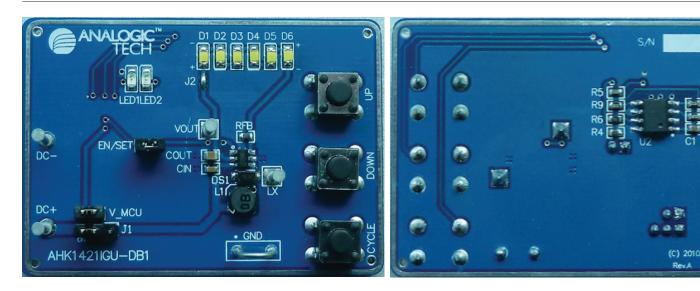


## S'Cwire Controlled, Serial LED Boost Driver


#### Introduction

The AHK1421 evaluation board demonstrates functionality of the AHK1421 and its application as a white LED backlight driver under AnalogicTech's S²Cwire serial digital interface control.

The AHK1421 is a high frequency, high efficiency, constant-current boost converter driving six white LEDs in series configuration. The input voltage is 2.7V to 5.5V, which is ideal for portable devices powered by single-cell lithium-ion/polymer (Li-ion) batteries. The maximum LED current is set by an external resistor from 10 to 31mA. The AHK1421 is programmable with the S²Cwire interface, using an onboard microcontroller which is capable of brightening and dimming the LEDs in 32 discrete steps.

This document describes the evaluation board and its accompanying user interface. A brief "Getting Started" section is included to help the user to begin operating the evaluation board.

#### **Board Pictures**



(a) Top (b) Bottom

Figure 1: AHK1421 Evaluation Board



### AHKI42I EVAL:

# S<sup>2</sup>Cwire Controlled, Serial LED Boost Driver

### **Board Schematic**

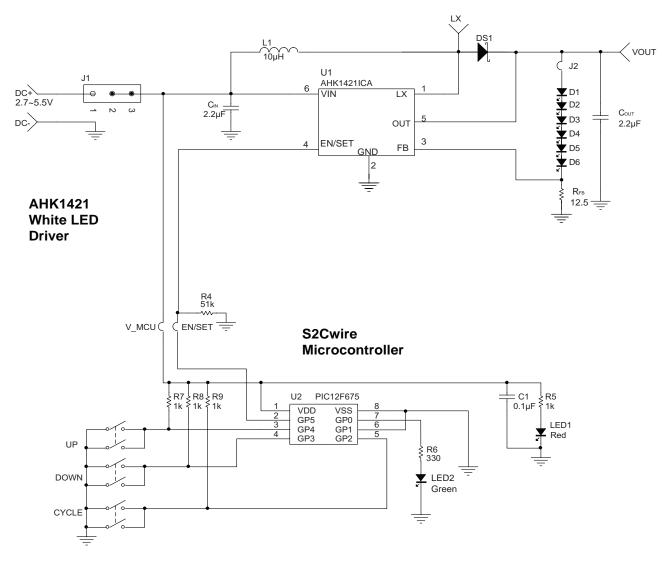



Figure 2: AHK1421 Evaluation Board Schematic

2



## S'Cwire Controlled, Serial LED Boost Driver

## **Getting Started**

### Setup (Figure 3)

- 1. Connect an input power source (to supply between 2.7V and 5.5V) to the board by placing the jumper, J1 on the left (Connects DC+ power to AHK1421).
- 2. Connect the DC+ power to the microcontroller VDD by using the jumper V MCU.
- 3. Connect the EN/SET jumper to connect the microcontroller GPIOs to the AHK1421 EN/SET pins.
- 4. After all jumpers are in the correct position, apply power between 2.7V and 5.5V to the DC+ and DC- terminals to power on the AHK1421 (U1) and microcontroller (U2). The red LED (LED1) will illuminate when the microcontroller is powered. The green LED (LED2) will flicker when the three buttons to transfer S<sup>2</sup>C wire data for AHK1421 are operated.
- 5. Use the UP, DOWN and CYCLE buttons to vary the brightness of the 6 white LEDs using the EN/SET serial data S²Cwire interface

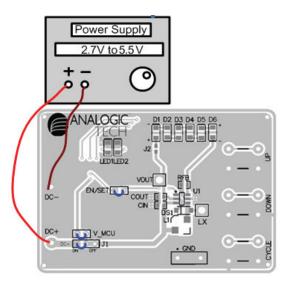



Figure 3: AHK1421 Evaluation Board Measurement Configuration

#### S<sup>2</sup>Cwire Control

Short the EN/SET jumper to receive  $S^2$ Cwire data generated by the microcontroller according to the status of the three buttons. The AHK1421 records the number of rising edges which control output current in EN/SET pin and change the value of output current from 20mA to 0.4mA when RFB is  $12.5\Omega$ 

- UP button: The UP button increments the number of EN/SET rise edges from 1 to 32 each time this button is pushed. By holding down the button for more than 0.6 seconds, the microcontroller enters auto-increment mode. The LED will dim and wrap back after S<sup>2</sup>C wire data reaches 32.
- DOWN button: The DOWN button decrements the number of EN/SET rise edges from 32 to 1 each time this button is pushed. By holding down the button for more than 0.6 seconds, the microcontroller enters auto-decrement mode. The LED will brighten and wrap back after S<sup>2</sup>Cwire data reaches 1.
- CYCLE button: The button increments or decrements the number of EN/SET edges automatically and cyclically after a single push according to the previous EN edges up or down event.
- UP+DOWN+CYCLE button: EN/SET is set to 0V and the AHK1421 is shut down. All white LEDs are turned off.



# S<sup>2</sup>Cwire Controlled, Serial LED Boost Driver



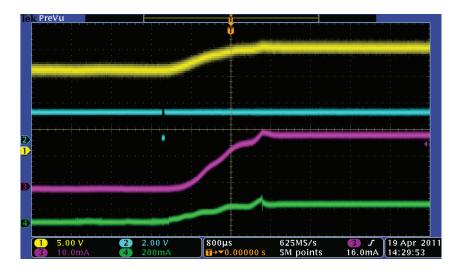
Figure 4: S<sup>2</sup>Cwire Dimming Control at Maximum LED Current (20mA max)

S<sup>2</sup>Cwire Data

# **User Interface Functionality**

| Button(s)     | Action                                      | Effect                                                                                                                     |  |
|---------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| UP            | Push/Release once                           | Increment the number of EN/SET edge; Toggles through the available dimming level settings for the backlighting section.    |  |
|               | Push Hold 0.6 sec.+                         | Auto-increment the number of EN/SET edges up to 32 then wrap back to 1.                                                    |  |
| DOWN          | Push/Release once                           | Decrement the number of EN/SET edge; Toggles through the available brightness level settings for the backlighting section. |  |
|               | Push Hold 0.6 sec.+                         | Auto-decrement the number of EN/SET edges down to 1 then wrap back to 32                                                   |  |
| CYCLE         | Push/Release once or Push<br>Hold 0.6 sec.+ | Auto-cycle in direction last set                                                                                           |  |
| UP+DOWN+CYCLE | Push All Three and Hold                     | Shut down                                                                                                                  |  |

**Table 1: User Interface Functionality** 

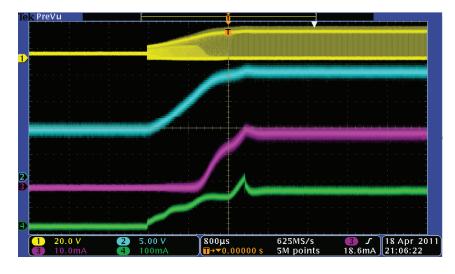



# S'Cwire Controlled, Serial LED Boost Driver

## **Functional Testing and Evaluation**

### **Operational Waveform**

Figure 5 shows the waveform controlled by S<sup>2</sup>Cwire at 3.6V  $V_{IN}$  when the code changes from 32 to 1.The  $I_{LED}$  changes from 0.4mA (2%  $I_{MAX}$ ) to 20mA ( $I_{MAX}$ ).




| Channel | Signal           |
|---------|------------------|
| 1       | V <sub>out</sub> |
| 2       | EN/SET           |
| 3       | $I_{LED}$        |
| 4       | $I_{IN}$         |

Figure 5: Operational Waveform under S<sup>2</sup>Cwire Control.

### Start up

Figure 6 shows the AHK1421 startup waveform after adding rising edge on EN/SET. Soft start control makes the input current rise slowly.



| Channel | Signal           |  |
|---------|------------------|--|
| 1       | SW               |  |
| 2       | V <sub>OUT</sub> |  |
| 3       | $I_{LED}$        |  |
| 4       | I <sub>IN</sub>  |  |

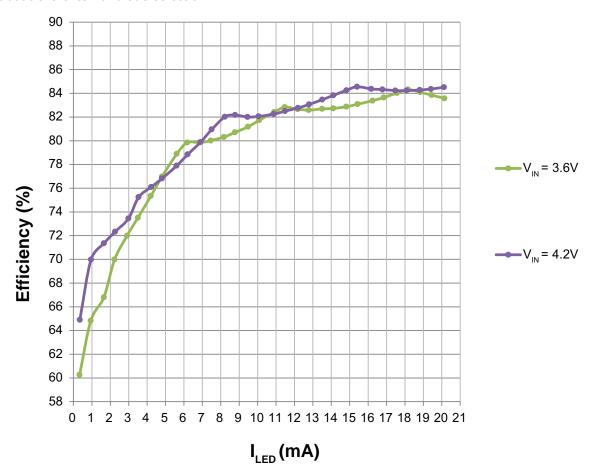
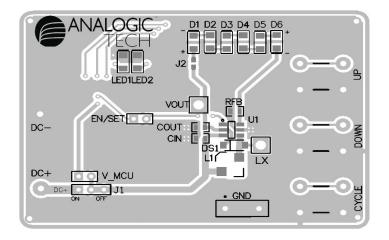
Figure 6: Start Up Waveform.

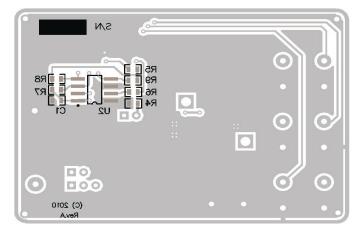


# S<sup>2</sup>Cwire Controlled, Serial LED Boost Driver

## **Efficiency Curves**

Figure 7 shows that the maximum efficiency is about 85% under 4.2V input voltage. Consult the AHK1421 product datasheet about the external diode selection.



Figure 7: Efficiency Curve Waveforms.



# S'Cwire Controlled, Serial LED Boost Driver

## **Printed Circuit Board**





(a) Top (b) Bottom

Figure 8: AHK1421 Evaluation Board (not to Scale)

### **AHK1421 EVAL Board Component Listing**

| Component              | Part Number        | Description                                             | Manufacturer |  |
|------------------------|--------------------|---------------------------------------------------------|--------------|--|
| U1                     | AHK1421ICA         | S2C controlled, serial LED boost driver IC,<br>TSOT23-6 | AnalogicTech |  |
| U2                     | PIC12F675          | 8-bit CMOS, FLASH-Based uC;SOIC-8                       | Microchip    |  |
| R6                     |                    | RES 330Ω 1/4W 1% 0603 SMD                               |              |  |
| R <sub>FB</sub>        | Chip RES           | RES 12.5Ω 1/4W 1% 0603 SMD                              | Yageo        |  |
| R5, R7, R8, R9         | Chip KES           | RES 1KΩ 1/4W 1% 0603 SMD                                |              |  |
| R4                     |                    | RES 51KΩ 1/4W 1% 0603 SMD                               |              |  |
| CIN                    | GRM188R60J225KE01  | Cap 2.2μF 0603 X5R 10V 10%                              |              |  |
| COUT                   | GRM21BR61H225KA73L | Cap 2.2µF 0805 X7R 50V 10%                              | Murata       |  |
| C1                     | GRM188R71C104K     | Cap 0.1uF 0603 X7R 16V 10%                              |              |  |
| D1, D2, D3, D4, D5, D6 | RS-0805UW          | 20mA White LED 0805                                     | Realstar     |  |
| DS1                    | SS14L              | 1.0AMP.Surface Mount Schottky Barrier<br>Rectifiers     | TSC          |  |
| L1                     | CDRH2D14-100       | POWER INDUCTOR 10µH SMD                                 | Sumida       |  |
| LED1                   | 0805KRCT           | Red LED 0805                                            | НВ           |  |
| LED2                   | 0805KGCT           | Green LED 0805                                          |              |  |
| CYCLE, UP, DOWN        | 6*6*5              | 12V 50mA Push button                                    | E-LT         |  |

Table 2: AHK1421 Evaluation Board Bill of Materials.



S<sup>2</sup>Cwire Controlled, Serial LED Boost Driver

Advanced Analogic Technologies, Inc. 3230 Scott Boulevard, Santa Clara, CA 95054 Phone (408) 737-4600 Fax (408) 737-4611



© Advanced Analogic Technologies, Inc.

(© Advanced Analogic Technologies, Inc.)

AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied. AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Except as provided in AnalogicTech assumes no liability whatsoever, and AnalogicTech assumes no liability or infringement of any patent, copyright or other intellectual property right. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed. AnalogicTech and the AnalogicTech logo are trademarks of Advanced Analogic Technologies Incorporated. All other brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.