/D converter that uses a successive approximation method with a resistor ladder. It can measure four analog inputs with 8-bit resolution. As shown in the block diagram of figure 81, the A/D converter has a 4-bit A/D mode register, a 1-bit A/D start flag, and a 4-bit plus 4-bit A/D data register.

A/D Mode Register (AMR: \$016): Four-bit write-only register which selects the A/D conversion period and indicates analog input pin information. Bit 0 of the A/D mode register selects the A/D conversion period, and bits 3 and 2 select a channel, as shown in figure 82.

A/D Data Register (ADRL: \$017, ADRU: \$018): Eight-bit read-only register consisting of a 4-bit lower digit and 4-bit upper digit. This register is not cleared by reset. After the completion of A/D conversion, the resultant eight-bit data is held in this register until the start of the next conversion (figures 83, 84, and 85).

A/D Start Flag (ADSF: \$020, Bit 2): One-bit flag that initiates A/D conversion when set to 1. At the completion of A/D conversion, the converted data is stored in the A/D data register and the A/D start flag is cleared. Refer to figure 86.

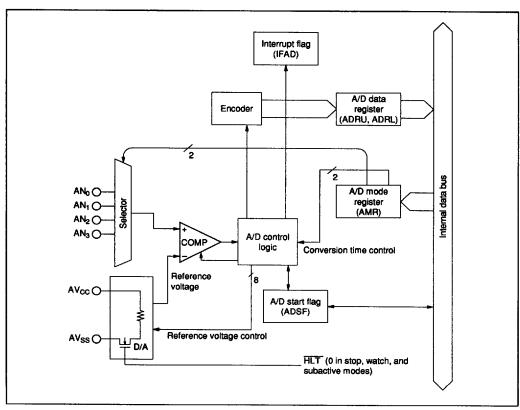


Figure 81 Block Diagram of A/D Converter

Note on Use: Use the SEM and SEMD instructions to write data to the A/D start flag (ADSF: \$020, bit 2), but make sure that the A/D start flag is not written to during A/D conversion. Data read from the A/D data register (ADRL: \$017, ADRU: \$018) during A/D conversion cannot be guaranteed.

The A/D converter does not operate in the stop, watch, and subactive modes because of the OSC clock. During these low-power dissipation modes, current through the resistor ladder is cut off to decrease the power input.

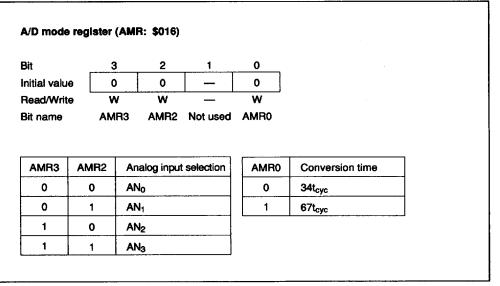


Figure 82 A/D Mode Register (AMR)

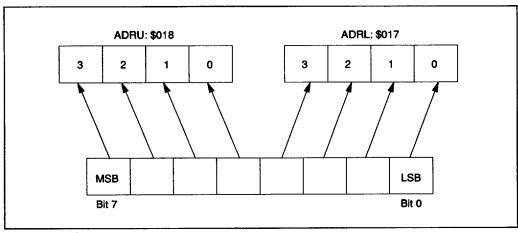


Figure 83 A/D Data Registers (ADRU, ADRL)

■ 4496204 0048739 630 ■ 246 Hitachi

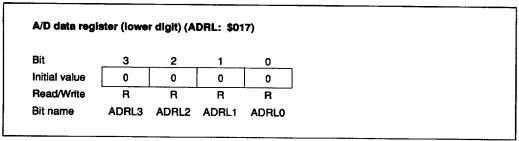


Figure 84 A/D Data Register Lower Digit (ADRL)

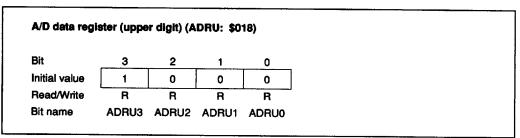


Figure 85 A/D Data Register Upper Digit (ADRU)

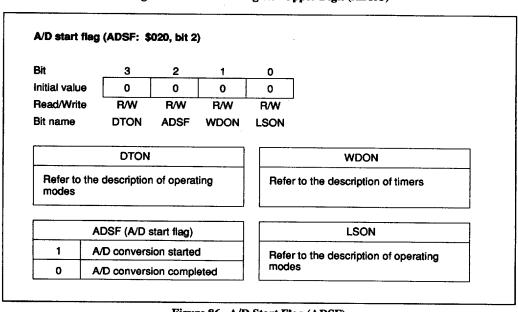


Figure 86 A/D Start Flag (ADSF)

DTMF Generation Circuit

The MCU provides a dual-tone multifrequency (DTMF) generation circuit. The DTMF signal consists of two sine waves to access the switching system.

Figure 87 shows the DTMF keypad and frequencies. Each key enables tones to be generated corresponding to each frequency. Figure 88 shows a block diagram of the DTMF circuit.

The OSC clock (400 kHz, 800 kHz, 2 MHz, or 4 MHz) is changed into four clock signals through the division circuit (1/2, 1/5, and 1/10). The DTMF circuit uses one of the four clock signals, which is selected by the system clock select register (SSR: \$029) depending on the OSC clock frequency. The DTMF circuit has transformed programmable dividers, sine wave counters, and control registers.

The DTMF generation circuit is controlled by the following three registers.

Tone Generator Mode Register (TGM: \$019): Four-bit write-only register, which controls output frequencies as shown in figure 89, and is reset to \$0 by MCU reset.

Tone Generator Control Register (TGC: \$01A): Three-bit write-only register, which controls the start/stop of the DTMF signal output as shown in figure 90, and is reset to \$0 by MCU reset. TONER and TONEC output can be independently controlled by bits 3 and 2 (TGC3, TGC2), and the DTMF circuit is controlled by bit 1 (TGC1) of this register.

System Clock Select Register (SSR: \$029): Four-bit write-only register. This register must be set to the value specified in figure 91 depending on the frequency of the oscillator connected to the OSC₁ and OSC₂ pins. Note that if the combination of the oscillation frequency and the value in this register is different from that specified in figure 91, the DTMF output frequencies will differ from the correct frequencies as listed in figure 89.

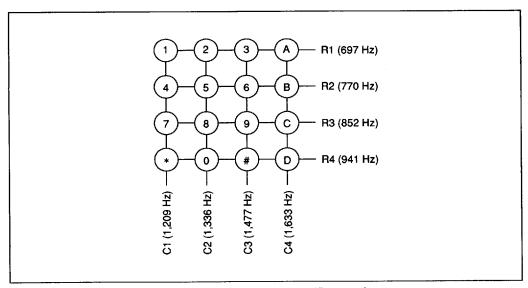


Figure 87 DTMF Keypad and Frequencies

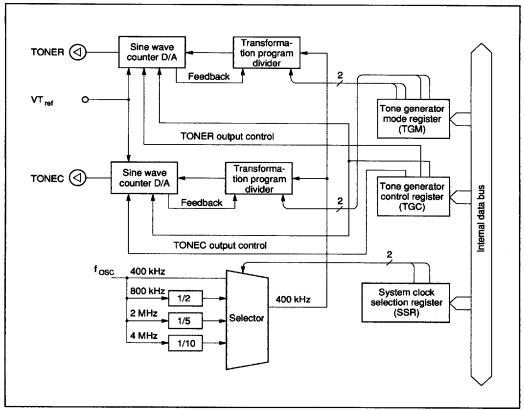


Figure 88 Block Diagram of DTMF Circuit

Tone generator mode register (TGM: \$019)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	W	W
Bit name	TGM3	TGM2	TGM1	TGM0

ТСМЗ	TGM2	TONEC output frequencies
0	0	f _{C1} (1,209 Hz)
0	1	f _{C2} (1,336 Hz)
1	0	f _{C3} (1,477 Hz)
1	1	f _{C4} (1,633 Hz)

TGM1	TGM0	TONER output frequencies
0	0	f _{R1} (697 Hz)
0	1	f _{R2} (770 Hz)
1	0	f _{R3} (852 Hz)
1	1	f _{R4} (941 Hz)

Figure 89 Tone Generator Mode Register (TGM)

Tone generator control register (TGC: \$01A)

Bit	3	22	1	0
Initial value	0	0	0	 -
Read/Write	W	W	W	
Bit name	TGC3	TGC2	TGC1	Not used

TGC3	TONEC output control (column)
0	No output
1	TONEC output (active)

TGC1	DTMF enable bit
0	DTMF disable
1	DTMF enable

TGC2	TONER output control (row)
0	No output
1	TONER output (active)

Figure 90 Tone Generator Control Register (TGC)

DTMF Output: The sine waves of the row-group and column-group are individually converted in the D/A conversion circuit which provides a high-precision ladder resistance. The DTMF output pins (TONER, TONEC) transmit the sine waves of the row-group and column-group, respectively.

Figure 92 shows the tone output equivalent circuit. Figure 93 shows the output waveform. One cycle of this wave consists of 32 slots. Therefore, the output waveform is stable with little distortion. Table 30 lists the frequency deviation of the MCU from standard DTMF signals.

Table 30 Frequency Deviation of the MCU from Standard DTMF

	Standard DTMF (Hz)	MCU (Hz)	Deviation from Standard (%)
R1	697	694.44	-0.37
R2	770	769.23	-0.10
R3	852	851.06	-0.11
R4	941	938.97	-0.22
C1	1,209	1,212.12	0.26
C2	1,336	1,333.33	-0.20
СЗ	1,477	1,481.48	0.30
C4	1,633	1,639.34	0.39

Note: This frequency deviation value does not include the frequency deviation due to the oscillator element. Also note that in this case the ratio of the high level and low level widths in the oscillator waveform due to the oscillator element will be 50%:50%.

System clock select register (SSR: \$029)

Bit	3	2	1	00
Initial value	0	0	0	0
Read/Write	W	W	W	W
Bit name	SSR3	SSR2	SSR1	SSR0

SSR3	32-kHz oscillation stop
0	Oscillation operates in stop mode
1	Oscillation stops in stop mode

SSR2	32-kHz oscillation division ratio selection
0	f _{SUB} = f _X /8
1	fsub = fx/4

SSR1	SSR0	System clock selection
0	0	400 kHz
0	1	800 kHz
1	0	2 MHz
1	1	4 MHz

Note: SSR3 is cleared only by a RESET input. SSR3 will not be cleared by a STOPC input during stop mode, and will retain its value. SSR3 will also not be cleared upon entering stop mode.

Figure 91 System Clock Select Register (SSR)

4496204 0048744 TTA

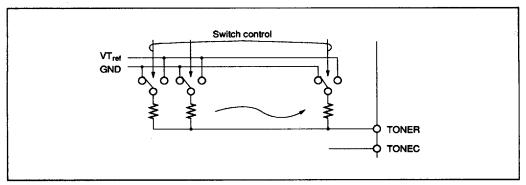


Figure 92 Tone Output Equivalent Circuit

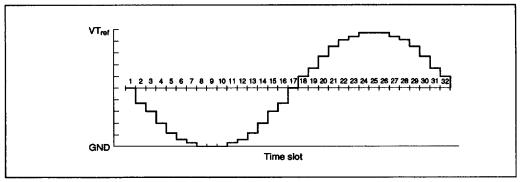


Figure 93 Waveform of Tone Output

LCD Controller/Driver

The MCU has an LCD controller and driver which drive 4 common signal pins and 52 segment pins. The controller consists of a RAM area in which display data is stored, a display control register (LCR: \$01B), and a duty-cycle/clock-control register (LMR: \$01C) (figure 94).

Four duty cycles and the LCD clock are pro-

grammable, and a built-in dual-port RAM ensures that display data can be automatically transmitted to the segment signal pins without program intervention. If a 32-kHz oscillation clock is selected as the LCD clock source, the LCD can even be used in watch mode, in which the system clock stops.

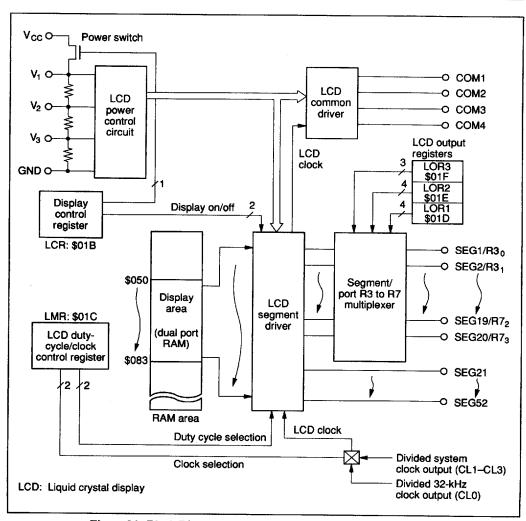


Figure 94 Block Diagram of Liquid Crystal Display Control System

4496204 0048746 870 🖿

LCD Data Area and Segment Data (\$050-\$083): As shown in figure 95, each bit of the storage area corresponds to one of four duty cycles. If data is written to an area corresponding to a certain duty cycle, it is automatically output to the corresponding segments as display data.

LCD Control Register (LCR: \$01B): Three-bit write-only register which controls LCD blanking, on/off switching of the liquid-crystal display's power supply division resistor, and display in watch and subactive modes, as shown in figure 96.

· Blank/display

Blank: Segment signals are turned off,

regardless of LCD RAM data setting.

Display: LCD RAM data is output as segment

signals.

· Power switch on/off

Off: The power switch is off.

On: The power switch is on and V₁ is V_{CC}.

· Watch/subactive mode display

Off: In watch and subactive modes, all common and segment pins are grounded and the liquid-crystal power switch is turned off.

On: In watch and subactive modes, LCD RAM data is output as segment signals.

LCD Duty-Cycle/Clock Control Register (LMR: \$01C): Four-bit write-only register which selects the display duty cycle and LCD clock source, as shown in figure 97. The dependence of frame frequency on duty cycle is listed in table 31.

LCD Output Register 1 (LOR1: \$01D): Write-only register used to specify ports R3₀-R3₃ as pins SEG1-SEG4 by individual pins (figure 98).

	Bit 3	Bit 2	Bit 1	Bit 0			Bit 3	Bit 2	Bit 1	Bit 0	
80	SEG1	SEG1	SEG1	SEG1	\$050	106	SEG27	SEG27	SEG27	SEG27	\$06A
81	SEG2	SEG2	SEG2	SEG2	\$051	107	SEG28	SEG28	SEG28	SEG28	\$06B
82	SEG3	SEG3	SEG3	SEG3	\$052	108	SEG29	SEG29	SEG29	SEG29	\$06C
83	SEG4	SEG4	SEG4	SEG4	\$053	109	SEG30	SEG30	SEG30	SEG30	\$06D
84	SEG5	SEG5	SEG5	SEG5	\$054	110	SEG31	SEG31	SEG31	SEG31	\$06E
85	SEG6	SEG6	SEG6	SEG8	\$055	111	SEG32	SEG32	SEG32	SEG32	\$06F
86	SEG7	SEG7	SEG7	SEG7	\$056	112	SEG33	SEG33	SEG33	SEG33	\$070
87	SEG8	SEG8	SEG8	SEG8	\$057	113	SEG34	SEG34	SEG34	SEG34	\$071
88	SEG9	SEG9	SEG9	SEG9	\$058	114	SEG35	SEG35	SEG35	SEG35	\$072
89	SEG10	SEG10	SEG10	SEG10	\$059	115	SEG36	SEG36	SEG36	SEG36	\$073
90	SEG11	SEG11	SEG11	SEG11	\$05A	116	SEG37	SEG37	SEG37	SEG37	\$074
91	SEG12	SEG12	SEG12	SEG12	\$058	117	SEG38	SEG38	SEG38	SEG38	\$075
92	SEG13	SEG13	SEG13	SEG13	\$05C	118	SEG39	SEG39	SEG39	SEG39	\$076
93	SEG14	SEG14	SEG14	SEG14	\$05D	119	SEG40	SEG40	SEG40	SEG40	\$077
94	SEG15	SEG15	SEG15	SEG15	\$05E	120	SEG41	SEG41	SEG41	SEG41	\$078
95	SEG16	SEG16	SEG16	SEG16	\$05F	121	SEG42	SEG42	SEG42	SEG42	\$079
96	SEG17	SEG17	SEG17	SEG17	\$060	122	SEG43	SEG43	SEG43	SEG43	\$07A
97	SEG18	SEG18	SEG18	SEG18	\$061	123	SEG44	SEG44	SEG44	SEG44	\$078
98	SEG19	SEG19	SEG19	SEG19	\$062	124	SEG45	SEG45	SEG45	SEG45	\$070
99	SEG20	SEG20	SEG20	SEG20	\$063	125	SEG46	SEG46	SEG46	SEG46	\$070
100	SEG21	SEG21	SEG21	SEG21	\$064	126	SEG47	SEG47	SEG47	SEG47	\$07E
10	SEG22	SEG22	SEG22	SEG22	\$065	127	SEG48	SEG48	SEG48	SEG48	\$07F
103	SEG23	SEG23	SEG23	SEG23	\$066	128	SEG49	SEG49	SEG49	SEG49	\$080
103	SEG24	SEG24	SEG24	SEG24	\$067	129	SEG50	SEG50	SEG50	SEG50	\$081
10-	SEG25	SEG25	SEG25	SEG25	\$068	130	SEG51	SEG51	SEG51	SEG51	\$082
10	SEG26	SEG26	SEG26	SEG26	\$069	131	SEG52	SEG52	SEG52	SEG52	\$083
	COM4	СОМЗ	COM2	COM1			COM4	COM3	COM2	COM1	

Figure 95 Configuration of LCD RAM Area (for Dual-Port RAM)

4496204 0048747 707

LCD Output Register 2 (LOR2: \$01E): Writeonly register used to specify ports R4₀—R4₃ as pins SEG5-SEG8 by individual pins (figure 99).

LCD Output Register 3 (LOR3: \$01F): Writeonly register used to specify ports R5-R7 as pins SEG9-SEG20 in 4-pin units (figure 100).

Large Liquid-Crystal Panel Drive and V_{LCD} : To drive a large-capacity LCD, decrease the resistance of the built-in division resistors by attaching external resistors in parallel, as shown in figure 101.

The size of these resistors cannot be simply calcu-

lated from the LCD load capacitance because the matrix configuration of the LCD complicates the paths of charge/discharge currents flowing through the capacitors—the resistance will also vary with lighting conditions. This size must be determined by trial-and-error, taking into account the power dissipation of the device using the LCD, but a resistance of 1 to $10~\mathrm{k}\Omega$ would usually be suitable. (Another effective method is to attach capacitors of $0.1~\mathrm{to}~0.3~\mu\mathrm{F}$.)

Always turn off the power switch (set bit 1 of the LCR to 0) before changing the liquid-crystal drive voltage (V_{LCD}) .

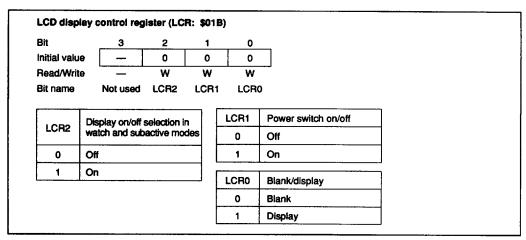


Figure 96 LCD Control Register (LCR)

LCD duty cyc	:le/clock c	ontroi reg	ister (LM	R: \$010
Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	w	w
Bit name	LMR3	LMR2	LMR1	LMR0

LMR3	LMR2	Input clock source selection
0	0	CL0 (32.768-kHz × duty/64: when 32.768-kHz oscillation is used)
0	1	CL1 (fosc × duty cycle/1024)
1	0	CL2 (fosc × duty cycle/8192)
1	1	CL3 (refer to table 30)

0	1/4 duty
1	1/3 duty
0	1/2 duty
1	Static
	1

Figure 97 LCD Duty-Cycle/Clock Control Register (LMR)

Table 31 LCD Frame Frequencies for Different Duty Cycles

					Frame Frequencies			
Duty Cycle	LMR3	R3 LMR2		f _{OSC} = 400 kHz	f _{OSC} = 800 kHZ	f _{OSC} = 2 MHz	f _{OSC} = 4 MHz	
Static	0	0	CL0		5	12 Hz		
		1	CL1	390.6 Hz	781.3 Hz	1953 Hz	3906 Hz	
	1	0	CL2	48.8 Hz	97.7 Hz	244.1 Hz	488.3 Hz	
		1	CL3*	24.4 Hz	48.8 Hz	122.1 Hz	244.1 Hz	
					6-	4 Hz		
1/2	0	0	CL0		2	56 Hz		
		1	CL1	195.3 Hz	390.6 Hz	976.6 Hz	1953 Hz	
	1	0	CL2	24.4 Hz	48.8 Hz	122.1 Hz	244.1 Hz	
		1	CL3*	12.2 Hz	24.4 Hz	61 Hz	122.1 Hz	
					3	2 Hz		
1/3	0	0	CLO		170.7 Hz			
		1	CL1	130.2 Hz	260.4 Hz	651 Hz	1302 Hz	
	1 .	0	CL2	16.3 Hz	32.6 Hz	81.4 Hz	162.8 Hz	
		1	CL3*	8.1 Hz	16.3 Hz	40.7 Hz	81.4 Hz	
					2	1.3 Hz		
1/4	0	0	CL0	128 Hz				
		1	CL1	97.7 Hz	195.3 Hz	488.3 Hz	976.6 Hz	
	1	0	CL2	12.2 Hz	24.4 Hz	61 Hz	122.1 Hz	
		1	CL3*	6.1 Hz	12.2 Hz	30.5 Hz	61 Hz	
				16 Hz				

Note: * The division ratio depends on the value of bit 3 of timer mode register A (TMA).

Upper value: When TMA3 = 0, CL3 = $f_{OSC} \times duty$ cycle/16384. Lower value: When TMA3 = 1, CL3 = 32.768 kHz $\times duty$ cycle/512.

LCD output register 1 (LOR1: \$01D)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	w	W
Rit name	LOR13	LOB12	LOBII	LOBIO

LOR13	R3 ₃ /SEG4 mode selection
0	R3 ₃
1	SEG4

LOR11	R3 ₁ /SEG2 mode selection
0	R3 ₁
1	SEG2

LOR12	R3 ₂ /SEG3 mode selection
0	R3 ₂
1	SEG3

LOR10	R3 ₀ /SEG1 mode selection
0	R3 ₀
1	SEG1

Figure 98 LCD Output Register 1 (LOR1)

LCD output register 2 (LOR2: \$01E)

Bit	3	2	1	0
Initial value	0	0	0	0
Read/Write	W	W	W	W
Bit name	LOR23	LOR22	LOR21	LOR20

LOR23	R4 ₃ /SEG8 mode selection
0	R43
1	SEG8

LOR21	R4 ₁ /SEG6 mode selection
0	R4 ₁
1	SEG6

LOR22	R4 ₂ /SEG7 mode selection	
0	R4 ₂	
1	SEG7	

LOR20	R4 ₀ /SEG5 mode selection
0	R4 ₀
1	SEG5

Figure 99 LCD Output Register 2 (LOR2)

LCD output register 3 (LOR3: \$01F)

Bit	3	2	1	0
Initial value	_	0	0	0
Read/Write		W	W	W
Bit name	Not used	LOR32	LOR31	LOR30

LOR32	R7/SEG17-SEG20 mode selection
0	R7
1	SEG17-SEG20

LOR30	R5/SEG9-SEG12 mode selection
0	R5
1	SEG9-SEG12

LOR31	R6/SEG13-SEG16 mode selection
0	R6
1	SEG13-SEG16

Figure 100 LCD Output Register 3 (LOR3)

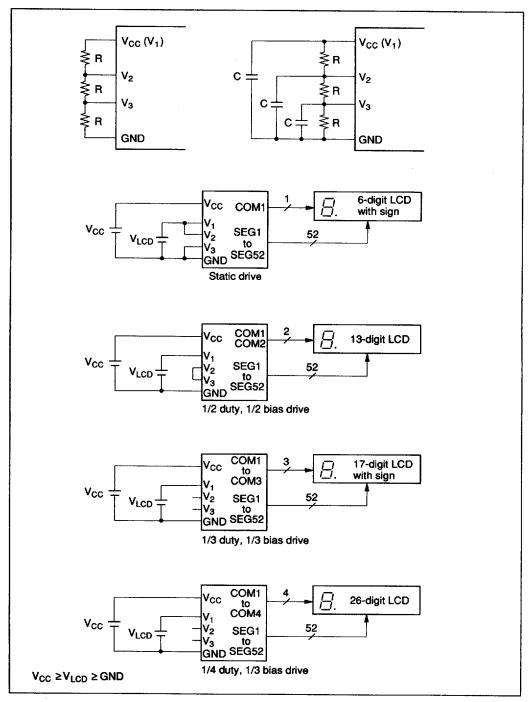


Figure 101 LCD Connection Examples

■■ 4496204 0048752 074 ■■ ^{259 Hitachi}

Notes on Mounting

Assemble all parts including the HD404629 Series on a board, noting the points described below.

- Connect layered ceramic type capacitors (about 0.1 μF) between AV_{CC} and AV_{SS}, between V_{CC} and GND, and between used analog pins and AV_{SS}.
- Connect unused analog pins to AV_{SS}.

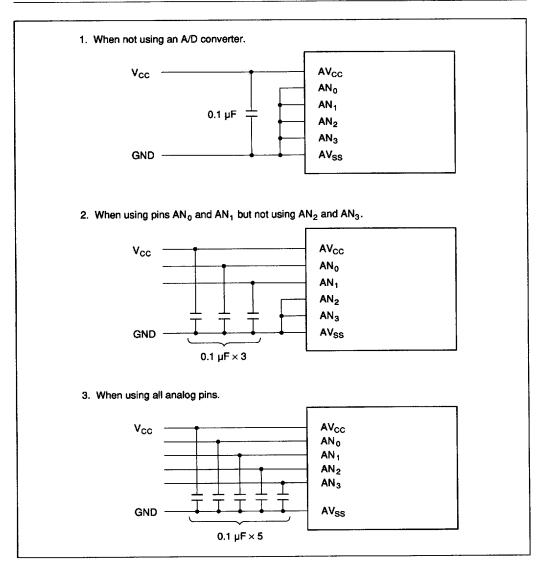


Figure 102 Example of Connections (1)

■ 4496204 0048753 TOO ■

Between the $V_{\rm CC}$ and GND lines, connect capacitors designed for use in ordinary power supply circuits. An example connection is described in figure 103.

No resistors can be inserted in series in the power supply circuit, so the capacitors should be connected in parallel. The capacitors are a large capacitance C_1 and a small capacitance C_2 .

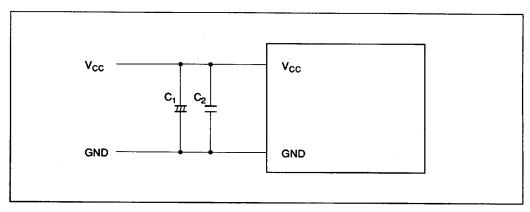


Figure 103 Example of Connections (2)

Programmable ROM (HD4074629)

The HD4074629 is a ZTAT™ microcomputer with built-in PROM that can be programmed in PROM mode.

PROM Mode Pin Description

Pin No.		MCU Mode		PROM Mode		Pin ł	No.	MCU Mod	PROM Mode		
FP-100B TFP-100B	FP-100A	Pin Name	1/0	Pin Name	1/0	FP-100B TFP-100B	FP-100A	Pin Name	1/0	Pin Name	1/0
1	3	AV _{CC}		V _{CC}		29	31	R0 ₃ /INT ₄	I/O		
2	4	AN ₀	I			30	32	R1 ₀ /TOB	1/0	A ₅	1
3	5	AN ₁	1			31	33	R1 ₁ /TOC	1/0	A ₆	1
4	6	AN ₂	ı			32	34	R1 ₂ /TOD	1/0	A ₇	I
5	7	AN ₃	1			33	35	R1 ₃ /EVNB	1/0	A ₈	ŀ
6	8	AV _{SS}		GND		34	36	R2 ₀ /EVND	1/0	A ₀	Ī
7	9	TEST	I	TEST	ı	35	37	R2 ₁ /SCK	1/0	A ₁₀	Ī
8	10	OSC ₁	1	V _{CC}		36	38	R2 ₂ /SI	1/0	A ₁₁	ı
9	11	OSC ₂	0			37	39	R2 ₃ /SO	1/0	A ₁₂	ı
10	12	RESET	ŧ	RESET	ı	38	40	R3 ₀ /SEG1	1/0	A ₁₃	ı
11	13	X1	ı	GND		39	41	R3 ₁ /SEG2	1/0	A ₁₄	ı
12	14	X2	0			40	42	R3 ₂ /SEG3	1/0	00	1/0
13	15	GND		GND		41	43	R3 ₃ /SEG4	1/0	01	1/0
14	16	Do	1/0	CE	1	42	44	R4 ₀ /SEG5	1/0	02	1/0
15	17	D ₁	1/0	ŌĒ	ı	43	45	R4 ₁ /SEG6	1/0	O ₃	1/0
16	18	D ₂	1/0	V _{CC}		44	46	R4 ₂ /SEG7	1/0	04	1/0
17	19	D ₃	I/O	V _{cc}		45	47	R4 ₃ /SEG8	1/0	O ₅	1/0
18	20	D ₄	I/O			46	48	R5 ₀ /SEG9	1/0	O ₆	I/O
19	21	D ₅	I/O			47	49	R5 ₁ /SEG10	1/0	07	I/O
20	22	D ₆	1/0	-		48	50	R5 ₂ /SEG11	1/0	O ₄	I/O
21	23	D ₇	1/0			49	51	R5 ₃ /SEG12	1/0	O ₃	I/O
22	24	D ₈	I/O			50	52	R6 ₀ /SEG13	1/0	02	1/0
23	25	D ₉	1/0			51	53	R6 ₁ /SEG14	1/0	01	1/0
24	26	D ₁₀ /STOPC	1/0	A ₉	1	52	54	R6 ₂ /SEG15	1/0	00	1/0
25	27	D ₁₁ /INT ₀	I/O	V _{PP}		53	55	R6 ₃ /SEG16	1/0	V _{cc}	
26	28	R0 ₀ /INT ₁	1/0	Mo	ı	54	56	R7 ₀ /SEG17	1/0	A ₁	1
27	29	R0 ₁ /INT ₂	I/O	M ₁	1	55	57	R7 ₁ /SEG18	1/0	A ₂	Ī
28	30	R0 ₂ /INT ₃	1/0			56	58	R7 ₂ /SEG19	1/0	A ₃	ı

Notes on next page.

PROM Mode Pin Description (cont)

Pin
Name I/O
•
(
V _{CC}

Notes: 1. I/O: Input/output pin, I: Input pin, O: Output pin

^{2.} Each of O₀-O₄ has two pins; before using, each pair must be connected together.

Programming the Built-In PROM

The MCU's built-in PROM is programmed in PROM mode. PROM mode is set by pulling $\overline{\text{TEST}}$, \overline{M}_0 , and \overline{M}_1 low, and RESET high as shown in figure 104. In PROM mode, the MCU does not operate, but it can be programmed in the same way as any other commercial 27256-type EPROM using a standard PROM programmer and a 100-to-28-pin socket adapter. Recommended PROM programmers and socket adapters are listed in table 32.

Since an HMCS400-series instruction is ten bits

long, the HMCS400-series MCU has a built-in conversion circuit to enable the use of a general-purpose PROM programmer. This circuit splits each instruction into five lower bits and five upper bits that are read from or written to consecutive addresses. This means that if, for example, 16 kwords of built-in PROM are to be programmed by a general-purpose PROM programmer, a 32-kbyte address space (\$0000-\$7FFF) must be specified.

Table 32 Recommended PROM Programmers and Socket Adapters

PROM Programmer Socket Adapter

Manufacturer	Model name	Package	Model Name	Manufacturer
Manufacturer DATA I/O Corp. AVAL Corp.	121B,	FP-100B	HS462ESH01H	Hitachi
	29B	FP-100A	HS462ESF01H	
		TFP-100B	HS4629ESN01H	
AVAL Corp.	PKW-1000	FP-100B	HS462ESH01H	
		FP-100A	HS462ESF01H	
		TFP-100B	HS4629ESN01H	

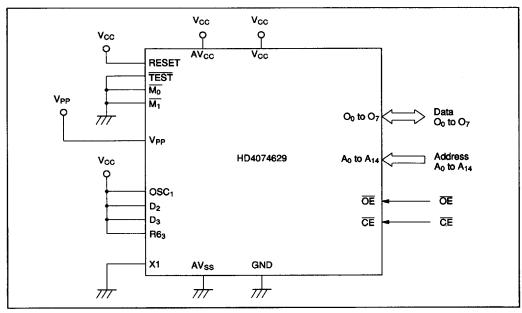


Figure 104 PROM Mode Connections

4496204 0048757 656

Warnings

Always specify addresses \$0000 to \$7FFF
when programming with a PROM programmer.
If address \$8000 or higher is accessed, the
PROM may not be programmed or verified correctly. Set all data in unused addresses to \$FF.

Note that the plastic-package version cannot be erased and reprogrammed.

 Make sure that the PROM programmer, socket adapter, and LSI are aligned correctly (their pin 1 positions match), otherwise overcurrents may damage the LSI. Before starting programming, make sure that the LSI is firmly fixed in the socket adapter and the socket adapter is firmly fixed onto the programmer. PROM programmers have two voltages (V_{PP}): 12.5 V and 21 V. Remember that ZTAT[™] devices require a V_{PP} of 12.5 V—the 21-V setting will damage them. 12.5 V is the Intel 27256 setting.

Programming and Verification

The built-in PROM of the MCU can be programmed at high speed without risk of voltage stress or damage to data reliability.

Programming and verification modes are selected as listed in table 33.

For details of PROM programming, refer to the following Notes on PROM Programming section.

Table 33 PROM Mode Selection

		Pin						
Mode	CE	ŌĒ	V _{PP}	O ₀ -O ₇				
Programming	Low	High	V _{PP}	Data input				
Verification	High	Low	V _{PP}	Data output				
Programming inhibited	High	High	V _{PP}	High impedance				

Addressing Modes

RAM Addressing Modes

The MCU has three RAM addressing modes, as shown in figure 105 and described below.

Register Indirect Addressing Mode: The contents of the W, X, and Y registers (10 bits in total) are used as a RAM address. When the area from \$090 to \$25F is used, a bank must be selected by the bank register (V: \$03F).

Direct Addressing Mode: A direct addressing instruction consists of two words. The first word contains the opcode, and the contents of the second word (10 bits) are used as a RAM address.

Memory Register Addressing Mode: The memory registers (MR), which are located in 16 addresses from \$040 to \$04F, are accessed with the LAMR and XMRA instructions.

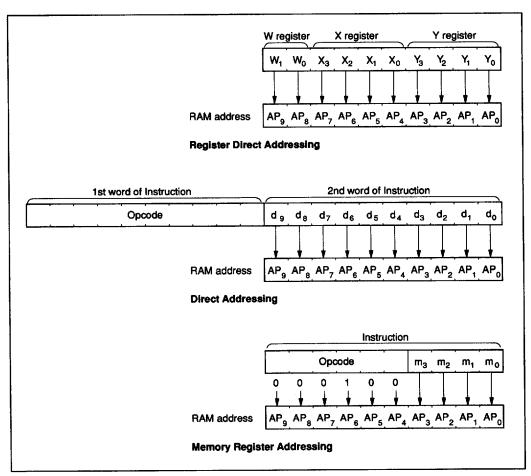


Figure 105 RAM Addressing Modes

ROM Addressing Modes and the P Instruction

The MCU has four ROM addressing modes, as shown in figure 106 and described below.

Direct Addressing Mode: A program can branch to any address in the ROM memory space by executing the JMPL, BRL, or CALL instruction. Each of these instructions replaces the 14 program counter bits (PC₁₃-PC₀) with 14-bit immediate data.

Current Page Addressing Mode: The MCU has 64 pages of ROM with 256 words per page. A program can branch to any address in the current page by executing the BR instruction. This instruction replaces the eight low-order bits of the program counter (PC7-PC0) with eight-bit immediate data. If the BR instruction is on a page boundary (address 256n + 255), executing that instruction transfers the PC contents to the next physical page, as shown in figure 108. This means that the execution of the BR instruction on a page boundary will make the program branch to the next page.

Note that the HMCS400-series cross macroassembler has an automatic paging feature for ROM pages.

Zero-Page Addressing Mode: A program can branch to the zero-page subroutine area located at 0000-003F by executing the CAL instruction. When the CAL instruction is executed, 6 bits of immediate data are placed in the six low-order bits of the program counter (PC_5-PC_0) , and 0s are placed in the eight high-order bits $(PC_{13}-PC_6)$.

Table Data Addressing Mode: A program can branch to an address determined by the contents of four-bit immediate data, the accumulator, and the B register by executing the TBR instruction.

P Instruction: ROM data addressed in table data addressing mode can be referenced with the P instruction as shown in figure 107. If bit 8 of the ROM data is 1, eight bits of ROM data are written to the accumulator and the B register. If bit 9 is 1, eight bits of ROM data are written to the R1 and R2 port output registers. If both bits 8 and 9 are 1, ROM data is written to the accumulator and the B register, and also to the R1 and R2 port output registers at the same time.

The P instruction has no effect on the program counter.

Figure 106 ROM Addressing Modes

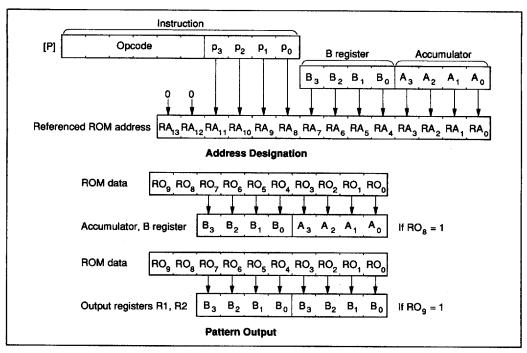


Figure 107 P Instruction

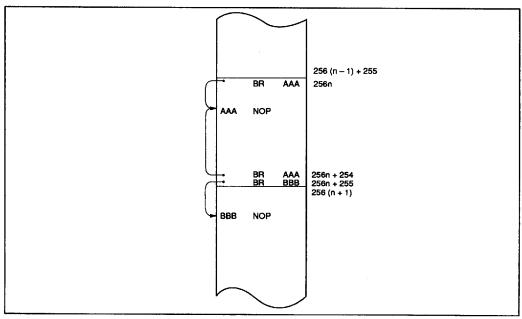


Figure 108 Branching when the Branch Destination is on a Page Boundary

■■ 4496204 0048762 Tl3 ■■ ^{269 Hitachi}

Absolute Maximum Ratings

Item	Symbol	Value	Unit	Notes
Supply voltage	V _{cc}	-0.3 to +7.0	٧	
Programming voltage	V _{PP}	-0.3 to +14.0	٧	1
Pin voltage	V _T	-0.3 to (V _{CC} + 0.3)	٧	
Total permissible input current	Σl _o	100	mA	2
Total permissible output current	-ΣI _o	50	mA	3
Maximum input current	I _o	4	mA	4, 5
		30	mA	4, 6
Maximum output current	-l _o	4	mA	7, 8
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	T _{stg}	-55 to +125	°C	

Notes: Permanent damage may occur if these absolute maximum ratings are exceeded. Normal operation must be under the conditions stated in the electrical characteristics tables. If these conditions are exceeded, the LSI may matfunction or its reliability may be affected.

- 1. Applies to D₁₁ (V_{PP}) of the HD4074629.
- The total permissible input current is the total of input currents simultaneously flowing in from all the I/O pins to ground.
- The total permissible output current is the total of output currents simultaneously flowing out from V_{CC} to all I/O pins.
- 4. The maximum input current is the maximum current flowing from each I/O pin to ground.
- 5. Applies to R0--R7.
- Applies to D₀-D₉.
- 7. The maximum output current is the maximum current flowing out from V_{CC} to each I/O pin.
- 8. Applies to D₀-D₉ and R0-R7.

Electrical Characteristics

DC Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

Item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition	Notes
Input high voltage	V _{IH}	RESET, SCK, SI, INT ₀ , INT ₁ , INT ₂ , INT ₃ , INT ₄ , STOPC, EVNB, EVND	0.9V _{CC}	_	V _{CC} + 0.3	V	_	
		OSC ₁	V _{CC} - 0.3		V _{CC} + 0.3	٧	External clock operation	
input low voltage	V _{IL}	RESET, SCK, SI, INT ₀ , INT ₁ , INT ₂ , INT ₃ , INT ₄ , STOPC, EVNB, EVND	-0.3		0.1V _{CC}	V	_	
		OSC ₁	-0.3	_	0.3	٧	External clock operation	•
Output high voltage	V _{OH}	SCK, SO, TOB, TOC, TOD	V _{CC} - 1.0			٧	-l _{OH} = 0.5 mA	
Output low voltage	V _{OL}	SCK, SO, TOB, TOC, TOD		-	0.4	٧	I _{OL} = 0.4 mA	
I/O leakage current	I _{IL}	RESET, SCK, SI, INT ₀ , INT ₁ , INT ₂ , INT ₃ , INT ₄ , STOPC, EVNB, EVND, OSC ₁ , TOB, TOC, TOD, SO	_		1.0	μА	V _{in} = 0 V to V _{CC}	1
Current dissipation in	I _{CC1}	V _{CC}	_	5	9	mA	V _{CC} = 5.0 V, f _{OSC} = 4 MHz	2, 4
active mode	I _{CC2}	V _{CC}	_	0.6	1.8	mA	V _{CC} = 3.0 V, f _{OSC} = 800 kHz	2, 4
Current dissipation in standby mode	I _{SBY1}	V _{cc}		1.2	3	mA	V _{CC} = 5.0 V, f _{OSC} = 4 MHz, LCD on	3, 4
	I _{SBY2}	V _{CC}		0.2	0.7	mA	V _{CC} = 3.0 V, f _{OSC} = 800 kHz, LCD on	3, 4

Notes on next page.

DC Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified) (cont)

Item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition	Notes
Current dissipation in subactive mode	I _{SUB}	V _{CC}		35	70	μА	HD404628, HD4046212, HD404629: V _{CC} = 3.0 V, LCD on	5
			_	70	150	μА	HD4074629: V _{CC} = 3.0 V, LCD on	5
Current dissipation in	I _{WTC1}	V _{CC}	_	18	40	μΑ	V _{CC} = 3.0 V, LCD on	5
watch mode	I _{WTC2}	V _{CC}		8	15	μΑ	V _{CC} = 3.0 V, LCD off	5
Current dissipation in stop mode	ISTOP	V _{CC}		1	10	μА	V _{CC} = 3.0 V, 5 no 32-kHz oscillator	
Stop mode retaining voltage	V _{STOP}	V _{CC}	2	_		V	No 32-kHz oscillator	6

Notes: 1. Output buffer current is excluded.

 I_{CC1} and I_{CC2} are the source currents when no I/O current is flowing while the MCU is in reset state.

Test conditions: MCU: Reset

Pins: RESET at V_{CC} ($V_{CC} - 0.3 \text{ V to } V_{CC}$)

TEST at V_{CC} (V_{CC} - 0.3 V to V_{CC})

3. I_{SBY1} and I_{SBY2} are the source currents when no I/O current is flowing while the MCU timer is

operating.

Test conditions: MCU: I/O reset

Serial interface stopped

DTMF stopped Standby mode

Pins: RESET at GND (0 V to 0.3 V)

TEST at V_{CC} ($V_{CC} - 0.3 \text{ V to } V_{CC}$)

The current dissipation is in proportion to f_{OSC} while the MCU is operating or is in standby mode.
 The value of the dissipation current when f_{OSC} = x MHz is given by the following equation:

Maximum value ($f_{OSC} = x MHz$) = $x/4 \times maximum value (<math>f_{OSC} = 4 MHz$)

5. These are the source currents when no I/O current is flowing.

Test conditions: Pins: RESET at GND (0 V to 0.3 V)

 $\overline{\text{TEST}}$ at V_{CC} ($V_{CC} - 0.3 \text{ V to } V_{CC}$)

 D_{11} (V_{PP}) at V_{CC} (V_{CC} - 0.3 V to V_{CC}) for the HD4074629

6. RAM data retention.

I/O Characteristics for Standard Pins (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

Item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition	Note
Input high voltage	V _{IH}	D ₁₀ , D ₁₁ , R0R7	0.7V _{CC}	_	V _{CC} + 0.3	٧	_	
Input low voltage	V _{IL}	D ₁₀ , D ₁₁ , R0–R7	-0.3		0.3V _{CC}	٧	_	
Output high voltage	V _{OH}	R0R7	V _{CC} - 1.0			٧	-I _{OH} = 0.5 mA	
Output low voltage	V _{OL}	R0-R7	_	_	0.4	٧	i _{OL} = 0.4 mA	•
I/O leakage	i _{IL}	D ₁₀ , R0-R7	_	_	1	μA	V _{in} = 0 V to V _{CC}	1
current		D ₁₁		-	1	μА	HD404628, HD4046212, HD404629: V _{in} = 0 V to V _{CC}	1
			_	_	1	μА	HD4074629: V _{in} = V _{CC} - 0.3 V to V _{CC}	1
			_		20	μА	HD4074629: V _{in} = 0 V to 0.3 V	1
Pull-up MOS current	-l _{PU}	R0-R7	5	30	90	μА	V _{CC} = 3.0 V, V _{in} = 0 V	

Note: 1. Output buffer current is excluded.

I/O Characteristics for High-Current Pins (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition	Note
Input high voltage	V _{IH}	D ₀ -D ₉	0.7V _{CC}	_	V _{CC} + 0.3	٧	_	
Input low voltage	V _{IL}	D ₀ -D ₉	-0.3		0.3V _{CC}	٧	_	
Output high voltage	V _{OH}	D ₀ -D ₉	V _{CC} - 1.0		_	٧	-l _{OH} = 0.5 mA	
Output low	V _{OL}	D ₀ -D ₉		_	0.4	٧	I _{OL} = 0.4 mA	
voltage			_	_	2.0	٧	I _{OL} = 15 mA, V _{CC} = 4.5 V to 6.0 V	1
I/O leakage current	1111	D ₀ D ₉	_	_	1	μА	V _{in} = 0 V to V _{CC}	2
Pull-up MOS current	-l _{PU}	D ₀ –D ₉	5	30	90	μА	V _{CC} = 3 V, V _{in} = 0 V	

Note: 1. The test condition of HD4074629 is $V_{CC} = 4.5 \text{ V}$ to 5.5 V.

2. Output buffer current is excluded.

LCD Circuit Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

Item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition	Notes
Segment driver voltage drop	V _{DS}	SEG1-SEG52	_		0.6	٧	l _{PD} = 3 μA	1
Common driver voltage drop	V _{DC}	COM1-COM4	_		0.3	٧	l _{PD} = 3 μA	1
LCD power supply division resistance	R _W	_	100	300	900	kΩ	Between V ₁ and GND	
LCD voltage	V _{LCD}	V ₁	2.7		Vcc	٧	_	2

Notes: 1. V_{DS} and V_{DC} are the voltage drops from power supply pins V₁, V₂, V₃, and GND to each segment pin and each common pin, respectively.

2. When V_{LCD} is supplied from an external source, the following relations must be retained: $V_{CC} \ge V_1 \ge V_2 \ge V_3 \ge GND$

DTMF Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

Item	Symbol	Pin	Min	Тур	Max	Unit	Test Condition	Notes
Tone output voltage (1)	V _{OR}	TONER	500	660	_	mV _{rms}	VT_{ref} – GND = 2.0 V, R _L = 100 k Ω	1
Tone output voltage (2)	V _{oc}	TONEC	520	690		mV _{rms}	VT_{ref} – GND = 2.0 V, R _L = 100 k Ω	1
Tone output distortion	% _{DIS}	_	_	3	7	%	Short circuit between TONER and TONEC, R _L = 100 kΩ	2
Tone output ratio	dB _{CR}			2.5	-	dB	Short circuit between TONER and TONEC, R _L = 100 kΩ	2

Notes: 1. See figure 109.

- 2. See figure 110.
- 3. 400 kHz, 800 kHz, 2 MHz, or 4 MHz can be used as the operating frequency (fosc).

A/D Converter Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

Item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition Note	
Analog power voltage	AV _{CC}	AV _{CC}	V _{CC} - 0.3	V _{cc}	V _{CC} + 0.3	٧	AV _{CC} ≥ 2.7 V	
Analog input voltage	AV _{in}	AN ₀ -AN ₃	AV _{SS}		AV _{CC}	٧		
Current between AV _{CC} and AV _{SS}	I _{AD}	_	_	50	150	μА	$V_{CC} = AV_{CC} = 5.0 \text{ V}$	
Analog input capacitance	CA _{in}	AN ₀ -AN ₃		15	_	pF		
Resolution	_	_	8	8	8	Bit	_	
Number of inputs	_	_	0	_	4	Chan- nel	_	
Absolute accuracy	-	_	_		± 2.0	LSB	T _a = 25°C, V _{CC} = 4.5–5.5 V	
Conversion time	_		34	_	67	t _{cyc}	_	
Input impedance		AN ₀ -AN ₃	1			МΩ	f _{OSC} = 1 MHz, V _{in} = 0.0 V	

AC Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

Item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition	Notes
Clock oscillation frequency	fosc	OSC ₁ , OSC ₂	_	400	_	kHz	1/4 division	1
			_	800		kHz	1/4 division	1
				2	_	MHz	1/4 division	1
				4	_	MHz	1/4 division; HD404628, HD4046212, HD404629: V _{CC} = 3.0 to 6.0 V; HD4074629: V _{CC} = 3.5 to 5.5 V	1
		X1, X2		32.768		kHz		
Instruction cycle	t _{cyc}		_	10	_	μs	f _{OSC} = 400 kHz	
time	·		_	5		μs	f _{OSC} = 800 kHz	
			_	2		μs	f _{OSC} = 2 MHz	
				1		μѕ	f _{OSC} = 4 MHz; HD404628, HD4046212, HD404629: V _{CC} = 3.0 to 6.0 V; HD4074629: V _{CC} = 3.5 to 5.5 V	
	t _{subcyc}	_	_	244.14		μs	32-kHz oscillator, 1/8 division	
				122.07	_	μ\$	32-kHz oscillator, 1/4 division	
Oscillation	t _{RC}	OSC ₁ , OSC ₂			7.5	ms	Ceramic oscillator	2
stabilization time		X1, X2	_	_	3	S	T _a = -10°C to +60°C	3
External clock	tcph	OSC ₁	1100			ns	f _{OSC} = 400 kHz	4
high width			550		_	ns	f _{OSC} = 800 kHz	4
			215		_	ns	f _{OSC} = 2 MHz	4
			105	_	_	ns	f _{OSC} = 4 MHz	4
External clock	tcpL	OSC ₁	1100			ns	f _{OSC} = 400 kHz	4
low width			550	_	_	ns	f _{OSC} = 800 kHz	4
			215			ns	f _{OSC} = 2 MHz	4
			105		_	ns	f _{OSC} = 4 MHz	4
External clock	t _{CPr}	OSC ₁		_	150	ns	f _{OSC} = 400 kHz	4
rise time	-			_	75	ns	f _{OSC} = 800 kHz	4
					35	ns	f _{OSC} = 2 MHz	4
							f _{OSC} = 4 MHz	4

Notes on next page.

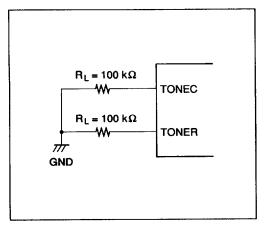
AC Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified) (cont)

Item	Symbol	Pin(s)	Min	Тур	Max	Unit	Test Condition	Notes
External clock	t _{CPf}	OSC ₁		_	150	ns	f _{OSC} = 400 kHz	4
fall time			_	_	75	ns	f _{OSC} = 800 kHz	4
			_	_	35	ns	f _{OSC} = 2 MHz	4
			_	_	20	ns	f _{OSC} = 4 MHz	4
INT ₀ -INT ₄ , EVNB, EVND high widths	t _{IH}	INT ₀ -INT ₄ , EVNB, EVND	2	_		t _{cyc} / t _{subcyc}	_	5
INT ₀ -INT ₄ , EVNB, EVND low widths	t _{IL}	INT ₀ -INT ₄ , EVNB, EVND	2	_	_	t _{cyc} / t _{subcyc}		5
RESET high width	t _{RSTH}	RESET	2	_		t _{cyc}	_	6
STOPC low width	t _{STPL}	STOPC	1	_	_	t _{RC}		7
RESET fall time	t _{RSTf}	RESET	_		20	ms	_	6
STOPC rise time	t _{STPr}	STOPC	_		20	ms	_	7
Input capacitance	C _{in}	All pins except D ₁₁	_		15	pF	f = 1 MHz V _{in} = 0 V,	
		D ₁₁	_	_	15	pF	HD404628, HD4046212, HD404629: f = 1 MHz, V _{in} = 0 V	
					180	pF	HD4074629: f = 1 MHz, V _{in} = 0 V	

- Notes: 1. If f_{OSC} = 400 kHz or 800 kHz, bit 1 of the system clock selector register (SSR: \$029) must be set to 0 (SSR1 = 0); if f_{OSC} = 2 or 4 MHz, the same bit must be set to 1 (SSR1 = 1).
 - 2. The oscillation stabilization time is the period required for the oscillator to stabilize after V_{CC} reaches 2.7 V at power-on, or after RESET input goes high or STOPC input goes low when stop mode is cancelled. At power-on or when stop mode is cancelled, RESET or STOPC must be input for at least t_{RC} to ensure the oscillation stabilization time. If using a ceramic oscillator, contact its manufacturer to determine what stabilization time is required since it will depend on the circuit constants and stray capacitances.
 - 3. The oscillation stabilization time is the period required for the oscillator to stabilize after V_{CC} reaches 2.7 V at power-on, or after RESET input goes high or STOPC input goes low when stop mode is cancelled. Contact the manufacturer of the crystal oscillator used to determine what stabilization time is required since it will depend on the circuit constants and stray capacitances.
 - 4. Refer to figure 111.
 - Refer to figure 112. The t_{cyc} unit applies when the MCU is in standby or active mode. The t_{subcyc} unit applies when the MCU is in watch or subactive mode.
 - 6. Refer to figure 113.
 - 7. Refer to figure 114.

Serial Interface Timing Characteristics (HD404628, HD4046212, HD404629: V_{CC} = 2.7 to 6.0 V, GND = 0 V, T_a = -20°C to +75°C; HD4074629: V_{CC} = 2.7 to 5.5 V, GND = 0 V, T_a = -20°C to +75°C, unless otherwise specified)

During Transmit Clock Output


Item	Symbol	Pin	Min	Тур	Max	Unit	Test Condition	Note
Transmit clock cycle time	t _{Scyc}	SCK	1.0		_	t _{cyc}	Load shown in figure 116	1
Transmit clock high width	tsckH	SCK	0.5	_	_	t _{Scyc}	Load shown in figure 116	1
Transmit clock low width	t _{SCKL}	SCK	0.5		_	t _{Scyc}	Load shown in figure 116	1
Transmit clock rise time	tsckr	SCK		_	200	ns	Load shown in figure 116	1
Transmit clock fall time	^t scki	SCK	_		200	ns	Load shown in figure 116	1
Serial output data delay time	t _{DSO}	so			500	ns	Load shown in figure 116	1
Serial input data setup time	t _{SSI}	SI	300	_		ns	_	1
Serial input data hold time	^t HSI	SI	300	_		ns	_	1

Note: 1. Refer to figure 115.

During Transmit Clock Input

Item	Symbol	Pin	Min	Тур	Max	Unit	Test Condition	Note
Transmit clock cycle time	t _{Scyc}	SCK	1.0	_	_	t _{cyc}	_	1
Transmit clock high width	^t sckH	SCK	0.5		_	t _{Scyc}	_	1
Transmit clock low width	t _{SCKL}	SCK	0.5	_	_	t _{Scyc}	_	1
Transmit clock rise time	tsckr	SCK	_	_	200	ns	_	1
Transmit clock fall time	tsckf	SCK	_	_	200	ns		1
Serial output data delay time	t _{DSO}	so	_	_	500	ns	Load shown in figure 116	1
Serial input data setup time	t _{SSI}	SI	300			ns	_	1
Serial input data hold time	t _{HSI}	SI	300	_		ns		1

Note: 1. Refer to figure 115.

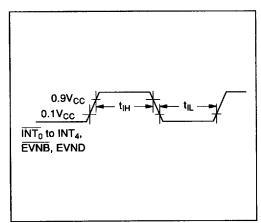


Figure 109 Tone Output Load Circuit

 $R_L = 100 \text{ k}\Omega$ TONEC
TONER
GND

Figure 112 Interrupt Timing

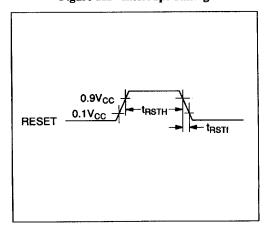


Figure 110 Distortion and dB_{CR} Load Circuit

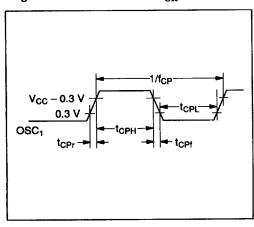


Figure 113 Reset Timing

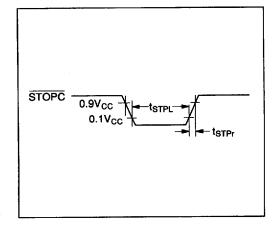


Figure 111 External Clock Timing

Figure 114 STOPC Timing 279 Hitachi

4496204 0048772 962 **5**

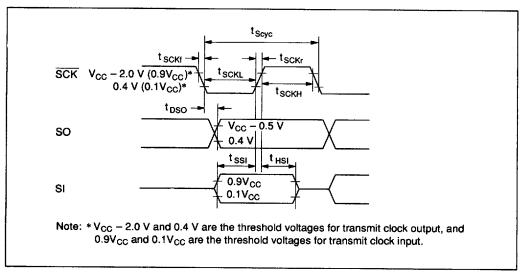


Figure 115 Serial Interface Timing

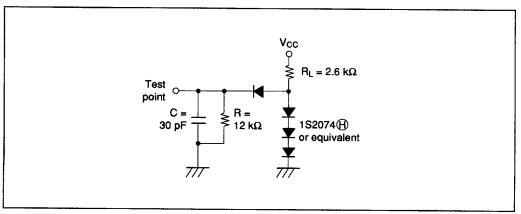
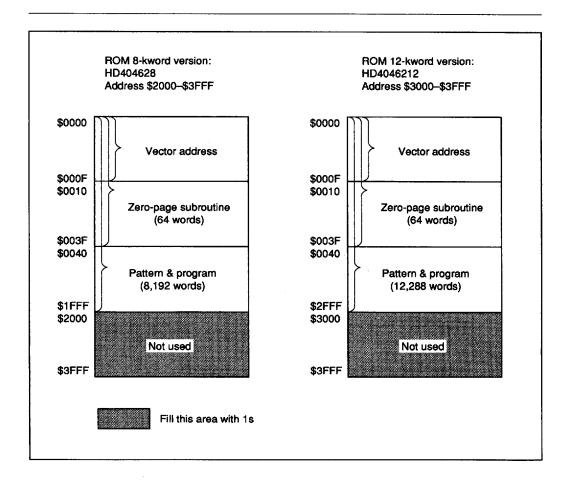


Figure 116 Timing Load Circuit


Notes on ROM Out

Please pay attention to the following items regarding ROM out.

On ROM out, fill the ROM area indicated below with 1s to create the same data size as a 16-kword version (HD404629). A 16-kword data size is

required to change ROM data to mask manufacturing data since the program used is for a 16-kword version.

This limitation applies when using an EPROM or a data base.

HD404629 Series										
HD404629 Option List										
Please check off the appropr		Date of order	/ /							
enter the necessary informat	ion.	Customer								
		Department								
		Name								
		ROM code na	me							
		LSI number								
1. ROM Size		<u> </u>								
☐ HD404628 8-kword										
☐ HD4046212 12-kword	1									
☐ HD404629 16-kword	<u> </u>									
2. Optional Functions										
* With 32-kHz CPU ope	ration, with time-base	for clock								
* Without 32-kHz CPU of	peration, with time-b	ase for clock								
☐ Without 32-kHz CPU o	peration, without tim	e-base								
Note: * Options marked with	n an asterisk require a	subsystem crystal oscillator	(X1, X2).							
EPROM on-package mid	crocomputer type (inc s and lower bits are n	bits and lower bits are mixed cluding ZTAT™ version). nixed together. The upper five	bits and lower five bits are							
		in alternating order (i.e., LULL								
	to different EPROMS	eparated. The upper five bits	and lower live bits are							
4. Oscillator for OSC1 and	OSC2									
Ceramic oscillator	f = MHz									
External clock	f= MHz									
5. Stop Mode Used Not used										
5. Package FP-100B FP-100A TFP-100B										