

Vishay High Power Products

Schottky Rectifier, 2.1 A

PRODUCT SUMMARY			
I _{F(AV)}	2.1 A		
V_{R}	60 V		

FEATURES

- Small foot print, surface mountable
- Low forward voltage drop

- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

DESCRIPTION

The VS-10MQ060NPbF surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	(AV) DC		Α		
V _{RRM}		60	V		
I _{FSM}	t _p = 5 μs sine	40	Α		
V _F	1.5 Apk, T _J = 125 °C	0.63	V		
T _J	Range	- 55 to 150	°C		

VOLTAGE RATINGS			
PARAMETER	SYMBOL	VS-10MQ060NPbF	UNITS
Maximum DC reverse voltage	V_{R}	60	V
Maximum working peak reverse voltage	V_{RWM}	00	V

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current See fig. 4	I _{F(AV)}	50 % duty cycle at T _L = 120 °C, rectangular waveform On PC board 9 mm ² island (0.013 mm thick copper pad area)		1.5	А
Maximum peak one cycle non-repetitive surge current		5 μs sine or 3 μs rect. pulse	Following any rated load condition and with	40	А
See fig. 6	surge current I _{FSM} 10 ms :		rated V _{RRM} applied	10	
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1 \text{A}, L = 4 \text{mH}$		2.0	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		1.0	А

Document Number: 94118 Revision: 03-Mar-10

VS-10MQ060NPbF

Vishay High Power Products Schottky Rectifier, 2.1 A

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop	V _{FM} ⁽¹⁾	1 A	T _{.1} = 25 °C	0.63	V
		1.5 A	1j = 25 C	0.71	
See fig. 1	V FM (1)	1 A	T _J = 125 °C	0.57	
		1.5 A	1 1j = 125 C	0.63	
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	0.5	- mA
See fig. 2	'RM \''	T _J = 125 °C		7.5	
Threshold voltage	V _{F(TO)}	$T_{J} = T_{J} \text{ maximum}$ 0.45 86.8		0.45	V
Forward slope resistance	r _t			mΩ	
Typical junction capacitance	C _T	V _R = 10 V _{DC} , T _J = 25 °C, test signal = 1 MHz		31	pF
Typical series inductance	L _S	Measured lead to lead 5 mm from package body 2.0		nH	
Maximum voltage rate of change	dV/dt	Rated V _R 10 000		V/µs	

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		- 55 to 150	°C
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	80	°C/W
A constructed to the construction of the const			0.07	g
Approximate weight			0.002	OZ.
Marking device		Case style SMA (similar D-64)	V1	IH

Note

Document Number: 94118 Revision: 03-Mar-10

Schottky Rectifier, 2.1 A Vishay High Power Products

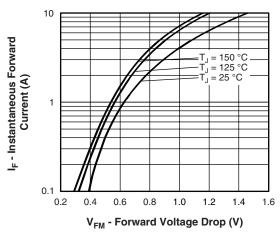


Fig. 1 - Maximum Forward Voltage Drop Characteristics

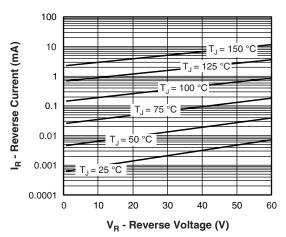


Fig. 2 - Typical Peak Reverse Current vs. Reverse Voltage

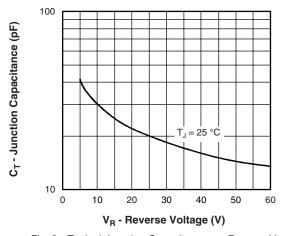
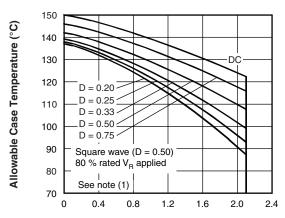
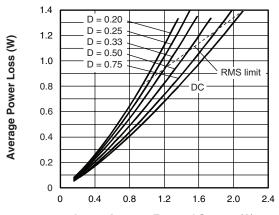




Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

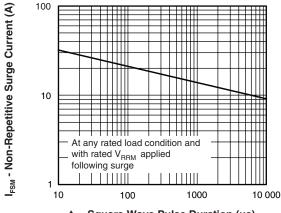

I_{F(AV)} - Average Forward Current (A)

Fig. 4 - Maximum Average Forward Current vs. Allowable Lead Temperature

I_{F(AV)} - Average Forward Current (A)

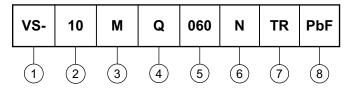
Fig. 5 - Maximum Average Forward Dissipation vs. Average Forward Current

t_p - Square Wave Pulse Duration (μs)

Fig. 6 - Maximum Peak Surge Forward Current vs. Pulse Duration

Note

(1) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{th,JC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R$ (1 - D); I_R at $V_{R1} = 80$ % rated V_R


VS-10MQ060NPbF

Vishay High Power Products Schottky Rectifier, 2.1 A

ORDERING INFORMATION TABLE

Device code

1 - HPP product suffix

2 - Current rating

3 - M = SMA

4 - Q = Schottky "Q" series

5 - Voltage rating (060 = 60 V)

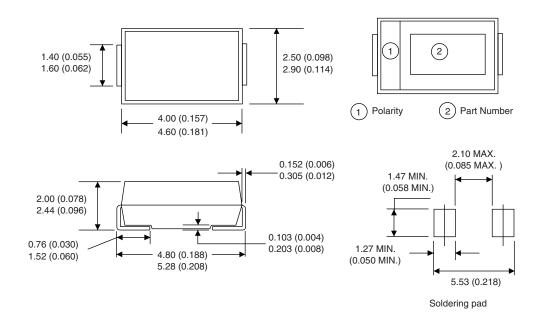
6 - N = New SMA

7 - • None = Box (1000 pieces)

• TR = Tape and reel (7500 pieces)

8 - PbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95018</u>				
Part marking information		www.vishay.com/doc?95029		
Declaration information	Tape and reel	www.vishay.com/doc?95034		
Packaging information	Bulk	www.vishay.com/doc?95397		


Document Number: 94118 Revision: 03-Mar-10

Vishay High Power Products

SMA

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11