CMOS 8-BIT MICROCONTROLLERS TMP91P642N/TMP91P642F

OUTLINE AND CHARACTERISTICS

The TMP91P642 is a system evaluation LSI having a built in One-Time PROM for TMP91C642A.

A programming and verification for the internal PROM is achieved by using a general EPROM programmer with an adapter socket.

The function of this device is exactly same as the TMP91C642A by programming to the internal PROM.

PARTS No.	ROM	RAM	PACKAGE	ADAPTER SOCKET NO.
TMP91P642N	ОТР	320 × 8 bit	64-SDIP	BM1144
TMP91P642F	16384 × 8 bit	320 X 8 BIC	64-QFP	BM1145

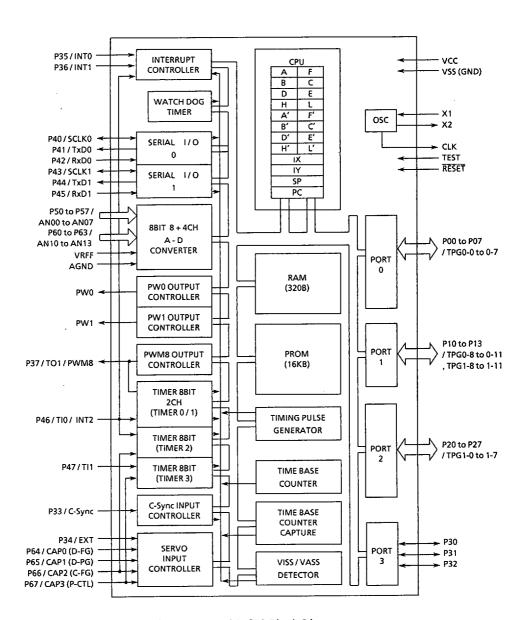


Figure 1 TMP91P642 Block Diagram

2. PIN ASSIGNMENT AND FUNCTIONS

The assignment of input/output pins, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1 (1) shows pin assignment of the TMP91P642N.

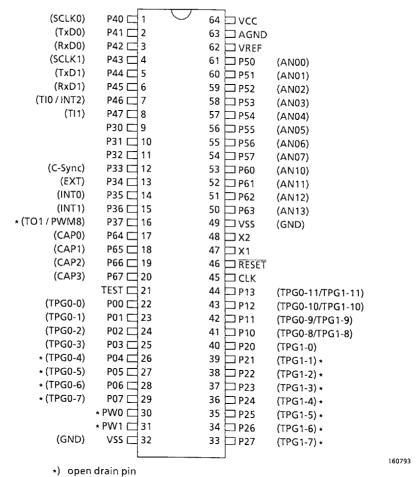
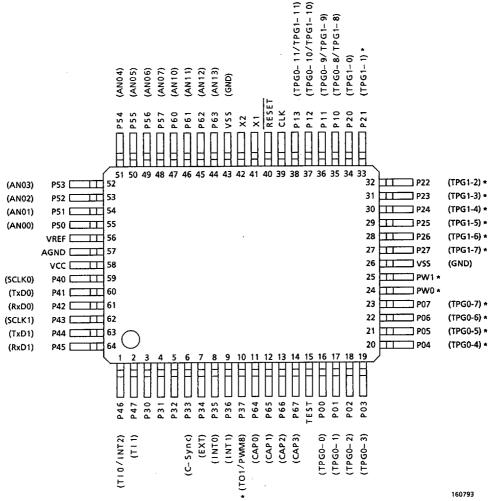



Figure 2.1 (1) Pin Assignment (Shrink DIP package)

Figure 2.1 (2) shows pin assignment of the TMP91P642F. $\widehat{\Xi}$

*) open drain pin

Figure 2.1 (2) Pin Assignment (Flat package)

2.2 Pin Names and Functions

The TMP91P642 has MCU mode and PROM mode.

(1) The functions of MCU mode are summarized in Table 2.2 (1). (TMP91C642A and the TMP91P642 are pin compatible. However, the CLK pin of the TMP91C642A is always pulled up.)

Table 2.2 (1) Pin Names and Functions (1/3)

Pin name	Number of pins	I/O or 3-state	Function				
P00/TPG0-0 to	8	I/O, 3-state* / P04 to P07 \	Port 0: 8-bit I/O port. I/O specifiable in units of bytes.				
pins.		are open drain output	Timing pulse generator (TPG) output: Can also be used as TPG0-0 to TPG0-7 output pins. *P00 only can be set to 3-state by internal signals to TPG0-15.				
P10/TPG0-8 /TPG1-8	4	I/O, 3-state*	Port 1: 4-bit I/O port. I/O specifiable in units of bits.				
to P13/TPG0-11 /TPG1-11		•	Timing pulse generator (TPG) output: Can also be used as TPG0-8 to TPG0-11 / TPG1-8 to TPG1-11 output pins. *P10 only can be set to 3-state by internal signals to TPG0-14/TPG1-14.				
P20/TPG1-0 to	8	I/O, 3-state* / P21 to P27 are	Port 2 : 8-bit I/O port. I/O specifiable in units of bits.				
P27/TPG1-7		open drain output pins.	Timing pulse generator (TPG) output: Can also be used as TPG1-0 to TPG1-7 output pins. *P20 only can be set to 3-state by internal signals to TPG1-15.				
P30 to P32	3	I/O	Port 3: 3-bit I/O port. I/O specifiable in units of bits.				
P33 / C-Sync	1	1/0	Port 3: 1-bit I/O port. I/O specifiable.				
7 C-Syric			Composite sync input				
P34 /EXT	1	1/0	Port 3: 1-bit I/O port. I/O specifiable.				
/ LXI			Servo signal trigger input				
P35	1	Input	Port 3: 1-bit input port.				
711010	/INTO		Interrupt request pin 0 : Level and rising edge are programmable.				
P36 / INT1	1	Input	Port 3: 1-bit input port.				
7 1191 1			Interrupt request pin 1 : at rising edge.				
P37 / PWM8	1	Open drain	Port 3: 1-bit output port.				
/TO1		output	Motor control output : PWM8 output				
			Timers 0 and 1 output : timer 0 and 1 output.				

(Note) *: Only 1 put can be set to the 3-state.

Table 2.2 (1) Pin Names and Functions (2/3)

Pin name	Pin name	I/O or 3-state	Function
P40/SCLKO,	2	1/0	Port 4: 2-bit I/O port. I/O specifiable in units of bits.
P43/SCLK1			Serial clock I/O 0 and 1
P41 / TxD0,	. 2	I/O	Port 4: 2-bit I/O port. I/O specifiable in units of bits.
P44/TxD1			Serial send data 0 and 1
P42 / RxD0,	2	I/O	Port 4: 2-bit I/O port. I/O specifiable in units of bits.
P45 / RxD1			Serial receive data 0 and 1
P46	1	I/O	Port 4: 1-bit I/O port. I/O specifiable.
/TI0 /INT2			Timer 0 / timer 2 count input
			Interrupt request pin 2: at rising edge
P47	1	I/O	Port 4: 1-bit I/O port. I/O specifiable.
/TI1			Timer 3 count input
P50 / AN00	8	Input	Port 5: 8-bit input port.
to P57 / AN07			Analog input 0: 8 analog inputs to A/D converter
P60/AN10	4	I/O	Port 6: 4-bit I/O port. I/O specifiable in units of bits.
to P63 / AN13			Analog input 1 : 4 analog inputs to A/D converter
P64/CAP0	4	Input	Port 6 : 4-bit input port.
to P67/CAP3			Servo signal trigger input
PW0	1	Open drain output	Motor control output : PWM0 output
PW1	1	Open drain output	Motor control output : PWM1 output
VREF	1	-	A/D converter reference voltage input
AGND	1	-	Ground pin for A/D converter
CLK	1	Output	Clock Output: Outputs a pulse that is one-fourth the clock oscillating pulse frequency. Pulled up during reset.

Table 2.2 (1) Pin Names and Functions (3/3)

Pin name	Number of pins	I/O or 3-state	Function	
TEST *	1	_	Test pin (use by fix to "H" level externally)	
RESET	1	Input	Reset : Initializes the TMP91P642A. (Built-in pull-up registor)	
X ₁ /X ₂	2	1/0	Crystal oscillator connector pin	
VSS (GND)	2	-	GND pin (0V)	
vcc	1	_	Power supply pin (+ 5V)	

(Note) * TMP91C642A is pulled up internally, but TMP91P642 is not pulled up. Therefore, TMP91P642 use by fix to "H" level externally.

(2) Functions and Pin Setting of PROM mode

Table 2.2 (2)

		1	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	
Pin Name	No. of pins	1/0	Functions	Pin Name (MCU mode)
D7 to D0	8	1/0	Data Input / Output	P07 to P00
A3 to A0	4			P13 to P10
A11 to A4	8	Input	Address inputs	P27 to P20
A12, A13	2			P40, P41
ŌĒ	1	Input	Output Enable Input	P30
<u>CE</u>	1	Input	Chip Enable Input	P31
VPP	1	Power supply	12.5 V / 5 V (Program supply voltage)	TEST
vcc	1 .	Power supply	5 V	vcc
VSS	2	Power supply	ov	vss

Pin Name	No. of pins	1/0	Pin Setting
P34 to P32	3	i/O	Be fixed to "L" level
P35, P36	2	Input	Be fixed to "L" level
P37	1	Output	Open
P47 to P42	6	1/0	Be fixed to "L" level
P57 to P50	8	Input	Be fixed to "L" level
P63 to P60	4	1/0	Be fixed to "L" level
P67 to P64	4	Input	Be fixed to "L" level
PW0, PW1	2	Output	Open
VREF	1		Be fixed to "L" level
AGND	1		Be fixed to "L" level
RESET	. 1	Input	Be fixed to "L" level
CLK	1	Input	Be fixed to "L" level
X1	1	Input	Resonator connection pin
X2	1	Output	nesonator connection pin

3. OPERATION

The following is an explanation of hardware configuration and operation in relation to the TMP91P642. The TMP91P642 is same as the TMP91C642A except that an PROM is used instead of a built-in mask ROM. (However, the CLK pin of the TMP91C642A is always pulled up.) Therefore, for the function which is not described here, refer to the users manual of the TMP91C642A.

The TMP91P642 has an MCU mode and a PROM mode.

3.1 MCU Mode

(1) Mode Setting and Function

The MCU mode is set by opening the CLK pin (Output status). Operation in the MCU mode is the same as for the TMP91C642A.

(2) Memory Map

Memory map is same as that of TMP91C642A.

Figure 3.1 is a memory map indicating the areas accessible by the CPU in the respective addressing mode.

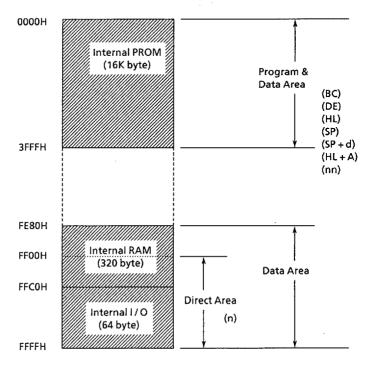


Figure 3.1 Memory Map

3.2 PROM Mode

(1) Mode Setting and Function

The PROM mode is set by setting the RESET and CLK pins to the "L" level.

In the PROM mode the programming and verification for the internal PROM is achieved by using a general EPROM programmer. The device selection (ROM Type) should be "27256" with following conditions.

Size: 256K bit (32K×8 bit) VPP: 12.5 V TPW: 1 ms Setting for PROM mode is shown in Figure 3.2.

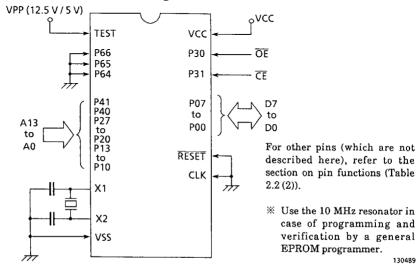


Figure 3.2 PROM Mode Pin Setting

(2) Cautions for Electric signature

TMP91P642 does not support the electric signature mode (hereinafter referred to as "signature"). If PROM programmer uses the signature, the device is damaged because of applying voltage of $12\pm0.5V$ to pin 9 (A9) of the address.

Please use without setting the signature.

(3) Program Mode

All bits of TMP91P642 are "1" when delivered (the erase state). Data "0" is written in the necessary bit location during program operating.

Writing function can be operated at VPP=12.5 V, $\overline{OE} = V_{IH}$, $\overline{CE} = V_{IL}$. Built-in one time PROM can be written in any sequence. It is possible to write only special address.

(4) Adapter Socket (BM1144, BM1145)

BM1144, BM1145 are the adapter sockets to write data into TMP91P642N, TMP91P642F built-in one time PROM using a general EPROM programmer.

(5) Program Storing Area of PROM Mode

TMP91P642 has the program space (0000H to 3FFFH) of 16K bytes.

The address 0000H to 3FFFH of PROM mode equals to the address 0000H to 3FFFH of MCU mode.

The program starts from the address 0000H after reset. Please write the program from the start address.

(6) Program Write Setting Method using a general-purpose PROM programmer

PROM to be prepared should equal to TMM27256AD functions.

- 1. Set the switch (SW1) of BM1144, BM1145 (hereinafter referred to as "adaptor") to the program side (NOR). (Note 1)
- 2. Connect MCU to the adapter. (Note 2)
- 3. Connect the adapter to PROM programmer. (Note 2)
- 4. Set the PROM type of PROM programmer to TMM27256AD.
- 5. Set the start address for writing PROM to 0000H, and the end address to 3FFFH. (Note 3)
- 6. Writing to built-in one time PROM and verifying should be operated according to the operation procedures of PROM programmer.
- (Note 1) If data is written to built-in one time PROM without setting the switch (SW1) to the program side, the device would be damaged.
- (Note 2) Please set the first pin of the adapter to that of PROM programmer. If not, MCU (or PROM programmer) would be damaged.
- (Note 3) If data "0" is written in the address that exceeds 3FFFH, the program written in the address between 0000H and 3FFFH might be destroyed.

(7) Programming Flow Chart

The programming mode is set by applying 12.5 V (programming voltage) to the VPP pin when the following pins are set as follows,

Vcc : 6.0 V RESET : "L" level CLK : "L" level

* These conditions can be obtained by using adaptor socket.

After the address and input data have been fixed, a data on the Data Bus is programmed when the \overline{CE} pin is set to "Low" (1ms plus is required).

General programming procedure of an EPROM programmer is as follows,

- Write a data to a specified address for 1 ms.
- Verify the data. If the read-out data does not match the expected data, another writing is performed until the correct data is written (Max. 25 times).

After the correct data is written, an additional writting is performed by using threetimes longer programming pulse width (1ms×programming times), or using three times more programming pulse number. Then, verify the data and increment the address.

The verification for all data is done under the condition of $Vpp=Vcc=5\ V$ after all data were written.

Figure 3.3 shows the programming flow chart.

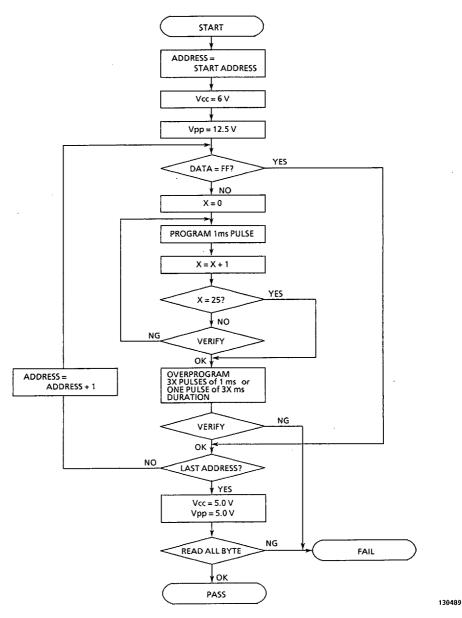


Figure 3.3 Flow Chart

4. ELECTRICAL CHARACTERISTICS

4.1 Absolute Maximum Ratings

Parameter	Symbol	Pins	Rating	Unit
Power supply voltage	V _{CC}		-0.5 to +7	V
Input voltage	VIN		- 0.5 to V _{CC} + 0.5	V
Output voltage	V _{OUT1}	except sink open drain pin	-0.5 to V _{CC} + 0.5	
	V _{OUT2}	Sink open drain pin	-0.5 to +10	V
Output current (per 1 pin)	louT1	P20	- 20	
(per i piny	I _{OUT2}	P00 to P03, P10 to P13, P30 to P34, P40 to P47, P60 to P63, CLK	-3	mA
	Ιουτ3	P04~P07, P24~P27, PW0, PW1	30	
	I _{OUT4}	P20	20	1
	I _{OUT5}	P21 to P23	10	
	Іоит6	P00 to P03, P10 to P13, P30 to P34, P37, P40 to P47, P60 to P63, CLK	2	
Total Input/Output current (all pins)	Σl _{OUT1}	Total current for IOUT1 and IOUT2.	- 60	
(all pills)	Σl _{OUT2}	Total current for I _{OUT3} to I _{OUT6} .	120	mA
Power dissipation (Topk = 70°C)	PDF	Flat package	500	
(TOPR = 70 C)	P _{DS}	Shrink DIP package	600	mW
Soldering temperature (time)	Tsolder		260 (10 s)	°C
Storage temperature	T _{STG}		- 65 to + 150	°C
Operating temperature	TOPR		- 20 to + 70	°C

4.2 DC Electrical Characteristics

 V_{CC} = 5 V ± 10% Ta = -20 to 70°C f_{OSC} = 10 MHz Typical values are for V_{CC} = 5 V and Ta = 25°C.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input Low Voltage	. V _{IL}	- 0.3		0.3V _{CC}	V	
	V _{IL1}	- 0.3		0.25V _{CC}	٧	Schmitt input circuit P33 to P35, P64 to P67, RESET
	V _{IL2}	- 0.3		0.2V _{CC}	V	X1
Input High Voltage	V _{IH}	0.7V _{CC}		V _{CC} + 0.3	V	
	V _{IH1}	0.75V _{CC}		V _{CC} + 0.3	٧	Schmitt input circuit P33 to P35, P64 to P67, RESET
	V _{IH2}	0.8V _{CC}		V _{CC} + 0.3	V	X1
Output Low Voltage	VoL			0.45	٧	I _{OL} = 1.6 mA
Output High Voltage	Voн	2.4			V	I _{OH} = -200 μA
	V _{OH1}	0.9V _{CC}			٧	$I_{OH} = -20 \mu A$
Output Low Current	l _{OL1}		2		mA	V _{OL} = 0.45 V / P37
(opėn drain ports)	l _{OL2}		20		mA	V _{OL} = 1.0 V / P04 to P07, P24 to P27, PW0, PW1
	lor3		5		mΑ	$V_{OL} = 0.45 \text{ V} / \text{P21 to P23}$
Output Low Current	lorc	10	15		mA	V _{OL} = 1.0 V / P20
Output High Current	Іонс		- 15	- 10	mA	V _{OH} = 2.4 V / P20
Hysteresis Voltage	V _{HS}		0.7		V	V _{CC} = 5 V, Ta = 25°C
Input Leakage Current	16		0.02	± 10	μΑ	0.2 ≤ Vin ≤ VCC - 0.2
Output Leakage Current	lLO		0.05	± 20	μΑ	0.2 ≤ Vin ≤ VCC - 0.2
Power Down Voltage	VSTOP	2 RAM BACK UP		6	V	at STOP Mode
RESET pull-up current	IRST	30		110	μΑ	
Operating Current	I _{CC1}		25	50	mA	f _{OSC} = 10 MHz

4.3 AC Characteristics

 $V_{CC} = 5V \pm 10\%$ Ta = -20 to 70°C CL = 50pF

C	Parameter	10MH:	z Clock	Unit
Symbol	Parameter	Min	Max	Unit
tosc	OSC. Period	100		ns
tcyc	CLK Period	400		ns
twL	CLK Low Width	160		ns
twH	CLK High Width	160		ns
t _{CPW}	CLK to Data Output		200	ns
t _{PRC}	Port Data Setup to CLK	200		ns
t _{CPR}	Port Data Hold After CLK	100		ns
tcgw	CLK to TPG Data Output		400	ns

- AC output level High 2.2 V / Low 0.8 V
- AC input level High 0.8 V_{CC}/Low 0.2 V_{CC}

4.4 8 bit Event Counter

$V_{CC} = 5 V \pm 10 \%$, $T_{a} = -20 \text{ to } 70 \%$	Vcc :	= 5 V	± 10	%.	Ta =	- 20	to :	70°C
--	-------	-------	------	----	------	------	------	------

Symbol	Parameter	12.5 MH		
3y111001	Faranietei	Min	Max	Unit
t _{VCK}	External input clock cycle (TI0, TI1, C-FG, PCTL)	900	· · · · · ·	ns
tvckl	External input Low clock pulse width	440		ns
t _{VCKH}	External input High clock pulse width	440		ns

4.5 Serial Channel Timing

 $V_{CC} = 5 \text{ V} \pm 10 \text{ % Ta} = -20 \text{ to } 70 \text{ °C } C_L = 50 \text{ pF}$

				-	•
Symbol	Parameter	Condition	10 MHz	Clock	Unit
3,501	rarameter		Min	Max	Unit
		@TBC2 (8/fc) Internal	800		
t_{SCY}	Serial Port Clock Cycle Time	@TBC6 (128/fc)	12800		ns
		External	1600]
		@TBC2 (8/fc) Internal	350		
t _{SCL}	SCLK Low Width	@TBC6 (128/fc)	6350		ns
		External	750	Max	1
		@TBC2 (8/fc) Internal	350		
tscH	SCLK High Width	@TBC6 (128/fc)	6350		ns
		External	750		
towno	SCLK → TxD (Output Data)	Internal	150		
tskdo	delay time	External	700		ns
+	SCLK Rising Edge to Input	Internal	640		
t _{SRD}	DATA Valid	External	1900		ns
tues	Input Data Hold After SCLK	Internal	200		
t _{HSR}	Rising Edge	External	700	Iz Clock Max	ns

4.6 A/D Conversion Characteristics

 $V_{CC} = 5 \text{ V} \pm 10 \text{ %}$, $T_{a} = -20 \text{ to } 70 \text{ °C}$, $f_{OSC} = 10 \text{ MHz}$

Symbol	Parameter	Min	Тур	Max	Unit
V _{REF}	Analog reference voltage	Vcc – 1.5	Vcc	Vcc	
AGND	Analog reference voltage	VSS	Vss	Vss	V
VAIN	Allowable analog input voltage	Vss		Vcc	
I _{REF}	Supply current for analog reference voltage		0.6	1.0	mA
Error	Total error (Ta = 25℃, Vcc = V _{REF} = 5V)			3	LSB

4.7 Interrupt Operation

 $V_{CC} = 5 V \pm 10 \%$, $T_{a} = -20 \text{ to } 70 \text{ }^{\circ}\text{C}$

Symbol	Parameter	10 MH	I I m i d	
		Min	Max	Unit
t _{INTAL}	INT0 Low-level pulse width (ヿ゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	400		ns
tintah	INTO High-level pulse width ()	400		ns
tintal	INT1, INT2 Low-level pulse width ()	900		ns
tintbh	INT1, INT2 High-level pulse width ()	900		ns

4.8 Read Operation (PROM Mode)

DC Characteristic, AC Characteristic

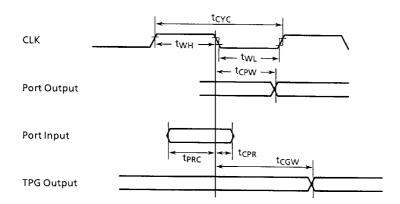
 $TA = -20 \text{ to } 70 \,^{\circ}\text{C} \, \text{Vcc} = 5 \,\text{V} \pm 10 \,^{\circ}\text{M}$

Symbol	Parameter	Condition	Min	Max	Unit
V _{PP} V _{IH1} V _{IL1}	V _{PP} Read Voltage Input High Voltage (A0 to A13, $\overline{\text{CE}}$, $\overline{\text{OE}}$) Input Low Voltage (A0 to A13, $\overline{\text{CE}}$, $\overline{\text{OE}}$)	<u>-</u> - -	4.5 0.7 × V _{CC} - 0.3	5.5 V _{CC} + 0.3 0.3 × V _{CC}	V V
tacc	Address to Output Delay	C _L = 50 _P F	T -	2.25TCYC + α	ns

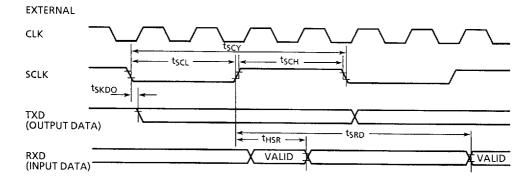
TCYC = 400 ns (10 MHz Clock) α = 200 ns

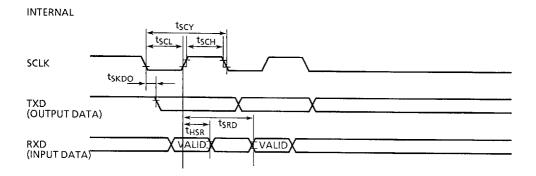
150491

4.9 Programming Operation (PROM Mode)

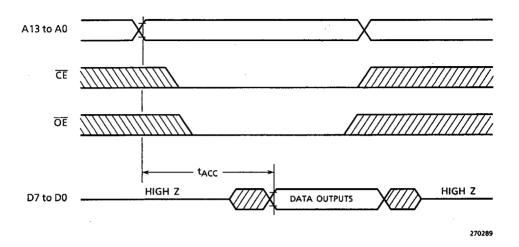

DC Characteristic, AC Characteristic

 $TA = 25 \pm 5$ °C $Vcc = 6 V \pm 0.25 V$

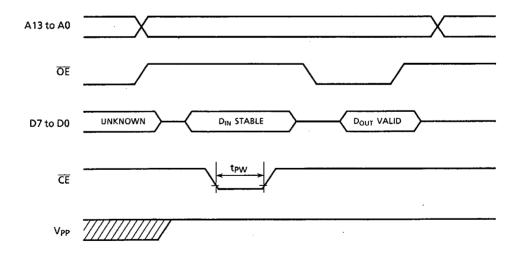

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{PP}	Programing Algorithm	_	12.25	12.50	12.75	٧
ViH	Input High Voltage (D0 to D7)	-	0.2V _{CC} + 1.1		V _{CC} + 0.3	V
VIL	Input Low Voltage (D0 to D7)	_	- 0.3		0.2V _{CC} -0.1	V
V _{IH1}	Input High Voltage (A0 to A13, CE, OE)	-	0.7V _{CC}		V _{CC} + 0.3	V
V _{IL1}	Input Low Voltage (A0 to A13, CE, OE)	_	- 0.3		0.3V _{CC}	V
lcc	V _{CC} Supply Current	t _{OSC} = 10 MHz	-		50	mA
Ірр	V _{PP} Supply Current	$V_{PP} = 13.00 \text{ V}$	-		50	mΑ
tpW	CE Program Pulse Width	C _L = 50 _P F	0.95	1.00	1.05	ms


130489

4.10 Timing Chart



4.11 Serial Channel Timing Chart



4.12 Read Operation Timing Chart (PROM Mode)

4.13 Programming Operation Timing Chart (PROM Mode)

270289