

JM38510/11401/11402/11403/ 11404/11405/11406

JAN JFET-INPUT OPERATIONAL AMPLIFIERS

Precision Monolithics Inc

GENERAL DESCRIPTION

This data sheet covers the electrical requirements for a monolithic, low-power, internally-compensated JFET-input operational amplifier as specified in MIL-M-38510/114 for device types 01 to 06. Devices supplied to this data sheet are manufactured and tested at PMI's MIL-M-38510 certified facility and are listed in QPL-38510.

Complete device requirements will be found in MIL-M-38510 and MIL-M-38510/114 for Class B and Class S processed devices.

GENERIC CROSS-REFERENCE INFORMATION

This cross-reference information is presented for the convience of the user. The generic-industry types listed may not have iden-

tical operational performance characteristics across the military temperature range or reliability factors equivalent to the MIL-M-38510 device.

Military Device Type	Generic-Industry Type
01	LF-155
04	LF-155A
02	LF-156
05	LF-156A
03	LF-157
06	LF-157A

SIMPLIFIED SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range	±22V
Input Voltage Range (Note 1)	±20V
Differential Input Voltage Range	±40V
Lead Temperature (Soldering, 60 sec)	
Junction Temperature	lote 3)
Storage Temperature Range ´-65° C to +	150°C
Output Short-Circuit Duration Unlimited (N	lote 2)

NOTES:

- Short circuit may be to ground to either supply. Rating applies to + 125°C
 case temperature or +75°C ambient temperature.
- 3. For short-term test (in the specific burn-in and life test configuration when required and up to 168 hours maximum), $T_j = 275^{\circ}C$.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	±5 to ±20 VDC
Ambient Temperature Range	55°C to +125°C

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = .50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted.

			01 LIMITS		04 LIMITS			
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
		±V _{CC} = ±5V, V _{CM} = 0V T _A = 25°C	-5	5	-2	2		
Input Offset	V _{IO}	±V _{CC} = ±20V					m۷	
Voltage	10	V _{CM} = ±15V, 0V	_	_				
		-55°C ≤ T _A ≤ +125°C	-7	7	-2.5	2.5		
Input Offset Voltage	ΔV _{IO}	±V _{CC} = ±20V	-30	30	-10	10	μV/°C	
Temperature Sensitivity	ΔΤ	V _{CM} = 0V						
		$\pm V_{CC} = \pm 20V, V_{CM} = 0V,$						
Input Offset Current	110	T ₁ = 25°C	-20	20	-20	20	pΑ	
		T _j = 125°C	-20	20	-20	20	nA.	
		$\pm V_{CC} = \pm 20V$, $V_{CM} = +15V$						
		T _j = 25°C	-100	3500	- 100	3500	pΑ	
		t ≤ 25ms T _j = 125°C	~10	60	-10	60	лА	
to and Biran Comment	+I _{IB}	$\pm V_{CC} = \pm 15V, V_{CM} = +10V$	400	200	400	000		
Input Bias Current		T _j = 25°C	100	300	-100	300	pA	
(Note 1)	-1 ₁₈	t ≤ 25ms T _j = 125°C	10	50	~10	50	nA	
(Note 2)		$\pm V_{CC} = \pm 20V, -15V \le V_{CM} \le 0V$	400	400	400	400		
(Note 3)		$T_j = 25^{\circ}C$ $t \le 25ms \qquad T_i = 125^{\circ}C$	-100 -10	100 50	100 10	100 50	pA nA	
Power Supply	+PSRR	+V _{CC} = 10V, -V _{CC} = -20V						
Rejection Ratio	-PSRR	$+V_{CC} = 10V, -V_{CC} = -20V$ $+V_{CC} = 20V, -V_{CC} = -10V$	85	_	85	-	dB	
Input Voltage Common-Mode		±V _{GC} = ±20V						
Rejection (Note 4)	CMR	$V_{IN} = \pm 15V$	85		85	_	dB	
Adjustment for	V _{IO} ADJ(+)	±V _{CC} = ±20V	+8		+8	_		
Input Offset Voltage	V _{IO} ADJ (=)	±V _{CC} = ±20V	_	8		-8	mV	
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$						
(for Positive Output) (Note 5)	I _{OS(+)}	t ≤ 25ms	-50		-50	_	mA	
(tot Positive Output) (Note 3)		(Short Circuit to Ground)						
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$						
(for Negative Output)	1 ₀₅₍₋₎	t ≤ 25ms	_	50	_	50	mA	
(Note 5)		(Short Circuit to Ground)						
		T _A = -55°C	_	11	_	11		
Supply Current	Icc	$\pm V_{CC} = \pm 15V$, $T_A = +25^{\circ}C$		4		4	mA	
		T _A = +125°C		4		4		
Output Voltage Swing	V -	$\pm V_{CC} = \pm 20V$, $R_L = 10k\Omega$	±16		± 16	_	v	
(Maximum)	V _{OP}	$\pm V_{CC} = \pm 20V$, $R_L = 2k\Omega$	±15		± 15		v	
Onon-Loop Voltage Gain		$\pm V_{CC} = \pm 20V, V_{OUT} = \pm 15V$						
Open-Loop Voltage Gain	A _{VS(+)}	$H_L = 2k\Omega$, $T_A = 25^{\circ}C$	50		50		V/mV	
(Single Ended) (Note 6)	A _{VS(-)}	-55°C ≤ T _A ≤ +125°C	25		25			
Open-Loop Voltage Gain		±V _{CC} = ±5V						
(Single Ended) (Note 6)	Avs	$R_L = 2k\Omega$	10	_	10	_	V/m/V	
(Single Ended) (Note b)		V _{OUT} = ±2V						

The absolute maximum negative input voltage is equal to the negative power supply voltage.

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted. (Continued)

			01 LIMITS		04 LIMITS			
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
Transient Response Rise Time	TR _(tr)	\pm V _{CC} = \pm 15V, A _L = 2k Ω , A _V = 1 C _L = 100pF, See Figure 2 V _{IN} = 50mV	_	150		150	ns	
Transient Response Overshoot	TR _(os)	$\pm V_{CC} = \pm 15V$, $R_L = 2k\Omega$, $A_V = 1$ $C_L = 100pF$, See Figure 2 $V_{IN} = 50mV$	-	40	_	40	%	
Slew Rate	SR(+) and SR(-)	$V_{IN} = \pm 5V, \pm V_{CC} = \pm 15V$ $A_V = 1, See Figure 2$ $T_A = 25^{\circ}C$ $T_A = -55^{\circ}C, +125^{\circ}C$	2 1	-	3 1.5		V/μs	
Settling Time	ts(+) and ts(+)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$ $T_A = 25^{\circ}C, A_V = -1$ See Figure 3		4000	_	4000	ns	
Noise (Referred to Input) Broadband	N _I (BB)	±V _{CC} = ±20V, T _A = 25°C Bandwidth = 5kHz	_	10	_	10	μV _{rms}	
Noise (Referred to Input) Popcorn	N _I (PC)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ}C$ Bandwidth = 5kHz		40	-	40	μV_{pk}	

NOTES:

CASE OUTLINE

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_j. Measurement of bias current is specified at T_j rather than T_A, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T_A = -55° C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

PIN CONNECTIONS

POWER AND THERMAL CHARACTERISTICS

Package	Case outline		Maximum θJ—C	Maximum θJA
8 Lead Can (TO-99)	G	330mW at T _A = 125°C	40°C/W	150° C/W
8 Lead Hermetic DIF	P	417mW at T _A = 125°C	50°C/W	120°C/W

- Negative I_{IB} minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from V_{IO} measurements at $V_{CM} = +15V$ and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_i(max) ≤ 175°C.
- Because of thermal feedback effects from output to input, open-loop gain is not guaranteed to be linear or positive over the operating range. These requirements, if needed, should be specified by the user in additional procurement documents.

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted.

PARAMETER			02 LIMITS			MITS		
	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
		$\pm V_{CC} = \pm 5V$, $V_{CM} = 0V$	-5	5	-2	2		
nput Offset		T _A = 25°C	_	•	-	-		
Voltage	VIO	±V _{CC} = ±20V					mV	
•		V _{CM} = ±15V, 0V	-7	7	-2.5	2.5		
		-55°C ≤ T _A ≤ +125°C						
Input Offset Voltage	ΔV_{10}	$\pm V_{CC} = \pm 20V$	-30	30	~10	10	μV/°C	
Temperature Sensitivity	ΔΤ	V _{CM} = 0V						
		$\pm V_{CC} = \pm 20V$, $V_{CM} = 0V$,						
Input Offset Current	I _{IO}	T _j = 25°C	-20	₹20	-20	20	pΑ	
		T _j = 125°C	-20	20	-20	20	nA	
		$\pm V_{CC} = \pm 20V$, $V_{CM} = +15V$						
		T _j = 25°C	-100	3500	~ 100	3500	pΑ	
		t ≤ 25ms T _j = 125°C	-10	60	-10	60	nA	
	+1 _{1B}	$\pm V_{CC} = \pm 15V, V_{CM} = +10V$						
Input Bias Current		T _j = 25°C	100	300	~100	300	рA	
(Note 1)	-1 _{IB}	t ≤ 25ms T _j = 125°C	-10	50	-10	50	nA	
(Note 2)		$\pm V_{CC} = \pm 20V$, ~15V $\leq V_{CM} \leq 0V$						
(Note 3)		T _j = 25°C	-100	100	~ 100	100	pΑ	
		t ≤ 25ms T _j = 125°C	-10	50	-10	50	nA	
Power Supply	+PSRR	$+V_{CC} = 10V, -V_{CC} = -20V$	85		85	_	d₿	
Rejection Ratio	-PSRR	$+V_{CC} = 20V, -V_{CC} = -10V$						
Input Voltage Common-Mode		±V _{CC} = ±20V						
Rejection (Note 4)	CMR	$V_{IN} = \pm 15V$	85	_	85		d₿	
Adjustment for	V _{IO} ADJ(+)	±V _{CC} = ±20V	+8	_	+8			
Input Offset Voltage	V _{IO} ADJ (=)	±V _{CC} = ±20V	_	-8	_	-8	mV	
input Crisci Voltage	*IO ADO()						-	
Output Short-Circuit Current		±V _{CC} = ±15V						
(for Positive Output) (Note 5)	los(+)	t ≤ 25ms	-50	_	-50	_	mA	
		(Short Circuit to Ground)						
Output Short-Circuit Current		$\pm V_{CC} = \pm 15V$						
(for Negative Output)	I _{OS(-)}	t ≤ 25ms	_	50		50	m <i>A</i>	
(Note 5)		(Short Circuit to Ground)						
		T _A = -55°C	-	11	_	11		
Supply Current	I _{CC}	$\pm V_{CC} = \pm 15V$, $T_A = +25^{\circ}C$	-	7	_	7	mA	
		T _A = +125°C		7	_	7		
Output Voltage Swing		$\pm V_{CC} = \pm 20V$, $R_L = 10k\Omega$	±16	_	±16			
(Maximum)	V _{OP}	$\pm V_{CC} = \pm 20V$, $R_L = 2k\Omega$	± 15	_	±15		V	
<u> </u>		±V _{CC} = ±20V, V _{OUT} = ±15V						
Open-Loop Voltage Gain	Λ -	$R_L = 2k\Omega$, $T_A = 25^{\circ}C$	50		50			
(Single Ended) (Note 6)	Avs(+)	-55°C ≤ T _A ≤ + 125°C	25		25	_	V/mV	
	A _{vs(~)}							
Open-Loop Voltage Gain		$\pm V_{CC} = \pm 5V$						
(Single Ended) (Note 6)	A _{VS}	$R_L = 2k\Omega$	10	_	10	_	V/mV	
(Single Endod) (Note o)		V _{OUT} = ±2V						
		$\pm V_{CC} = \pm 15V$, $R_L = 2k\Omega$, $A_V = 1$						
Transient Response	TR _(tr)	C _I = 100pF, See Figure 2	_	100		100	ns	
Rise Time	(0)	V _{IN} = 50mV						
		$\pm V_{CC} = \pm 15V, R_L = 2k\Omega, A_V = 1$						
Transient Response	TR _(os)	C _L = 100pF, See Figure 2	_	40		40	9/	
Overshoot	(08)	V _{IN} = 50mV						
		$V_{IN} = \pm 5V, \pm V_{CC} = \pm 15V$		-				
	SR (±)	$V_{IN} = \pm 5V$, $\pm V_{CC} = \pm 15V$ $A_V = 1$, See Figure 2						
Slew Rate	and	$T_A = 25^{\circ} \text{ C}$	7.5		10	_	V/μ	
	SR(-)	T _A = 25°C, +125°C	7.5 5		7	_		
					····			
5 AM - T	ts(+)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$		4000		4000		
Settling Time	and	$T_A = 25^{\circ} \text{ C}, A_V = -1$		4000		4000	ns	
	ts(-)	See Figure 3						

ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted. (Continued)

PARAMETER		CONDITIONS	02 LIMITS		05 LIMITS			
	SYMBOL		MIN	MAX	MIN	MAX	UNITS	
Noise (Referred to Input) Broadband	N _I (BB)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ}C$ Bandwidth = 5kHz	_	10	_	10	μV _{rms}	
Noise (Referred to Input) Popcorn	N _i (PC)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ} C$ Bandwidth = 5kHz	-	40	_	40	μV _{pk}	

NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_i. Measurement of bias current is specified at T_i rather than T_A, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T_A = -55°C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

- Negative I_{IB} minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from V_{IO} measurements at V_{CM} = +15V and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_i(max) ≤ 175° C.
- Because of thermal feedback effects from output to input, open-loop gain
 is not guaranteed to be linear or positive over the operating range. These
 requirements, if needed, should be specified by the user in additional
 procurement documents.

ORDERING INFORMATION

JAN SLASH SHEET	PMI DEVICE
JM38510/11401BGC	PM155J1/38510
JM38510/11401BGA	PM155J5/38510
JM38510/11401BPB	PM155Z2/38510
JM38510/11401BPA	PM155Z5/38510
JM38510/11404BGC	PM155AJ1/38510
JM38510/11404BGA	PM155AJ5/38510
JM38510/11404BPB	PM155AZ2/38510
JM38510/11404BPA	PM155AZ5/38510
JM38510/11402BGC	PM156J1/38510
JM38510/11402BGA	PM156J5/38510
JM38510/11402BPB	PM156Z2/38510
JM38510/11402BPA	PM156Z5/38510
JM38510/11401SGA	PM155SJ5/38510
JM38510/11402SGA	PM156SJ5/38510*
JM38510/11404SGA	PM155SAJ5/38510
JM38510/11405SGA	PM156SAJ5/38510

^{*} Undergoing Part 1 qualification as of 1/90.

JAN SLASH SHEET	PMI DEVICE
JM38510/11405BGC	PM156AJ1/38510
JM38510/11405BGA	PM156AJ5/38510
JM38510/11405BPB	PM156AZ2/38510
JM38510/11405BPA	PM156AZ5/38510
JM38510/11403BGC	PM157J1/38510
JM38510/11403BGA	PM157J5/38510
JM38510/11403BPB	PM157Z2/38510
JM38510/11403BPA	PM157Z5/38510
JM38510/11406BGC	PM157AJ1/38510
JM38510/11406BGA	PM157AJ5/38510
JM38510/11406BPB	PM157AZ2/38510
JM38510/11406BPA	PM157AZ5/38510

ELECTRICAL CHARACTERISTICS at V_{CC} from $\pm 5V$ to $\pm 20V$; source resistance = 50 ohm; ambient temperature range = -55° C to $+125^{\circ}$ C and figure 1, unless otherwise noted.

			03 LI	MITS	06 LIMITS			
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
Input Offset		$\pm V_{CC} = \pm 5V, V_{CM} = 0V$ T _A = 25°C	-5	5	-2	2		
Voltage	V _{IO}	$\pm V_{CC} = \pm 20V$ $V_{CM} = \pm 15V, 0V$ $-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-7	7	-2.5	2.5	mV	
Input Offset Voltage Temperature Sensitivity	ΔV ₁₀	±V _{CC} = ±20V V _{CM} = 0V	~30	30	-10	10	μV/°C	
Input Offset Current	I ₁₀	$\pm V_{CC} = \pm 20V, V_{CM} = 0V,$ $T_i = 25^{\circ}C$	-20	20	-20	20		
mput onset outlant	40	T ₁ = 125°C	-20	20	-20	20	nA	
		$\pm V_{CC} = \pm 20V$, $V_{CM} = +15V$ $T_j = 25^{\circ}C$ $t \le 25ms$ $T_i = 125^{\circ}C$	-100 -10	3500 60	-100 -10	3500 60	pA nA	
Input Bias Current (Note 1)	+1 _{IB}	$\pm V_{CC} = \pm 15V$, $V_{CM} = +10V$ $T_j = 25^{\circ}C$ t ≤ 25ms $T_i = 125^{\circ}C$	100 10	300 50	-100 10	300 50	pA nA	
(Note 1) —((Note 2) (Note 3)	*18	$\pm V_{CC} = \pm 20V$, $-15V \le V_{CM} \le 0V$ $T_j = 25^{\circ}C$ $t \le 25ms$ $T_i = 125^{\circ}C$	100 10	100 50	-100 -10	100 50	pA nA	
Power Supply Rejection Ratio	+PSRR PSRR	+V _{CC} = 10V, -V _{CC} = -20V +V _{CC} = 20V, -V _{CC} = -10V	85		85		dB	
Input Voltage Common-Mode Rejection (Note 4)	CMR	$\pm V_{CC} = \pm 20V$ $V_{IN} = \pm 15V$	85	_	85	_	dB	
Adjustment for Input Offset Voltage	V _{IO} ADJ (+) V _{IO} ADJ (~)	$\pm V_{CC} = \pm 20V$ $\pm V_{CC} = \pm 20V$	+8	 8	+8 —	-8	тV	
Output Short-Circuit Current (for Positive Output) (Note 5)	l _{OS(+)}	±V _{CC} = ±15V t ≤ 25ms (Short Circuit to Ground)	-50	-	-50	_	mA	
Output Short-Circuit Current (for Negative Output) (Note 5)	losi-	±V _{CC} = ±15V t ≤ 25ms (Short Circuit to Ground)	_	50	_	50	mA	
Supply Current	lcc	$T_A = -55^{\circ}C$ $\pm V_{CC} = \pm 15V, T_A = +25^{\circ}C$ $T_A = +125^{\circ}C$	-	11 7 7	-	11 7 7	mA	
Output Voltage Swing (Maximum)	V _{OP}	$\pm V_{CC} = \pm 20V$, $R_L = 10k\Omega$ $\pm V_{CC} = \pm 20V$, $R_L = 2k\Omega$	± 16 ± 15	_	±16 ±15	_	V	
Open-Loop Voltage Gain (Single Ended) (Note 6)	A _{VS(+)} A _{VS(-)}	$\pm V_{CC} = \pm 20V$, $V_{OUT} = \pm 15V$ $R_L = 2k\Omega$, $T_A = 25^{\circ}C$ $-55^{\circ}C \le T_A \le +125^{\circ}C$	50 25		50 25		V/mV	
Open-Loop Voltage Gain (Single Ended) (Note 6)	A _{vs}	$\pm V_{CC} = \pm 5V$ $R_L = 2k\Omega$ $V_{OUT} = \pm 2V$	10	_	10	_	V/mV	

ELECTRICAL CHARACTERISTICS at V_{CC} from ±5V to ±20V; source resistance = 50 ohm; ambient temperature range = -55°C to +125°C and figure 1, unless otherwise noted. (Continued)

-			03 LI	MITS	06 LI	MITS		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	MIN	MAX	UNITS	
Transient Response Rise Time	TR _(tr)	\pm V _{CC} = \pm 15V, R _L = 2k Ω , A _V = 5 C _L = 100pF, See Figure 2 V _{IN} = 50mV	_	450	-	450	ns	
Transient Response Overshoot	TR _(os)	$\pm V_{CC} = \pm 15V$, $R_L = 2k\Omega$, $A_V = 5$ $C_L = 100pF$, See Figure 2 $V_{IN} = 50mV$	_	25	_	25	%	
Slew Rate	SR(+) and SR(-)	$V_{IN} = \pm 1V, \pm V_{CC} = \pm 15V$ $A_V = 5$, See Figure 2 $T_A = 25^{\circ} C$ $T_A = -58^{\circ} C, +125^{\circ} C$	30 20	_	40 25	_	V/μs	
Settling Time	ts(+) and ts(+)	$\pm V_{CC} = \pm 15V (0.1\% \text{ error})$ $T_A = 25^{\circ} \text{ C}, A_V = -5$ See Figure 3		800	_	800	ns	
Noise (Referred to Input) Broadband	N _J (BB)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ} C$ Bandwidth = 5kHz		10		10	μV _{rms}	
Noise (Referred to Input) Popcorn	N _I (PC)	$\pm V_{CC} = \pm 20V$, $T_A = 25^{\circ}C$ Bandwidth = 5kHz	_	40		40	μV _{pk}	

NOTES:

- 1. Bias currents are actually junction leakage currents which double (approximately) for each 10°C increase in junction temperature T_j. Measurement of bias current is specified at T_j rather than T_A, since normal warm-up thermal transients will affect the bias currents. The measurements for bias currents must be made within 25ms or 5 loop time constants after power is first applied to the device for test. Measurement at T_A = -55°C is not necessary since expected values are too small for typical test systems.
- Bias current is sensitive to power supply voltage, common-mode voltage and temperature as shown by the following typical curves:

- Negative I_{IB} minimum limits reflect the characteristics of device with bias current compensation.
- 4. CMR is calculated from V_{IO} measurements at V_{CM} = +15V and -15V.
- Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_i(max) ≤ 175° C.
- Because of thermal feedback effects from output to input, open-loop gain is not guaranteed to be linear or positive over the operating range. These requirements, if needed, should be specified by the user in additional procurement documents.

NOTES:

PMD

- 1. All resistors are $\pm 0.1\%$ tolerance and all capacitors are $\pm 10\%$ tolerance, unless otherwise specified.
- Precautions shall be taken to prevent damage to the D.U.T. during insertion into socket and change of state of relays (i.e. disable voltage supplies, current limit ±V_{CC}, etc.).
- 3. Compensation capacitors should be added as required for test circuit stability. Two general methods for stability compensation exist. One method is with a capacitor for nulling amp feedback. The other method is with a capacitor in parallel with the 49.9kfl closed-loop feedback resistor. Both methods should not be used simultaneously. Proper wiring procedures shall be followed to prevent unwanted coupling and oscillations, etc. Loop response and
- settling time shall be consistent with the test rate such that any value has settled for at least five loop time constants before the value is measured.
- Adequate settling time should be allowed such that each parameter has settled to within 5% of its final value.
- 5. All relays are shown in the normal de-energized state.
- The nulling amplifier shall be a M38510/10101XXX. Saturation of the nulling amplifier is not allowed on tests where the E (Pin 5) value is measured.
- The load resistors 2050Ω and 11.1kΩ yield effective load resistances of 2kΩ and 10kΩ respectively.
- Any oscillation greater than 300mV in amplitude (peak-to-peak) shall be cause for device failure.

Figure 1. Test Circuit for Static Tests

Figure 2. Test Circuit for Transient Response and Slew Rate.

Figure 3. Test Circuit for Settling Time

BURN-IN

Devices supplied by PMI have been subjected to burn-in per Method 1015 of MIL-STD-883 using test condition C with circuit shown on Figure 4 or test condition F using circuit shown on Figure 5.

Figure 4. Test Circuit, Burn-In (Steady-State Power and Reverse Bias) and Operating Life Test

Figure 5. Accelerated Burn-In and Life Test Circuit