20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

2N5194, 2N5195

Preferred Devices

Silicon PNP Power Transistors

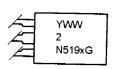
These devices are designed for use in power amplifier and switching circuits: excellent safe area limits. Complement to NPN 2N5191, 2N5192.

MAXIMUM RATINGS (Note 1)

Rating	Symbol	2N5194	2N5195	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	Vdc
Collector-Base Voltage	V _{CB}	60	80	Vdc
Emitter-Base Voltage	V _{EB}	5.0		Vdc
Collector Current	lc	4.0		Adc
Base Current	Iв	1.0		Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	40 320		w w/c
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150		C/W

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θ _{JC}	3.12	c/w

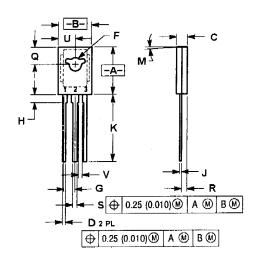

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates JEDEC registered data.

4 AMPERE POWER TRANSISTORS PNP SILICON 60 – 80 VOLTS

MARKING DIAGRAM

Y = Year
WW = Work Week
2N519x = Device Code
x = 4 or 5


NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS (T_C = 25 $^{\circ}$ C unless otherwise noted) (Note 2)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage (Note 3) (I _C = 0.1 Adc, I _B = 0)	2N5194 2N5195	V _{CEO(sus)}	60 80		Vdc
Collector Cutoff Current ($V_{CE} = 60 \text{ Vdc}, I_B = 0$) ($V_{CE} = 80 \text{ Vdc}, I_B = 0$)	2N5194 2N5195	Iceo	-	1.0 1.0	mAdd
Collector Cutoff Current (VCE = 60 Vdc, VBE(off) = 1.5 Vdc) (VCE = 80 Vdc, VBE(off) = 1.5 Vdc) (VCE = 80 Vdc, VBE(off) = 1.5 Vdc, $T_C = 125^{\circ}C$) (VCE = 80 Vdc, $T_C = 1.5 Vdc$, $T_C = 125^{\circ}C$)	2N5194 2N5195 2N5194 2N5195	ICEX	-	0.1 0.1 2.0 2.0	mAdo
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 80 Vdc, I _E = 0)	2N5194 2N5195	Ісво	-	0.1 0.1	mAdo
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	1.0	mAdo
ON CHARACTERISTICS					
DC Current Gain (Note 3) (I_C = 1.5 Adc, V_{CE} = 2.0 Vdc) (I_C = 4.0 Adc, V_{CE} = 2.0 Vdc)	2N5194 2N5195 2N5194 2N5195	h _{FE}	25 20 10 7.0	100 80 	-
Collector-Emitter Saturation Voltage (Note 3) ($I_C = 1.5$ Adc, $I_B = 0.15$ Adc) ($I_C = 4.0$ Adc, $I_B = 1.0$ Adc)		V _{CE(sat)}	_ -	0.6 1.4	Vdc
Base-Emitter On Voltage (Note 3) (I _C = 1.5 Adc, V _{CE} = 2.0 Vdc)		V _{BE(on)}	-	1.2	Vdc
DYNAMIC CHARACTERISTICS					
Current-Gain — Bandwidth Product $(I_C = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ MHz})$		f⊤	2.0	_	MHz

TO-225

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.425	0.435	10.80	11.04	
8	0.295	0.305	7.50	7.74	
С	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93	3.30	
G	0.094 BSC		2.39 BSC		
Н	0.050	0.095	1.27	2.41	
J	0.015	0.025	0.39	0.63	
K	0.575	0.655	14.61	16.63	
M	5 °	5° TYP		TYP	
Q	0.148	0.158	3.76	4.01	
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
٧	0.040	***	1.02		

STYLE 1: PIN 1. EMITTER 2. COLLECTOR , 3. BASE

Indicates JEDEC registered data.
 Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.