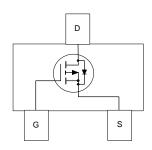

NDS356P


General Description

These P-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as notebook computer power management, portable electronics, and other battery powered circuits where fast high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- $\qquad \text{-1.1 A, -20V. } \mathsf{R}_{\mathsf{DS}(\mathsf{ON})} = 0.3 \Omega \ @ \mathsf{V}_{\mathsf{GS}} = \text{-4.5V.}$
- Proprietary package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.
- Compact industry standard SOT-23 surface mount package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDS356P	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage - Continuous		± 12	V
I _D	Maximum Drain Current - Continuous	(Note 1a)	±1.1	А
	- Pulsed		±10	
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T_J, T_{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		250	°C/W
Q JA		(Note 1a)		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		75	°C/W

NDS356P

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS	<u> </u>			•		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-20			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$				-5	μA
			T _J =125°C			-20	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	ACTERISTICS (Note 2)	·					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$		-0.8	-1.6	-2.5	V
			T _J =125°C	-0.5	-1.3	-2.2]
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_{D} = -1.1 \text{ A}$				0.3	Ω
			T _J =125°C			0.4	
		$V_{GS} = -10 \text{ V}, I_{D} = -1.3 \text{ A}$				0.21	
I _{D(ON)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$		-3			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -1.1 \text{ A}$			1.8		S
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$			180		pF
C _{oss}	Output Capacitance				255		pF
C _{rss}	Reverse Transfer Capacitance				60		pF
SWITCHII	NG CHARACTERISTICS (Note 2)						
t _{d(on)}	Turn - On Delay Time	$V_{DD} = -10 \text{ V}, \ I_{D} = -1 \text{ A},$ $V_{GS} = -10 \text{ V}, \ R_{GEN} = 50 \Omega$			7	15	ns
t _r	Turn - On Rise Time				17	30	ns
$t_{d(off)}$	Turn - Off Delay Time				56	90	ns
t _f	Turn - Off Fall Time				41	80	ns
Q_g	Total Gate Charge	V _{DS} = -10 V, I _D = -1.1 A,			3.5	5	nC
Q_{gs}	Gate-Source Charge	V _{GS} = -5 V				1.5	nC
Q_{gd}	Gate-Drain Charge					2	nC

NDS356P

Electrical Characteristics (T _A = 25°C unless otherwise noted)									
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
I _s	Maximum Continuous Drain-Source Diode Forward Current				-0.6	Α			
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				-4	Α			
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -1.1 \text{ A (Note 2)}$		-0.85	-1.2	V			

Notes:

1. $R_{g,x}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{g,c}$ is guaranteed by design while $R_{gc,x}$ is determined by the user's board design.

$$P_{D}(t) = \frac{T_{J} - T_{A}}{R_{\theta J} \int_{t}^{t} t^{2}} = \frac{T_{J} - T_{A}}{R_{\theta J} \int_{t}^{t} R_{\theta C} \int_{t}^{t} t^{2}} = I_{D}^{2}(t) \times R_{DS(ON)} g_{TJ}$$

Typical $R_{\rm g,A}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

a. 250°C/W when mounted on a 0.02 in² pad of 2oz cpper.

b. 270°C/W when mounted on a 0.001 in $^{\!2}$ pad of 2oz cpper.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.