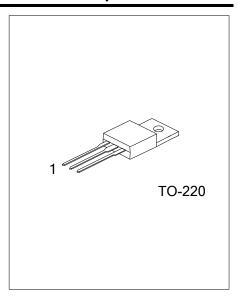
UNISONIC TECHNOLOGIES CO., LTD

UGP7N60

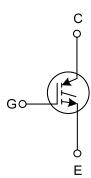
Preliminary

Insulated Gate Bipolar Transistor

600V, SMPS N-CHANNEL IGBT

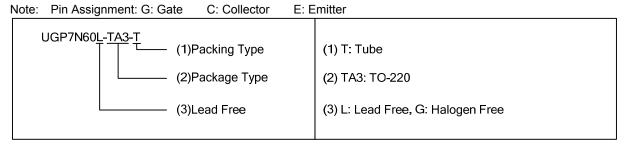

■ DESCRIPTION

The UTC **UGP7N60** is an N-channel IGBT. it uses UTC's advanced technology to provide customers with high input impedance, high switching speed and low conduction loss, etc.


The UTC **UGP7N60** is suitable for high voltage switching, high frequency switch mode power supplies.

■ FEATURES

- * High switching speed
- * High input impedance
- * Low conduction loss



■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking
Lead Free	Halogen Free Packag		1	2	3	Packing
UGP7N60L-TA3-T	UGP7N60G-TA3-T	TO-220	G	С	Е	Tube

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PAF	PARAMETER		RATINGS	UNIT	
Collector-Emitter Voltage			600	V	
0	T _C =25°C		34	Α	
Continuous Collector Current	T _C =110°C	Ic	14	Α	
Collector Current Pulsed (Note 2)			56	Α	
Gate to Emitter Voltage Continuous			±20	V	
Gate to Emitter Voltage Pulsed			±30	V	
Switching Safe Operating Area at T _J =150°C			35 (at 600V)	Α	
Single Pulse Avalanche Energy at T _C =25°C			25 (at 7A)	mJ	
Power Dissipation Total at T _C =25°C			125	W	
Power Dissipation Derating T _C >25°C			1.0	W/°C	
Junction Temperature		T _J	-55~+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

Notes: 1. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Absolute maximum ratings are those values beyond which the device could be permanently damaged.

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL RATINGS		UNIT	
Junction to Case	θ_{JC}	1.0	°C/W	

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Collector-Emitter Breakdown Voltage	or-Emitter Breakdown Voltage BV _{CES} I _C =250μA, V _{GE} =0V			600			V
Emitter to Collector Breakdown Voltage	BV _{ECS}	I _C =10mA, V _{GE} =0V		20			V
Collector Emitter Leakage Current	I _{CES}	V _{CE} =600V	T _J =25°C			250	μΑ
Collector-Emitter Leakage Current			T _J =125°C			2	mA
Callantar Fraitter Caturation Valtage	V _{CE(SAT)}	I _C =7A, V _{GE} =15V	T _J =25°C		1.3	2.7	V
Collector-Emitter Saturation Voltage			T _J =125°C		1	2.2	V
Gate to Emitter Threshold Voltage	$V_{GE(TH)}$	I _C =250μA		4.5	5.9	7.2	V
Gate to Emitter Leakage Current	I _{GES}	V _{GE} =±20V				±250	nA
Switching SOA	SSOA	T _J =150°C, R _G =25Ω, V _{GE} =15V L=100μH, V _{GE} =600V		35			Α
Pulsed Avalanche Energy	E _{AS}	I _{CE} =7A, L=500μH		25			mJ
Gate to Emitter Plateau Voltage	V_{GEP}	I _C =7A, V _{CE} =80V			10		V
On Otata Oata Olassus	$Q_{g(ON)}$	I _C =7A, V _{CE} =300V	V _{GE} =15V		37	45	nC
On-State Gate Charge			V _{GE} =20V		48	60	nC
Current Turn-On Delay Time	t _{dON)I}	IGBT and Diode at T_J =25°C, I_{CE} =7A, V_{GE} =13.5V, R_G =50 Ω , R_L =1 Ω , Test Circuit (Note 1)			400		ns
Current Rise Time	t _{rl}				2.6		μs
Current Turn-Off Delay Time	t _{dOFF)I}				300		ns
Current Fall Time	t _{fl}				2		μs

Note: 1.Pulse Test: Pulse width ≤ 50 µs.

^{2.} Pulse width limited by maximum junction temperature.

■ TEST CIRCUIT AND WAVEFORMS

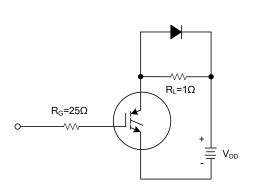


Fig 1. INDUCTIVE SWITCHING TEST CIRCUIT

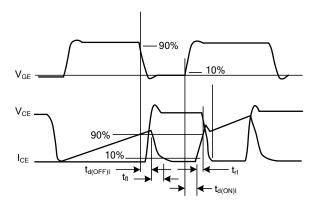


Fig 2. SWITCHING TEST WAVEFORMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.