Features

- Exceptional Broadband Performance
- Low Insertion Loss: $\mathrm{T}_{\mathrm{x}}=0.20 \mathrm{~dB}$ @ 2.7 GHz
- High Isolation: $\mathrm{Rx}=50 \mathrm{~dB}$ @ 2.7 GHz
- High Tx RF Input Power = 120 W C.W.
@ $2.0 \mathrm{GHz}, 85^{\circ} \mathrm{C}$
- Suitable for High Power LTE, TD-SCDMA, WiMAX, and Military Radio Applications
- Surface Mount 4mm PQFN Package
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

The MASW-000936 is a SPDT high power, broadband, high linearity, PIN diode T/R switch for $0.05-6.0 \mathrm{GHz}$ applications, including WiMAX \& WiFi. The device is provided in an industry standard lead free 4 mm PQFN plastic package.

This device incorporates PIN diode die fabricated with M/A-COM Technology Solutions' Low Loss, High Isolation Switching Diode processes.

Ordering Information ${ }^{1}$

Part Number	Package
MASW-000936-14000T	Tape and Reel (1K)
MASW-000936-001SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Diagram (Top View)

Pin Configuration ${ }^{2}$

Pin	Pin Name	Description
1	GND	Ground
2	ANT	Antenna
3	N/C	Connect to Ground
4	N/C	No Connection
5	N/C	No Connection
6	N/C	Connect to Ground
7	RX	Receive
8	GND	Ground
9	ShD Rx Bias	ShD Rx Bias
10	N/C	No Connection
11	GND	Ground
12	N/C	Do Not Use
13	GND	Ground
14	TX	Transmit
15	N/C	Connect to Ground
16	N/C	No Connection

2. The exposed pad centered on the package bottom must be connected to RF, DC and Thermal ground.
3. Do not ground pin 12.
[^0]
PIN Diode SPDT 120 Watt Switch for
 0.05 - 6.0 GH z Higher Power Applications

Electrical Specifications ${ }^{4}$: Freq. $=2.0,2.7,3.5 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Bias $=100 \mathrm{~mA} / 28 \mathrm{~V}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
$\begin{aligned} & \text { Insertion Loss }{ }^{4} \\ & \text { Pin }=0 \mathrm{dBm} \end{aligned}$	$\mathrm{R}_{\mathrm{x}}, 0.8 \mathrm{GHz}$ $\mathrm{T}_{\mathrm{x}}, 0.8 \mathrm{GHz}$ $\mathrm{R}_{\mathrm{x}}, 2.0 \mathrm{GHz}$ $\mathrm{T}_{\mathrm{x}}, 2.0 \mathrm{GHz}$ $\mathrm{R}_{\mathrm{x}}, 2.7 \mathrm{GHz}$ $\mathrm{T}_{\mathrm{x}}, 2.7 \mathrm{GHz}$ $\mathrm{R}_{\mathrm{x}}, 3.5 \mathrm{GHz}$ $\mathrm{T}_{\mathrm{x}}, 3.5 \mathrm{GHz}$	dB	-	$\begin{aligned} & 0.20 \\ & 0.07 \\ & 0.35 \\ & 0.15 \\ & 0.50 \\ & 0.20 \\ & 0.70 \\ & 0.25 \end{aligned}$	$\begin{gathered} \overline{-} \\ 0.55 \\ \overline{0.75} \\ \overline{-90} \\ - \end{gathered}$
$\begin{gathered} \text { Isolation }^{4} \\ \text { Pin }=0 \mathrm{dBm} \end{gathered}$	R_{X} to Antenna, 2.0 GHz T_{X} to Antenna, 2.0 GHz R_{X} to Antenna, 2.7 GHz T_{X} to Antenna, 2.7 GHz R_{X} to Antenna, 3.5 GHz T_{X} to Antenna, 3.5 GHz	dB	$\begin{aligned} & \frac{41}{40} \\ & \frac{-}{33} \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 16 \\ & 50 \\ & 13 \\ & 40 \\ & 11 \end{aligned}$	-
$\begin{aligned} & \text { Input Return Loss } \\ & \text { Pin }=0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \\ & \mathrm{~T}_{\mathrm{X}} \\ & \hline \end{aligned}$	dB	-	$\begin{aligned} & 23 \\ & 34 \end{aligned}$	-
T_{x} Input P0.1dB	T_{X} to Antenna	dBm	-	>50	-
$\begin{gathered} \mathrm{T}_{\mathrm{x}} \mathrm{IIP} 3 \\ \mathrm{Pin}=+30 \mathrm{dBm} \end{gathered}$	F1 $=2010 \mathrm{MHz}$, F2 = 2020 MHz	dBm	-	72	-
Tx C.W. Input Power	$85^{\circ} \mathrm{C}$ Base plate 2.0 GHz 2.7 GHz 3.5 GHz	dBm / W dBm / W dBm / W	-	$\begin{gathered} 50.8 / 120 \\ 50 / 100 \\ 49 / 80 \end{gathered}$	-
Rx C.W. Input Power	-	$\begin{gathered} \mathrm{dBm} \\ \mathrm{~W} \end{gathered}$	-	$\begin{gathered} 41.5 \\ 14 \end{gathered}$	-
Tx RF Switching Speed	(10-90\% RF Voltage) 1 MHz Rep Rate in Modulating Mode	ns	-	200	-

4. See Bias Table

Absolute Maximum Ratings ${ }^{5,6}$

@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	150 mA
Reverse Voltage (RF \& D.C.)	160 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$
TX Incident C.W. Power	$50.8 \mathrm{dBm} \mathrm{(120} \mathrm{~W})^{7}$ $@ 2.0 ~ G H z$ $5^{\circ} \mathrm{C}$

5. Exceeding these limits may cause permanent damage.
6. M/A-COM Technology Solutions does not recommend sustained operation near these survivability limits.
7. Base-plate temperature must be controlled to a constant $+85^{\circ} \mathrm{C}$.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1C Human Body devices.

[^1]
Bias Diagrams \& Tables

Bias -15 / +15 V

Bias Table	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{R}_{\mathbf{x}}$	$\mathbf{R}_{\mathbf{x}}$ ShDBias	ANT
Pin	Pin 14	Pin 7	Pin $\mathbf{9}$	Pin $\mathbf{2}$
T_{x}-ANT Isolation	$(+15 \mathrm{~V}), 0 \mathrm{~mA}$	$(-15 \mathrm{~V}),-100 \mathrm{~mA}$	GND	GND
T_{x}-ANT Insertion Loss	$(-15 \mathrm{~V}),-100 \mathrm{~mA}$	$(+15 \mathrm{~V}), 100 \mathrm{~mA}$	GND	GND
$\mathrm{R}_{\mathrm{x}}-A N T$ Isolation	$(-15 \mathrm{~V}),-100 \mathrm{~mA}$	$(+15 \mathrm{~V}), 100 \mathrm{~mA}$	GND	GND
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Insertion Loss	$(+15 \mathrm{~V}), 0 \mathrm{~mA}$	$(-15 \mathrm{~V}), 100 \mathrm{~mA}$	GND	GND

Bias 0 / 28 V

Bias Table	$\mathbf{T}_{\mathbf{x}}$	$\mathbf{R}_{\mathbf{x}}$	$\mathbf{R}_{\mathbf{x}}$ ShDBias	ANT
Pin	Pin 14	Pin 7	Pin 9	Pin $\mathbf{2}$
T_{x}-ANT Isolation	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	+28 V
$\mathrm{~T}_{x}-A N T$ Insertion Loss	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 100 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	+28 V
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Isolation	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 100 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	+28 V
$\mathrm{R}_{\mathrm{x}}-\mathrm{ANT}$ Insertion Loss	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	$(\mathrm{GND}),-100 \mathrm{~mA}$	$(+28 \mathrm{~V}), 0 \mathrm{~mA}$	+28 V

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Typical Performance Curves (RF-probed parts), T_{X} (100 mA Bias Current)

Insertion Loss, T_{X}

Input Return Loss, \boldsymbol{T}_{X}

Isolation, \boldsymbol{T}_{X}

Output Return Loss, \boldsymbol{T}_{X}

Typical Performance Curves (RF-probed parts), R $_{\mathrm{X}}$ (100 mA Bias Current)

Insertion Loss, R_{X}

Input Return Loss, R_{X}

Isolation, R_{X}

Output Return Loss, R_{X}

Application Schematic ${ }^{8}$

8. Adding an LC network to pin 12 can improve R_{x} performance between 2.0 and 2.7 GHz but may limit performance above 3 GHz. For broadband applications M/A-COM Technology Solutions recommends not using pin 12 and not connecting it to any metal trace.

Parts List

Component	Value	Package
C1-C3	22 pF	0603
C4-C6	27 pF	0603
L1-L4	68 nH	0603
R1, R2	137Ω	0603

PCB Footprint

PIN Diode SPDT 120 Watt Switch for

Lead Free 4 mm 16-Lead PQFN ${ }^{\dagger}$

${ }^{\dagger}$ Reference Application Note S2083 for lead-free solder reflow recommendations.
Meets JEDEC moisture sensitivity level 1 requirements.
Plating is NiPdAuAg.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

MIA-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: - North America Tel: 800.366.2266
 - Europe Tel: +353.21.244.6400
 - India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

 Visit www.macomtech.com for additional data sheets and product information.
 M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

