


AM1330N

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

PRODUCT SUMMARY			
V _{DS} (V)	$r_{\mathrm{DS}}\left(\mathbf{V}\right) = r_{\mathrm{DS(on)}}\left(\mathbf{\Omega}\right) = \mathbf{I}_{\mathrm{D}}$		
30	$0.058 @V_{CS} = 10 V$	2.0	
	$0.082 @V_{CS} = 4.5V$	1.7	

- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SC70-3 saves board space
- Fast switching speed
- High performance trench technology

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C UNLESS OTHERWISE NOTED)					
Parameter			Symbol Maximum		
Drain-Source Voltage		V_{DS}	30	V	
Gate-Source Voltage			±20	V	
	T _A =25°C	Τ_	2.0		
Continuous Drain Current ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1D	1.7	A	
Pulsed Drain Current ^b		I_{DM}	±20		
Continuous Source Current (Diode Conduction) ^a			1.6	A	
D a	$T_A=25^{\circ}C$	D	0.34	— W I	
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	PD	0.22		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Maximum	Units	
Maximum Junction-to-Ambient ^a	t <= 5 sec	D	100	00/11/	
	Steady-State	R_{THJA}	166	C/W	

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

AM1330N

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Donomotor	Cymbal	Test Conditions	Limits			TI*4	
Parameter	Symbol Test Conditions		Min	Тур	Max	Unit	
Static							
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	1			V	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA	
Zero Gate Voltage Drain Current	Ţ	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA	
Zero Gate Voltage Diani Current	I_{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10		
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	10			Α	
Drain-Source On-Resistance ^A	r	$V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A}$			58	mΩ	
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 1.7 \text{ A}$			82		
Forward Tranconductance ^A	$g_{ m fs}$	$V_{DS} = 10 \text{ V}, I_{D} = 2.0 \text{ A}$		11.3		S	
Diode Forward Voltage	V_{SD}	$I_S = 1.6 \text{ A}, V_{GS} = 0 \text{ V}$		0.75		V	
Dynamic ^b							
Total Gate Charge	Q_{g}			7.5			
Gate-Source Charge	Q_{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 2.0 \text{ A}$		0.6		nC	
Gate-Drain Charge	Q_{gd}			1.0		1	
Turn-On Delay Time	$t_{d(on)}$			8			
Rise Time	t _r	$V_{DD} = 10 \text{ V}, R_L = 15 \Omega, I_D = 1 \text{ A},$		24			
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = 4.5 \text{ V}$		35		ns	
Fall-Time	t_{f}			10]	

Notes

- a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.
- b. Guaranteed by design, not subject to production testing.