New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

IRFP440

HEXFET® Power MOSFET

- Dynamic dv/dt Rating
- Repetitive Avalanche Rated
- Isolated Central Mounting Hole
- Fast Switching
- · Ease of Paralleling
- Simple Drive Requirements

$$V_{DSS} = 500V$$

$$R_{DS(on)} = 0.85\Omega$$

$$I_{D} = 8.8A$$

The TO-247 package is preferred for commercial–industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10 V	8.8		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10 V	5.6	A	
I _{DM}	Pulsed Drain Current ①	35		
P _D @ T _C = 25°C	Power Dissipation	150	W	
	Linear Derating Factor	1.2	W/°C	
V _G S	Gate-to-Source Voltage	±20	V	
E _{AS}	Single Pulse Avalanche Energy ②	480	mJ	
I _{AR}	Avalanche Current ①	8.8	А	
E _{AR}	Repetitive Avalanche Energy ①	15	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	3.5	V/ns	
TJ	Operating Junction and	-55 to +150		
Тѕтс	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1 N•m)		

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	
Reuc	Junction-to-Case	· -	_	0.83		
Recs	Case-to-Sink, Flat, Greased Surface		0.24	_	°C/W	
Reja	Junction-to-Ambient	_	_	40		

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

IRFP440

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500	_	_	V	V _{GS} =0V, I _D = 250μA	
ΔV _{(BR)DSS} /ΔT _J	Breakdown Voltage Temp. Coefficient	-	0.78	-	V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance	_	-	0.85	Ω	V _{GS} =10V, I _D =5.3A ④	
V _{GS(th)}	Gate Threshold Voltage	2.0	-	4.0	V	V _{DS} =V _{GS} , I _D = 250μA	
gfs .	Forward Transconductance	5.3	_	_	S	V _{DS} =50V, I _D =5.3A ④	
		_	-	25	μА	V _{DS} =500V, V _{GS} =0V	
lpss	Drain-to-Source Leakage Current	_	_	250		V _{DS} =400V, V _{GS} =0V, T _J =125°C	
Igss	Gate-to-Source Forward Leakage	_	_	100	nA	V _{GS} =20V	
	Gate-to-Source Reverse Leakage	_	_	-100	TIA.	V _{GS} =-20V	
Qg	Total Gate Charge	_	_	63		I _D =8.0A	
Qgs	Gate-to-Source Charge	_	_	11	nC	V _{DS} =400V	
Qgd	Gate-to-Drain ("Miller") Charge	_	_	30)	V _{GS} =10V See Fig. 6 and 13 @	
t _{d(on)}	Turn-On Delay Time	_	14	_		V _{DD} =250V	
tr	Rise Time	_	23	_	ns	$I_D=8.0A$ $R_G=9.1\Omega$	
t _{d(off)}	Turn-Off Delay Time	-	49				
t _f	Fall Time	_	20	-		R _D =31Ω See Figure 10 @	
L _D	Internal Drain Inductance	-	5.0	_	nH	Between lead, 6 mm (0.25in.)	
Ls	Internal Source Inductance	_	13			from package and center of die contact	
Ciss	Input Capacitance	_	1300	_		V _{GS} =0V	
Coss	Output Capacitance	1	310		pF	V _{DS} = 25V	
Crss	Reverse Transfer Capacitance	_	120	-		f=1.0MHz See Figure 5	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
ls	Continuous Source Current (Body Diode)	-	_	8.8	A	MOSFET symbol showing the
Ism	Pulsed Source Current (Body Diode) ①	_	_	35		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage	_	_	2.0	V	T _J =25°C, I _S =8.8A, V _{GS} =0V
trr	Reverse Recovery Time	_	460	970	ns	T _J =25°C, I _F =8.0A
Qrr	Reverse Recovery Charge		3.5	7.6	μС	di/dt=100A/μs ④
ton	Forward Turn-On Time	Intrinsic turn-on time is neglegible (turn-on is dominated by Ls+LD)				