AN1517
 Application note

Designing with the STEVAL-ISA089V1 high efficiency DC-DC

 converterBy Massimiliano Merisio

Introduction

The L5972D device is a step-down monolithic power switching regulator capable of delivering up to 2 A at output voltages from 1.235 V to 35 V . The operating input voltage ranges from 4.4 V to 36 V . The device has been designed using BCDV technology and the power switching element is implemented through a P-channel DMOS transistor. It does not require a bootstrap capacitor, and the duty cycle can range up to 100\%. An internal oscillator fixes the switching frequency at 250 kHz . This minimizes the LC output filter.

Pulse-by-pulse and frequency foldback overcurrent protection offer effective protection against short-circuit. Other features are voltage feed-forward, protection against feedback disconnection, and thermal shutdown. The device is housed in a thermally improved SO-8 package (with 4 pins connected to GND so that the thermal resistance junction to ambient is reduced to approximately one-half compared with a standard SO-8 package.

Figure 1. Demonstration board

Figure 2. Package

Figure 3. Pin connection

Contents

1 Pin functions 5
Pin description 5
2 Functional description 6
2.1 Power supply and voltage reference 6
2.2 Voltages monitor 6
2.3 Oscillator 7
2.4 Current protection 7
2.5 Error amplifier 8
2.6 PWM comparator and power stage 8
2.7 Thermal shutdown 9
3 Additional features and protection 10
3.1 Feedback disconnection 10
3.2 Output overvoltage protection 10
3.3 Zero load 10
4 Closing the loop 11
4.1 Error amplifier and compensation network 11
4.2 LC filter 12
4.3 PWM comparator 13
5 Application information 16
5.1 Component selection 16
5.1.1 Input capacitor 16
5.1.2 Output capacitor 17
5.1.3 Inductor 17
5.2 Layout considerations 18
5.3 Thermal considerations 19
5.4 Short-circuit protection 20
5.5 Application circuit 21
6 Application ideas 25
Positive buck-boost regulator 25
$7 \quad$ Buck-boost regulator 25
Dual output voltage with auxiliary winding 26
8 Compensation network with MLCC (multiple layer ceramic capacitor) at the output 27
External soft-start network 27
9 Revision history 29

List of figures

Figure 1. Demonstration board 1
Figure 2. Package 1
Figure 3. Pin connection 1
Figure 4. Block diagram 5
Figure 5. Internal regulator circuit 7
Figure 6. Oscillator circuit block diagram 7
Figure 7. Current limitation circuitry 8
Figure 8. Driving circuitry 9
Figure 9. Block diagram of the loop 11
Figure 10. Error amplifier equivalent circuit and compensation network 12
Figure 11. Module plot 14
Figure 12. Phase plot. 15
Figure 13. Layout example 18
Figure 14. Short-circuit current $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$. 21
Figure 15. Short-circuit current $\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}$. 21
Figure 16. Demonstration board application circuit 21
Figure 17. PCB layout (component side) 23
Figure 18. PCB layout (bottom side) 23
Figure 19. PCB layout (front side) 23
Figure 20. Junction temperature vs. output current at $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ 24
Figure 21. Junction temperature vs. output current at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ 24
Figure 22. Efficiency vs. output current at $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ 24
Figure 23. Efficiency vs. output current at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ 24
Figure 24. Positive buck-boost regulator 25
Figure 25. Buck-boost regulator 25
Figure 26. Dual output voltage with auxiliary winding 26
Figure 27. MLCC compensation network example 27
Figure 28. Soft-start network example 28

1 Pin functions

Pin description

Table 1. Pin description

N.	Name	Description
1	OUT	Regulator output.
2	GND	Ground. Lead connected directly to the frame in order to reduce the junction to ambient thermal resistance.
3	GND	Ground. Lead connected directly to the frame in order to reduce the junction to ambient thermal resistance.
4	COMP	E/A output to be used for frequency compensation.
5	FB	Step-down feedback input. Connecting the output voltage directly to this pin results in an output voltage of 1.235 V. An external resistor divider is required for higher output voltages (the typical value for the resistor connected between this pin and ground is 4.7 k 2).
6	GND	Ground. Lead connected directly to the frame in order to reduce the junction to ambient thermal resistance.
7	GND	Ground. Lead connected directly to the frame in order to reduce the junction to ambient thermal resistance.
8	VCC	Unregulated DC input voltage.

Figure 4. Block diagram

2 Functional description

The main internal blocks are shown in the device block diagram in Figure 4. They are:

- A voltage regulator that supplies the internal circuitry. From this regulator, a 3.3 V reference voltage is externally available.
- A voltage monitor circuit which checks the input and internal voltages.
- A fully integrated sawtooth oscillator with a frequency of $250 \mathrm{kHz} \pm 15 \%$, including also the voltage feed-forward function and an input/output synchronization pin.
- Two embedded current limitation circuits which control the current that flows through the power switch. The pulse-by-pulse current limit forces the power switch OFF cycle by cycle if the current reaches an internal threshold, while the frequency shifter reduces the switching frequency in order to significantly reduce the duty cycle.
- A transconductance error amplifier.
- A pulse width modulation (PWM) comparator and the relative logic circuitry necessary to drive the internal power.
- A high-side driver for the internal P-MOS switch.
- A circuit to implement the thermal protection function.

2.1 Power supply and voltage reference

The internal regulator circuit (shown in Figure 5) consists of a start-up circuit, an internal voltage "Preregulator", the "Bandgap voltage reference" and the "Bias block" that provides current to all the blocks.

The "Starter" gives the start-up currents to the entire device when the input voltage goes high and the device is enabled (inhibit pin connected to ground).

The "Preregulator block" supplies the "Bandgap cell" with a preregulated voltage $\mathrm{V}_{\text {REG }}$ that has a very low supply voltage noise sensitivity.

2.2 Voltages monitor

An internal block continuously senses the $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{REF}}$ and V_{BG}. If the voltages go higher than their thresholds, the regulator begins operating. There is also a hysteresis on the V_{CC} (UVLO).

Figure 5. Internal regulator circuit

2.3 Oscillator

Figure 6 shows the block diagram of the oscillator circuit.
The "Clock Generator" provides the switching frequency of the device, which is internally fixed at 250 kHz. The "Frequency Shifter" block acts to reduce the switching frequency in case of strong overcurrent or short-circuit. The clock signal is then used in the internal logic circuitry and is the input of the "Ramp Generator".

The "Ramp Generator" circuit provides the sawtooth signal, used to for PWM control and the internal voltage feed-forward.

Figure 6. Oscillator circuit block diagram

2.4 Current protection

The L5972D device has two types of current limit protection: pulse-by-pulse and frequency foldback.

The schematic of the current limitation circuitry for the pulse-by-pulse protection is shown in Figure 7. The output power PDMOS transistor is split into two parallel PDMOS transistors. The smallest one includes a resistor in series, R RENSE. The current is sensed through $R_{\text {SENSE }}$ and if it reaches the threshold, the mirror becomes unbalanced and the PDMOS is switched off until the next falling edge of the internal clock pulse.

Due to this reduction of the ON time, the output voltage decreases.
Since the minimum switch ON time (necessary to avoid a false overcurrent signal) is too short to obtain a sufficiently low duty cycle at 250 kHz , the output current, in strong overcurrent or short-circuit conditions, could increase again. For this reason the switching frequency is also reduced, thus keeping the inductor current under its maximum threshold. The Frequency Shifter (Figure 6) functions based on the feedback voltage. As the feedback voltage decreases (due to the reduced duty cycle), the switching frequency decreases also.

Figure 7. Current limitation circuitry

2.5 Error amplifier

The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non inverting input is connected to the internal voltage reference (1.235 V), while the inverting input (FB) is connected to the external divider or directly to the output voltage. The output (COMP) is connected to the external compensation network. The uncompensated error amplifier has the following characteristics:

Table 2. Uncompensated error amplifier characteristics

Description	Values
Transconductance	$2300 \mu \mathrm{~S}$
Low frequency gain	65 dB
Minimum sink/source voltage	$1500 \mu \mathrm{~A} / 300 \mu \mathrm{~A}$
Output voltage swing	$0.4 \mathrm{~V} / 3.65 \mathrm{~V}$
Input bias current	$2.5 \mu \mathrm{~A}$

The error amplifier output is compared with the oscillator sawtooth to perform PWM control.

2.6 PWM comparator and power stage

This block compares the oscillator sawtooth and the error amplifier output signals generating the PWM signal for the driving stage.

The power stage is a highly critical block, as it functions to guarantee a correct turn ON and turn OFF of the PDMOS. The turn ON of the power element, or more accurately, the rise
time of the current at turn ON, is a very critical parameter. At a first approach, it appears that the faster the rise time, the lower the turn ON losses. However, there is a limit introduced by the recovery time of the recirculation diode.

In fact, when the current of the power element is equal to the inductor current, the diode turns OFF and the drain of the power is able to go high. But during its recovery time, the diode can be considered a high value capacitor and this produces a very high peak current, responsible for many problems:

- Spikes on the device supply voltage that cause oscillations (and thus noise) due to the board parasitics
- Turn ON overcurrent leads to a decrease in the efficiency and system reliability
- Major EMI problems
- Shorter freewheeling diode life

The fall time of the current during the turn OFF is also critical, as it produces voltage spikes (due to the parasitics elements of the board) that increase the voltage drop across the PDMOS.

In order to minimize these problems, a new driving circuit topology has been used and the block diagram is shown in Figure 8. The basic idea is to change the current levels used to turn the power switch ON and OFF, based on the PDMOS and the gate clamp status.

This circuitry allows the power switch to be turned OFF and ON quickly and addresses the freewheeling diode recovery time problem. The gate clamp is necessary to avoid that V_{GS} of the internal switch goes higher than $\mathrm{V}_{\mathrm{GS}} \mathrm{max}$. The ON/OFF Control block protects against any cross conduction between the supply line and ground.

Figure 8. Driving circuitry

2.7 Thermal shutdown

The thermal shutdown block generates a signal that turns OFF the power stage if the temperature of the chip goes higher than a fixed internal threshold ($150^{\circ} \mathrm{C}$). The sensing element of the chip is very close to the PDMOS area, ensuring fast and accurate temperature detection. A hysteresis of approximately $20^{\circ} \mathrm{C}$ avoids that the device turns ON and OFF continuously.

3 Additional features and protection

3.1 Feedback disconnection

If the feedback is disconnected, the duty cycle increases towards the maximum allowed value, bringing the output voltage close to the input supply. This condition could destroy the load.

To avoid this hazardous condition, the device is turned OFF if the feedback pin is left floating.

3.2 Output overvoltage protection

Overvoltage protection, or OVP, is achieved by using an internal comparator connected to the feedback, which turns OFF the power stage when the OVP threshold is reached. This threshold is typically 30% higher than the feedback voltage.

When a voltage divider is required to adjusting the output voltage (Figure 14 on page 21), the OVP intervention will be set at:

Equation 1

$$
\mathrm{v}_{\mathrm{OVP}}=1.3 \cdot \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}} \cdot \mathrm{v}_{\mathrm{FB}}
$$

Where R_{1} is the resistor connected between the output voltage and the feedback pin, while R_{2} is between the feedback pin and ground.

3.3 Zero load

Due to the fact that the internal power is a PDMOS, no bootstrap capacitor is required and so the device works properly even with no load at the output. In this condition it works in burst mode, with random burst repetition rate.

4 Closing the loop

Figure 9. Block diagram of the loop

4.1 Error amplifier and compensation network

The output L-C filter of a step-down converter contributes with 180 degrees phase shift in the control loop. For this reason a compensation network between the COMP pin and GROUND is added. The simplest compensation network together with the equivalent circuit of the error amplifier are shown in Figure 10. R_{C} and C_{C} introduce a pole and a zero in the open loop gain. CP does not significantly affect system stability but it is useful to reduce the noise of the COMP pin.
The transfer function of the error amplifier and its compensation network is:

Equation 2

$$
A_{0}(s)=\frac{A_{V 0} \bullet\left(1+s \bullet R_{c} \bullet C_{c}\right)}{s^{2} \bullet R_{0} \bullet\left(C_{0}+C_{p}\right) \bullet R_{c} \bullet C_{c}+s \bullet\left(R_{0} \bullet C_{c}+R_{0} \bullet\left(C_{0}+C_{p}\right)+R_{c} \bullet C_{c}\right)+1}
$$

where $A_{v o}=G_{m} \cdot R_{o}$

Figure 10. Error amplifier equivalent circuit and compensation network

The poles of this transfer function are (if $\mathrm{C}_{\mathrm{c}} \gg \mathrm{C}_{0}+\mathrm{C}_{\mathrm{P}}$):

Equation 3

$$
\mathrm{F}_{\mathrm{P} 1}=\frac{1}{2 \bullet \pi \bullet \mathrm{R}_{0} \bullet \mathrm{C}_{\mathrm{c}}}
$$

Equation 4

$$
\mathrm{F}_{\mathrm{P} 2}=\frac{1}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{c}} \cdot\left(\mathrm{C}_{0}+\mathrm{C}_{\mathrm{p}}\right)}
$$

where the zero is defined as:

Equation 5

$$
F_{Z 1}=\frac{1}{2 \bullet \pi \bullet R_{c} \bullet C_{c}}
$$

$F_{P 1}$ is the low frequency which sets the bandwidth, while the zero $F_{Z 1}$ is usually put near to the frequency of the double pole of the L-C filter (see Section 4.2: LC filter). $\mathrm{F}_{\mathrm{P} 2}$ is usually at a very high frequency.

4.2 LC filter

The transfer function of the L-C filter is given by:

Equation 6

$$
\mathrm{A}_{\mathrm{LC}}(\mathrm{~s})=\frac{\mathrm{R}_{\mathrm{LOAD}} \bullet\left(1+\mathrm{ESR} \bullet \mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{~s}\right)}{\mathrm{s}^{2} \bullet \mathrm{~L} \bullet \mathrm{C}_{\mathrm{OUT}} \bullet\left(\mathrm{ESR}+\mathrm{R}_{\mathrm{LOAD}}\right)+\mathrm{s} \bullet\left(\mathrm{ESR} \bullet \mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{R}_{\mathrm{LOAD}}+\mathrm{L}\right)+\mathrm{R}_{\mathrm{LOAD}}}
$$

where $R_{\text {LOAD }}$ is defined as the ratio between $\mathrm{V}_{\text {OUT }}$ and $\mathrm{I}_{\text {OUT }}$.

If $R_{\text {LOAD }} \gg E S R$, the previous expression of $A_{L C}$ can be simplified and becomes:

Equation 7

$$
\mathrm{A}_{\mathrm{LC}}(\mathrm{~s})=\frac{1+\mathrm{ESR} \bullet \mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{~s}}{\mathrm{~L} \bullet \mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{~s}^{2}+\mathrm{ESR} \cdot \mathrm{C}_{\mathrm{OUT}} \bullet \mathrm{~s}+1}
$$

The zero of this transfer function is given by:

Equation 8

$$
\mathrm{F}_{\mathrm{O}}=\frac{1}{2 \bullet \pi \bullet \mathrm{ESR} \bullet \mathrm{C}_{\mathrm{OUT}}}
$$

F_{0} is the zero introduced by the ESR of the output capacitor and it is very important to increase the phase margin of the loop.

The poles of the transfer function can be calculated through the following expression:

Equation 9

$$
\mathrm{F}_{\mathrm{PLC} 1,2}=\frac{-\mathrm{ESR} \cdot \mathrm{C}_{\mathrm{OUT}} \pm \sqrt{\left(\mathrm{ESR} \cdot \mathrm{C}_{\mathrm{OUT}}\right)^{2}-4 \cdot \mathrm{~L} \cdot \mathrm{C}_{\mathrm{OUT}}}}{2 \cdot \mathrm{~L} \cdot \mathrm{C}_{\mathrm{OUT}}}
$$

In the denominator of $A_{L C}$, the typical second order system equation can be recognized:

Equation 10

$$
\mathrm{s}^{2}+2 \cdot \delta \bullet \omega_{\mathrm{n}} \cdot \mathrm{~s}+\omega^{2}{ }_{\mathrm{n}}
$$

If the damping coefficient δ is very close to zero, the roots of the equation become a double root whose value is ω_{n}.
Similarly, for $A_{L C}$ the poles can usually be defined as a double pole whose value is:

Equation 11

$$
\mathrm{F}_{\mathrm{PLC}}=\frac{1}{2 \cdot \pi \cdot \sqrt{\mathrm{~L} \cdot \mathrm{C}_{\mathrm{OUT}}}}
$$

4.3 PWM comparator

The PWM gain is given by the following formula:

Equation 12

$$
\mathrm{G}_{\mathrm{PWM}}(\mathrm{~s})=\frac{\mathrm{V}_{\mathrm{cc}}}{\left(\mathrm{~V}_{\text {OSCMAX }}-\mathrm{V}_{\text {OSCMIN }}\right)}
$$

where $\mathrm{V}_{\text {OSCMAX }}$ is the maximum value of a sawtooth waveform and $\mathrm{V}_{\text {OSCMIN }}$ is the minimum value. A voltage feed-forward is implemented to ensure a constant GPWM. This is obtained by generating a sawtooth waveform directly proportional to the input voltage V_{Cc}.

Equation 13

$$
\mathrm{V}_{\text {OSCMAX }}-\mathrm{V}_{\text {OSCMIN }}=\mathrm{K} \cdot \mathrm{~V}_{\text {CC }}
$$

Where K is equal to 0.076 . Therefore the PWM gain is also equal to:

Equation 14

$$
\mathrm{G}_{\mathrm{PWM}}(\mathrm{~s})=\frac{1}{\mathrm{~K}}=\text { const }
$$

This means that even if the input voltage changes, the error amplifier does not change its value to keep the loop in regulation, thus ensuring a better line regulation and line transient response.

To sum up, the open loop gain can be written as:

Equation 15

$$
\mathrm{G}(\mathrm{~s})=\mathrm{G}_{\mathrm{PWM}}(\mathrm{~s}) \cdot \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \bullet \mathrm{~A}_{\mathrm{O}}(\mathrm{~s}) \bullet \mathrm{A}_{\mathrm{LC}}(\mathrm{~s})
$$

Example 1

- Considering $\mathrm{R}_{\mathrm{C}}=2.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C}}=22 \mathrm{nF}$ and $\mathrm{C}_{\mathrm{P}}=220 \mathrm{pF}$, the poles and zeroes of A_{0} are:
- $\mathrm{F}_{\mathrm{P} 1}=9 \mathrm{~Hz}$
- $\quad \mathrm{F}_{\mathrm{P} 2}=256 \mathrm{kHz}$
- $\quad \mathrm{F}_{\mathrm{Z} 1}=2.68 \mathrm{kHz}$
- If $L=22 \mu H, C_{\text {OUT }}=100 \mu \mathrm{~F}$ and $E S R=80 \mathrm{~m} \Omega$, the poles and zeroes of $A_{\text {LC }}$ become:
- $F_{\text {PLC }}=3.39 \mathrm{kHz}$
- $F_{0}=19.89 \mathrm{kHz}$

Finally $R_{1}=5.6 \mathrm{k} \Omega$ and $R_{2}=3.3 \mathrm{k} \Omega$.
The gain and phase bode diagrams are plotted respectively in Figure 11 and Figure 12.
Figure 11. Module plot

Figure 12. Phase plot

The cut off frequency and the phase margin are:

Equation 16

$$
\mathrm{F}_{\mathrm{C}}=22.8 \mathrm{KHz} \text { Phase margin }=39.8^{\circ}
$$

5 Application information

5.1 Component selection

5.1.1 Input capacitor

The input capacitor must be able to withstand the maximum input operating voltage and the maximum RMS input current.

Since step-down converters draw current from the input in pulses, the input current is squared and the height of each pulse is equal to the output current. The input capacitor has to absorb all this switching current, which can be up to the load current divided by two (worst case, with duty cycle of 50\%). For this reason, the quality of these capacitors has to be very high to minimize its power dissipation generated by the internal ESR, thereby improving system reliability and efficiency. The critical parameter is usually the RMS current rating, which must be higher than the RMS input current.

The maximum RMS input current (flowing through the input capacitor) is:

Equation 17

$$
I_{R M S}=I_{O} \cdot \sqrt{D-\frac{2 \bullet D^{2}}{\eta}+\frac{D^{2}}{\eta}}
$$

Where η is the expected system efficiency, D is the duty cycle and I_{O} the output $D C$ current. This function reaches its maximum value at $D=0.5$ and the equivalent $R M S$ current is equal to I_{O} divided by 2 (considering $\eta=1$). The maximum and minimum duty cycles are:

Equation 18

$$
\mathrm{D}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{OUT}^{+}} \mathrm{V}_{\mathrm{F}}}{\mathrm{~V}_{\mathrm{INMIN}}-\mathrm{V}_{\mathrm{SW}}} \quad \text { and } \quad \mathrm{D}_{\mathrm{MIN}}=\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{F}}}{\mathrm{~V}_{\mathrm{INMAX}}-\mathrm{V}_{\mathrm{SW}}}
$$

where V_{F} is the freewheeling diode forward voltage and $V_{S W}$ the voltage drop across the internal PDMOS. Considering the range $D_{\text {MIN }}$ to $D_{\text {MAX }}$, it is possible to determine the max $\mathrm{I}_{\mathrm{RMS}}$ going through the input capacitor. Capacitors that can be considered are:

- Electrolytic capacitors: These are widely used due to their low price and their availability in a wide range of RMS current ratings. The only drawback is that, considering ripple current rating requirements, they are physically larger than other capacitors.
- Ceramic capacitors: If available for the required value and voltage rating, these capacitors usually have a higher RMS current rating for a given physical dimension (due to very low ESR). The drawback is the considerably high cost.
- Tantalum capacitor: Good, small tantalum capacitors with very low ESR are becoming more available. However, they can occasionally burn if subjected to very high current during charge. Therefore, it is better to avoid this type of capacitor for the input filter of the device. They can, however, be subjected to high surge current when connected to the power supply.

5.1.2 Output capacitor

The output capacitor is very important to meet the output voltage ripple requirement.
Using a small inductor value is useful to reduce the size of the choke but it increases the current ripple. So, to reduce the output voltage ripple, a low ESR capacitor is required. Nevertheless, the ESR of the output capacitor introduces a zero in the open loop gain, which helps to increase the phase margin of the system.

If the zero goes to a very high frequency, its effect is negligible. For this reason, ceramic capacitors and very low ESR capacitors in general should be avoided.

Tantalum and electrolytic capacitors are usually good for this purpose.
Table 3 below provides a list of some tantalum capacitor manufacturers.

Table 3. Recommended output capacitors

Manufacturer	Series	Cap value $(\mu \mathrm{F})$	Rated voltage (V)	ESR (m $\Omega)$
AVX	TPS	100 to 470	4 to 35	50 to 200
KEMET	T494/5	100 to 470	4 to 20	30 to 200
Sanyo POSCAP ${ }^{(1)}$	TPA/B/C	100 to 470	4 to 16	40 to 80
Sprague	$595 D$	220 to 390	4 to 20	160 to 650

1. POSCAP capacitors have characteristic very similar to tantalum ones.

5.1.3 Inductor

The inductor value is very important because it fixes the ripple current flowing through output capacitor.

The ripple current is usually fixed at $20-40 \%$ of I_{0} max, which is:
$0.3-0.6 \mathrm{~A}$ with $\mathrm{I}_{\mathrm{O}} \max =1.5 \mathrm{~A}$.
The approximate inductor value is obtained using Equation 19:

Equation 19

$$
\mathrm{L}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right)}{\Delta \mathrm{I}} \cdot \mathrm{~T}_{\mathrm{ON}}
$$

where $T_{O N}$ is the ON time of the internal switch, given by D $\cdot T$.
For example, with $\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}$ and $\Delta \mathrm{l}_{\mathrm{O}}=0.45 \mathrm{~A}$, the inductor value is about $21 \mu \mathrm{H}$.

The peak current through the inductor is given by:

Equation 20

$$
\mathrm{I}_{\mathrm{PK}}=\mathrm{I}_{\mathrm{O}}+\frac{\Delta \mathrm{l}}{2}
$$

and it can be observed that if the inductor value decreases, the peak current (which must be lower than the current limit of the device) increases. So, when the peak current is fixed, a higher inductor value allows a higher value for the output current.

In Table 4, some inductor manufacturers are listed.
Table 4. Inductor selection

Manufacturer	Series	Inductor value $(\mu \mathbf{H})$	Saturation current (A)
Coilcraft	DO3316	33 to 47	1.6 to 2
Coiltronics	UP2B	33 to 47	1.7 to 2
BI	HM76-3	33 to 47	2 to 2.5
EPCOS	B82476	33 to 47	1.6 to 2
Wurth Elektronik	744561	33 to 47	1.6 to 2

5.2 Layout considerations

The layout of switching DC-DC converters is very important to minimize noise and interference. Power-generating portions of the layout are the main cause of noise and so high switching current loop areas should be kept as small as possible and lead lengths as short as possible.

High impedance paths (in particular the feedback connections) are susceptible to interference, so they should be as far as possible from the high current paths. A layout example is provided in Figure 13.

The input and output loops are minimized to avoid radiation and high frequency resonance problems. The feedback pin connections to the external divider are very close to the device to avoid pick-up noise. Moreover, the GND pin of the device is connected to the ground plane directly with VIA on the bottom side of the PCB.

Figure 13. Layout example

5.3 Thermal considerations

The dissipated power of the device is tie to three different sources:

- \quad switch losses due to the not negligible $R_{D S O N}$. These are equal to:

Equation 21

$$
\mathrm{P}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{DSON}} \cdot\left(\mathrm{I}_{\mathrm{OUT}}\right)^{2} \cdot \mathrm{D}
$$

where D is the duty cycle of the application. Note that the duty cycle is theoretically given by the ratio between $\mathrm{V}_{\text {OUT }}$ and $\mathrm{V}_{\text {IN }}$, but in practice it is substantially higher than this value to compensate for the losses of the overall application. For this reason, the switching losses related to the $R_{\text {DSON }}$ increase compared to an ideal case.

- Switching losses due to turning ON and OFF. These are derived using Equation 22:

Equation 22

$$
\mathrm{P}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{IN}} \cdot \mathrm{I}_{\mathrm{OUT}} \cdot \frac{\left(\mathrm{~T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}\right)}{2} \cdot \mathrm{~F}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{IN}} \cdot \mathrm{I}_{\mathrm{OUT}} \cdot \mathrm{~T}_{\mathrm{SW}} \cdot \mathrm{~F}_{\mathrm{SW}}
$$

Where $T_{\text {ON }}$ and $T_{\text {OFF }}$ are the overlap times of the voltage across the power switch and the current flowing into it during the turn ON and turn OFF phases. $T_{S W}$ is the equivalent switching time.

- Quiescent current losses.

Equation 23

$$
P_{Q}=V_{I N} \cdot I_{Q}
$$

where I_{Q} is the quiescent current.

Example 2

$$
\begin{array}{ll}
- & \mathrm{V}_{\text {IN }}=5 \mathrm{~V} \\
- & \mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V} \\
- & \mathrm{I}_{\text {OUT }}=1.5 \mathrm{~A}
\end{array}
$$

$R_{\text {DSON }}$ has a typical value of 0.25Ω at $25^{\circ} \mathrm{C}$ and increases up to a maximum value of 0.5Ω at $150{ }^{\circ} \mathrm{C}$. We can consider a value of 0.4Ω.
T_{SW} is approximately 70 ns . I_{Q} has a typical value of 2.5 mA at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$. The overall losses are:

Equation 24

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{TOT}}=\mathrm{R}_{\mathrm{DSON}} \cdot\left(\mathrm{I}_{\mathrm{OUT}}\right)^{2} \cdot \mathrm{D}+\mathrm{V}_{\mathrm{IN}} \cdot \mathrm{I}_{\mathrm{OUT}} \cdot \mathrm{~T}_{\mathrm{SW}} \cdot \mathrm{~F}_{\mathrm{SW}}+\mathrm{V}_{\mathrm{IN}} \cdot \mathrm{I}_{\mathrm{Q}}= \\
& =0.4 \cdot 1.5^{2} \cdot 0.7+5 \cdot 1.5 \cdot 70 \cdot 10^{-9} \cdot 250 \cdot 10^{3}+5 \cdot 2.5 \cdot 10^{-3} \cong 0.9 \mathrm{~W}
\end{aligned}
$$

The junction temperature of device will be:

Equation 25

Where T_{A} is the ambient temperature and $R t h_{J-A}$ is the thermal resistance junction to ambient.

Considering that the device in SO-8 (4+2+2) package mounted on board with a good groundplane has a thermal resistance junction to ambient (Rth J_{A}) of about $62^{\circ} \mathrm{C} / \mathrm{W}$ and considering an ambient temperature of about $70^{\circ} \mathrm{C}$.

Equation 26

$$
\mathrm{T}_{\mathrm{J}}=70+0.9 \bullet 62 \cong 128^{\circ} \mathrm{C}
$$

5.4 Short-circuit protection

In overcurrent protection mode, when the peak current reaches the current limit, the device reduces the $\mathrm{T}_{\text {ON }}$ down to its minimum value (approximately 250 ns) and the switching frequency to approximately one third of its nominal value (see Section 2.4: Current protection on page 7). In these conditions, the duty cycle is strongly reduced and, in most applications, this is enough to limit the current to $\mathrm{I}_{\text {LIM }}$. In any event, in case of heavy shortcircuit at the output $\left(\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}\right)$ and depending on the application conditions (V_{CC} value and parasitic effect of external components), the current peak could reach values higher than ILIM.

This can be understood considering the inductor current ripple during the ON and OFF phases:

- ON phase

Equation 27

$$
\Delta \mathrm{I}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {out }}-\mathrm{DCR}_{\mathrm{L}} \bullet \mathrm{I}\right)}{\mathrm{L}} \cdot \mathrm{~T}_{\mathrm{ON}}
$$

- OFF phase

Equation 28

$$
\Delta l_{\mathrm{L}}=\frac{\left(\mathrm{V}_{\mathrm{D}}+\mathrm{V}_{\text {out }}+\mathrm{DCR}_{\mathrm{L}} \bullet \mathrm{l}\right)}{\mathrm{L}} \bullet \mathrm{~T}_{\mathrm{OFF}}
$$

where V_{D} is the voltage drop across the diode, and $D C R_{L}$ is the series resistance of the inductor.

In short-circuit conditions $\mathrm{V}_{\text {OUT }}$ is negligible. So, during the $\mathrm{T}_{\text {OFF }}$, the voltage applied to the inductor is very small and it may be that the current ripple in this phase does not compensate for the current ripple during the T_{ON}.
The maximum current peak can be easily measured through the inductor with $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (short-circuit) and $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}$ max. In cases where the application must sustain the shortcircuit condition for an extended period, the external components (mainly the inductor and diode) must be selected based on this value.

Figure 14. Short-circuit current $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$

Figure 15. Short-circuit current $\mathrm{V}_{\text {IN }}=30 \mathrm{~V}$
(tapg single seq 2.50мs/s

In Figure 14 and Figure 15, for example, it can be observed that when the input voltage increases for a given component list, the current peak increases also. The current limit is immediately triggered but the current peak increases until the current ripple during the $\mathrm{T}_{\text {OFF }}$ is equal to the current ripple during the T_{ON}.

5.5 Application circuit

Figure 16 shows the demonstration board application circuit for the device in the SMD version, where the input supply voltage, V_{CC}, can range from 4.4 V to 25 V due to the rated voltage of the input capacitor and the output voltage is adjustable from 1.235 V to V_{Cc}.

Figure 16. Demonstration board application circuit

Table 5. Component list

Reference	Part number	Description	Manufacturer
C1		$10 \mu \mathrm{~F}, 25 \mathrm{~V}$	Tokin
C2	POSCAP 10TPB100M	$100 \mu \mathrm{~F}, 10 \mathrm{~V}$	SANYO $^{(1)}$
C3	C1206C221J5GAC	$220 \mathrm{pF}, 5 \%, 50 \mathrm{~V}$	KEMET $^{\circledR}$
C4	C1206C223K5RAC	$22 \mathrm{nF}, 10 \%, 50 \mathrm{~V}$	KEMET $^{\text {KEM }}$
R1		$5.6 \mathrm{~K} \Omega, 1 \%, 0.1 \mathrm{~W} 0603$	Neohm $^{\circledR}$
R2		$3.3 \mathrm{~K} \Omega, 1 \%, 0.1 \mathrm{~W} 0603$	Neohm
R3		$4.7 \mathrm{~K} \Omega, 1 \%, 0.1 \mathrm{~W} 0603$	Neohm
D1	STPS2L25U	$2 \mathrm{~A}, 25 \mathrm{~V}$	STMicroelectronics $^{\circledR}$
L1	DO3316P-333	$33 \mu \mathrm{H}, 2.1 \mathrm{~A}$	Coilcraft

Figure 17. PCB layout (component side)

Figure 18. PCB layout (bottom side)

Figure 19. PCB layout (front side)

In Figure 20 to Figure 23 are some graphs showing the T_{j} versus output current in different input and output voltage conditions.

Figure 20. Junction temperature vs. output current at $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$

Figure 22. Efficiency vs. output current

Figure 21. Junction temperature vs. output current at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$

Figure 23. Efficiency vs. output current at $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$

6 Application ideas

Positive buck-boost regulator

The device can be used to implement an step-up/down converter with a positive output voltage. Figure 24 shows the schematic diagram of this topology for an output voltage of 12 V.

The input voltage can range from 5 V and 35 V . The output voltage is given by $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {IN }} \cdot \mathrm{D} /(1-\mathrm{D})$, where D is the duty cycle. The maximum output current is given by $\mathrm{l}_{\mathrm{OUT}}=1 \times(1-\mathrm{D})$. The current capability is reduced by the term ($1-\mathrm{D}$) and so, for example, with a duty cycle of 0.5 , the maximum output current deliverable to the load is 0.75 A . This is due to the fact that the current flowing through the internal power switch is delivered to the output only during the OFF phase.

Figure 24. Positive buck-boost regulator

$7 \quad$ Buck-boost regulator

In Figure 25, the schematic circuit for a standard buck-boost topology is shown. The output voltage is given by $\mathrm{V}_{\mathrm{O}}=-\mathrm{V}_{I N} \cdot \mathrm{D} /(1-\mathrm{D})$. The maximum output current is equal to $I_{\text {OUT }}=1 \times(1-\mathrm{D})$, for the same reason as that of the up-down converter. An important thing to take in account is that the ground pin of the device is connected to the negative output voltage. Therefore, the device is subjected to a voltage equal to $\mathrm{V}_{\mathbb{I}}-\mathrm{V}_{\mathrm{O}}$, which has to be lower than 36 V (the maximum operating input voltage).

Figure 25. Buck-boost regulator

Dual output voltage with auxiliary winding

When two output voltages are required, it is possible to create a dual output voltage converter by using a coupled inductor. During the ON phase the current is delivered to $\mathrm{V}_{\text {OUT }}$ while D2 is reverse-biased.

During the OFF phase, the current is delivered through the auxiliary winding to the output voltage $\mathrm{V}_{\text {OUT1 }}$. This is possible only if the magnetic core has stored sufficient energy. So, to be certain that the application is working properly, the load related to the second output $\mathrm{V}_{\text {OUT1 }}$ should be much lower than the load related to $\mathrm{V}_{\text {OUT }}$.

Figure 26. Dual output voltage with auxiliary winding

8 Compensation network with MLCC (multiple layer ceramic capacitor) at the output

MLCCs with values in the range of $10 \mu \mathrm{~F}-22 \mu \mathrm{~F}$ and rated voltages in the range of $10 \mathrm{~V}-25 \mathrm{~V}$ are available today at relatively low cost from many manufacturers.

These capacitors have very low ESR values (a few $\mathrm{m} \Omega$) and thus are occasionally used for the output filter in order to reduce the voltage ripple and the overall size of the application.

However, a very low ESR value affects the compensation of the loop (see Section 4: Closing the loop on page 11) and in order to keep the system stable, a more complicated compensation network may be required. Figure 27 shows an example of compensation network that stabilizes the system with ceramic capacitors at the output (the optimum component value depends on the application).

Figure 27. MLCC compensation network example

External soft-start network

At the startup, the device can quickly increase the current up to the current limit in order to charge the output capacitor. If a soft ramp-up of the output voltage is required, an external soft-start network can be implemented as shown in Figure 28. The capacitor C is charged up to an external reference (through R), and the B_{JT} clamps the COMP pin.

This clamps the duty cycle, limiting the slew rate of the output voltage.

Figure 28. Soft-start network example

$9 \quad$ Revision history

Table 6. Document revision history

Date	Revision	Changes
08-Nov-2006	1	First issue
28-May-2007	2	- The document has been reformatted - Section 4: Closing the loop modified - Minor text changes
13-Nov-2013	3	- Updated title and Figure 1 on page 1 (replaced L5970 by STEVAL- ISA089V1).
Updated Figure 17, Figure 18 and Figure 19 on page 23 (replaced L5970 by L5972D device).		
- Updated Figure 3 (replaced SYNC, INH, and VREF pins by GND,		
minor corrections).		
- Updated Section 2.4 (replaced L5973AD device by L5972D		
device). - Updated titles of Figure 20 to Figure 23 (added VIN $=5 / 12$ V, in Figure 22 replaced junction temperature by efficiency). - Minor modifications throughout document.		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

