Silicon Phototransistor and Photo Darlington in 1210 SMD Package OP525, OP525DA, OP525F

OPTEK Technology

Features:

- High Speed and High photo sensitivity
- Fast response time
- 1210 package size
- High Current Gain
- Water clear and black lens choices
- Narrow Viewing Receiving Angle
- Compatible with IR Reflow soldering process
- Moisture Sensitivity Level: MSL3

Description:

These devices consist of an NPN silicon phototransistor and photo darlington mounted in a miniature SMD package with a 1210 size chip carrier that is compatible with most automated mounting and position sensing equipment.

The OP525 devices have a 1.8 mm domed lens and viewing acceptance angle of 25° with higher collector current gains due to the lenses on package. The OP525 and OP525DA have a water clear lens that senses ambient light to higher wavelengths for applications from 450 nm to 1120 nm . The OP525F has a black domed lens to reduce ambient light noise.

The OP525 series are tested using infrared light for close correlation with Optek GaAs and GaAIAs emitters. Photo darlington devices are normally used in application where light signals are low and more current gain is needed than is possible with phototransistors.

Applications:

- Non-contact position sensing
- Datum detection
- Machine automation
- Optical encoders
- Reflective and transmissive sensors

Ordering Information		
Part Number	Sensor	Viewing Angle
OP525	Phototransistor	25°
OP525DA	Photo Darlington	25°
OP525F	Phototransistor	25°

OP525 and OP525F

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OP525DA Package Dimensions

RECOMMENDED SOLDER PADS

Pin \#	Transistor
$\mathbf{1}$	Collector
2	Emitter

Recommended Solder Pad Patterns

Silicon Phototransistor and Photo Darlington
 in 1210 SMD Package
 OP525, OP525DA, OP525F

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Lead Soldering Temperature $^{(1)}$	$260^{\circ} \mathrm{C}$
Collector-Emitter Voltage $^{\text {OP525, OP525F }}$	30 V
OP525DA	35 V
Emitter-Collector Voltage	5 V
Collector Current	20 mA
OP525, OP525F	30 mA
OP525DA	75 mW
Power Dissipation ${ }^{(2)}$	100 mW
OP525, OP525F	
OP525DA	

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode

$\mathrm{I}_{\text {(ON })}$	On-State Collector Current OP525F OP525 OP525DA	$\begin{gathered} 2.0 \\ 1.0 \\ 10.0 \end{gathered}$	-	-	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{E}_{\mathrm{E}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{E}_{\mathrm{E}}=1.5 \mathrm{~mW} / \mathrm{cm}^{2(3)} \\ & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{E}_{\mathrm{E}}=0.15 \mathrm{~mW} / \mathrm{cm}^{2(3)} \end{aligned}$
$\mathrm{V}_{\text {CE(SAT }}$	Collector-Emitter Saturation Voltage OP525, OP525F OP525DA	-	-	$\begin{aligned} & 0.4 \\ & 1.7 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \quad \mathrm{E}_{\mathrm{E}}=1.0 \mathrm{~mW} / \mathrm{cm}^{2(3)} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \quad \mathrm{E}_{\mathrm{E}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2(3)} \end{aligned}$
Iceo	Collector-Emitter Dark Current OP525, OP525F OP525DA	-	-	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA	$\mathrm{V}_{C C}=10.0 \mathrm{~V}^{(4)}$
$\mathrm{V}_{\text {BR(CEO) }}$	Collector-Emitter Breakdown Voltage OP525, OP525F OP525DA	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	-	-	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0 \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{E}_{\mathrm{E}}=0 \end{aligned}$
$\mathrm{V}_{\text {BR(ECO) }}$	Emitter-Collector Breakdown Voltage OP525, OP525F OP525DA	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	-	-	V	$\begin{aligned} & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0 \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0 \end{aligned}$
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}} \mathrm{t}$	Rise and Fall Times OP525, OP525F OP525DA	-	$\begin{aligned} & 15 \\ & 50 \end{aligned}$	-	$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega \end{aligned}$
$\lambda 0.5$	Spectral Bandwidth OP525F	750	-	1100	nm	-

Notes:

1. Solder time less than 5 seconds at temperature extreme.
2. Derate linearly at $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
3. Light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the phototransistor being tested.
4. To calculate typical collector dark current in $\mu \mathrm{A}$, use the formulate $\mathrm{I}_{\mathrm{CEO}}=10^{\left(0.04 \mathrm{t}-\frac{3}{4}\right)}$, where T_{A} is the ambient temperature in ${ }^{\circ} \mathrm{C}$.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPTEK Technology

OP525 and OP525DA

OP525

Relative Collector Current vs.Irradiance

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

