

NJM386B

The NJM386B is wider operating voltage and higher output power version of NJM386. The maximum operating voltage is 18V, and the maximum output power is up to 1W.

■ Package Outline

N.IM386RM

NJM386BE

■ Absolute Maximum Ratings (Ta=25°C)

 Supply Voltage
 V+
 22V

 Power dissipation
 PD(D-Type)
 700mW

 (L-Type)
 800mW

 (M-Type)
 300mW

 Input Voltage Range
 V_{IN}
 ±0.4V

Operating Temperature Range T_{Opr} $-20 \sim +75^{\circ}\text{C}$ Storage Tamperature Range T_{sig} $-40 \sim +125^{\circ}\text{C}$

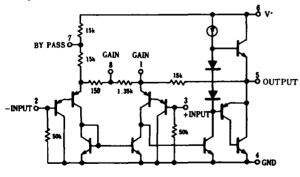
MUMBEREN

M 386 EU.

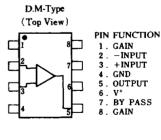
■ Features

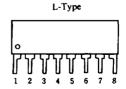
· Minimun external parts

Wide Supply voltage range
 Low quiescent current drain
 Voltage Gain
 4~18V
 5mA
 20~200


· Single supply operation

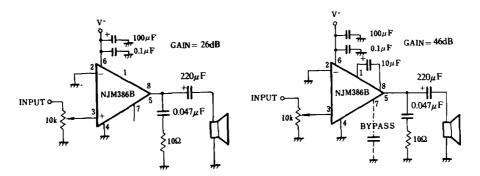
· Self-centering of output offset voltage


■ Applications

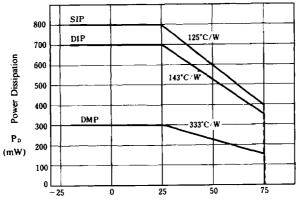

- AM-FM radio amplifiers
- · Portable tape player amplifiers
- · Intercoms
- · TV sound systems
- · Line drivers
- Ultra-sonic Drivers
- · Small servo drivers
- · Power converters

Equivalent Circuit

■ Connection Diagram



■ Electrical Characteristics (Ta=25°C)


Parameter Symbol		Test Condition	Min.	Тур.	Max.	Unit
Operating Supply Voltage	V+		4	_	18	v
Supply Current	Icc	V+=6V, V _{IN} =0	! —	5	8	mA.
Output Power	Po	$V^{+}=6V, R_{L}=8\Omega, THD=10\%$	250	325		mW
Output 1 0 mos	1	$V^{+}=9V$, $R_{L}=8\Omega$, THD=10% (note 2)	500	850	_	mW
	i	$V^{+}=16V$, $R_{L}=32\Omega$, THD=10% (note 1)	700	1000	l —	mW
Voltage Gain	Av	Vs=6V, f=1kHz	24	26	28	dВ
Voluge Culli	1	10µF from Pin 1 to 8	43	46	49	dB
Bandwidth	ВW	V+=6V, Pins 1 and 8 Open		600	_	kHz
Total Harmonic Distortion	THD	$V^{+}=6V, R_{L}=8\Omega, P_{OUT}=125mV$		0.1	-	%
Total Tallions Dissert		f=1kHz, Pins 1 and 8 Open		1		l
Power supply Rejection Rratio	SVR	$V^+=6V$, $f=1$ kHz, $C_{BYPASS}=10\mu F$	-	50	-	dB
	ľ	Pins 1 and 8 Open			1	İ
Input Resistance	RIN		_	50		kΩ
Input Bias Current	IB	V+=6V, Pins 2 and 3 Open	-	100	-	nA

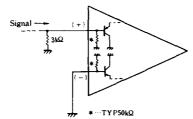
(note 1) NJM386BM: At on Board (note 2) NJM386BS: At on Board

■ Typical Application

■ Power Dissipation vs. Ambient Temperature

Ambient Temperature Ta (°C)

■ Notice when Application


· Prevention of Oscillation

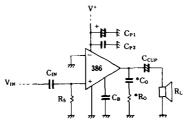
It is recommended to insert capacitors at around the supply source and the GND pins with the value of 0.1μ F and more than 100μ F which are featuring higher frequency efficiency.

When the speaker load condition, it is recommendable to insert the resistor of 10Ω and the capacitor of $0.047\mu F$ between the output and the GND pins.

How to use the Input Resistor (TYP. 50kΩ)

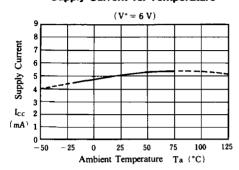
The input resistors have much deviation in value generally, so that it is recommended not to use them as the constant of the circuit. The countermeasure to be recommended is to apply the resistor of higher in value, which is so higher to be able to ignore the input deviation ($3k\Omega$ approximately) in parallel application.

. Maintenance of Output Offset Voltage

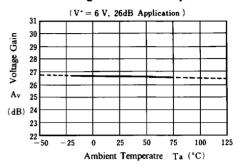

By making connection of both input pins with low value (below $10k\Omega$ approximately) to GND, the output offset voltage is automatically set in the medium range value of the supply source. However, the DC Gain of NJM386 is approximately at 20 times in value, so that when keeping one side input pin open, and the other side to GND on DC condition. The voltage drop caused by input resistor \times input bias current, that is, (input resistor \times input bias current) \times 20 times voltage is to be sheared, which in the result, no distortion output Oscillation range shall be decreeased.

In regard to dealing with the input pin, it is recommendable to put the input pin into the GND at first, and the other side of signal input pin, to be connected into GND with the resistor of less than about $10k\Omega$ on DC condition.

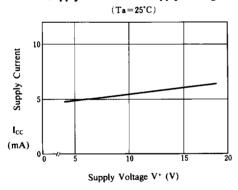
. The Application Purpose and Recommended Value of the External Parts.

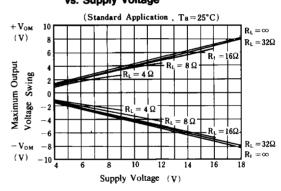

External parts	Application purpose	Recommened Value	Remarks
R_S	Current like noise reduction VOQ stabilization	Below 10kΩ	The noise becomes high when the input pin opend.
Cin	V _{OQ} stabilization	lμF	It is not required in case when there is no DC offset in the input signal.
CPI	V ⁺ stabilization	⊆ C _{cup}	It can be decreased in value when the output impedance source is low.
C _{P2}	Oscitallation prevention	0.1μF	Insert near around the supply source and GND pins.
Cv	Ripple rejection to V _O by way of V ⁺	47μF	It is not required when the V* is stabilized.
•Co	Oscillation preventon	0.047µF	To be decided in value according to load condition.
*Ro	Oscillation prevention	10Ω	To be decided in value according to load condition.
CCUP	Output DC decoupling	470µF when	Low band cutoff frequency (fL) shall be decided by Cour Ri
		$R_L = 4\Omega$	When C _{CUP} is less in value, f _L is to be increassed.
	1	220µF when	. •
		$R_L = 8\Omega$	

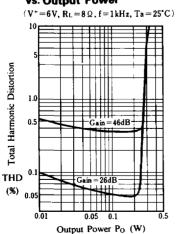
NJM386B Recommended Circuit



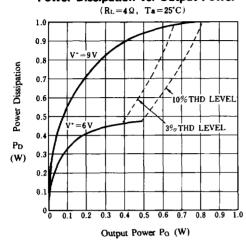
■ Typical Characteristics


Supply Current vs. Temperature

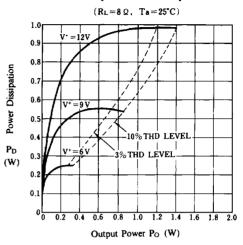

Voltage Gain vs. Temperature


Supply Current vs. Supply Voltage

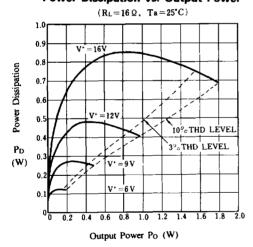
Maximum Output Voltage Swing vs. Supply Voltage

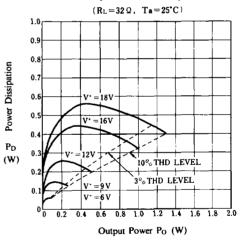


Total Harmonic Distortion vs. Output Power



■ Typical Characteristics


Power Dissipation vs. Output Power


Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

