T-41.81

CLM8500 CLM8500/2

LED-Photoconductor Isolators

This new PHOTOMOD® Series combines solid state lamps with Clairex® photoconductive cells in small, rugged axial-lead isolators.

The CLM 8500 combines a CdS hermetically sealed cell with an LED for high reliability. The line voltage capability and fast response time of the photocell are ideally suited for Triac Switching circuitry.

The CLM8500/2 combines a dual element CdS hermetically sealed photocell with an LED for high reliability. The dual output, balanced over a wide range of input currents, is ideally suited for applications requiring 2 channel control.

TECHNICAL DATA

LED	CHARACTERISTICS	TEST CONDITIONS	CLM 8500 Min. Typ. Max.	CLM8500/2 Min. Typ. Max.	UNITS
I _F max.	Maximum forward current		40	40	mA
.V _F	Forward voltage	I _F = 15 mA	2.8	2.8	volts
I _R	Reverse current	V _R = 4 V	3	3	μΑ
PHOTOCELL V _{MAX}	Cell voltage		220	100	volts DC or PAC
_P ①	Power dissipation	25°C	125	125	milliwatts
PHOTOMOD R ON (2)	On resistance	$I_{\text{f}} = 16\text{mA}$	2K	(5)(6) 1 K	ohms
R _{OFF}	Off resistance	10 sec. after I _F →0 4 VDC on cell	10 Meg	i Meg	ohms
t _R ③	Rise time	Time to 63% of final condition at $I_F = 16$	3.5	5	milliseconds
t _D ⊙	Decay time	Time to RC 0 1 Meg.	20	150	milliseconds
V _{BD}	Isolation		2000	2000	volts DC or PAC
dRc/dt	Cell temperature coefficient	Ir ≧ 5 mA	07	0 7	%/°C

Absolute Maximum Ratings:

Temperature Storage — 10°C to 75°C

Operating — Derate power to 0 at 75°C

8

PC-LED PHOTOMOD SLOPE CHARACTERISTICS

RESPONSE TIME

The t_{RISE} and t_{DECAY} curve is the response time of the module when the lamp current is instantaneously varied from either zero to rated lamp current (t_{RISE}) or rated lamp current to zero (t_{DECAY}).

These curves are representative characteristics. For specific specifications, please contact the factory.

Notes:

 \bigodot P.D. at 25°C case temperature. Derate linearly to 0 at 75°C.

Allowable PHOTOMOD dissipation is determined by the photocell temperature which must not exceed 75°C for continuous operation.

- (2) After 24 hours on.
- (3) Rise time measured after 24 hours on + 5 seconds off.
- 4 Decay time measured from 24 hours on.
- (5) Each element.
- (\hat{b}) Inter-element balance $\pm 25\%$ from $I_F = 1 40 \text{mA}$

