

Hi-Rel NPN bipolar transistor 160 V, 0.5 A

Datasheet - production data

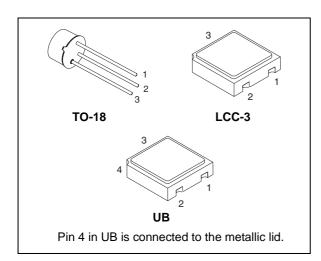
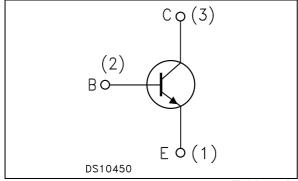



Figure 1. Internal schematic diagram

Features

BV _{CEO}	160 V
I _C (max)	0.5 A
H _{FE} at 5 V - 10 mA	> 80

- · Hermetic packages
- · ESCC and JANS qualified
- Up to 100 krad(Si) low dose rate

Description

The 2N5551HR is a silicon planar NPN transistor specifically designed and housed in hermetic packages for aerospace and Hi-Rel applications. It is available in the JAN qualification system (MIL-PRF19500 compliance) and in the ESCC qualification system (ESCC 5000 compliance). In case of discrepancies between this datasheet and the relevant agency specification, the latter takes precedence.

Table 1. Device summary

Device	Qualification system	Agency specification	Package	Radiation level	EPPL
JANSR2N5551UBx	JANSR	MIL-PRF- 19500/761	UB	100 krad: JANSR HDR	-
JANS2N5551UBx	JANS	MIL-PRF- 19500/761	UB	-	-
2N5551RUBx	ESCC Flight	5201/019	UB	100 krad: ESCC LDR	Target
2N5551UBx	ESCC Flight	5201/019	UB	-	Target
SOC5551RHRx	ESCC Flight	5201/019	LCC-3	100 krad: ESCC LDR	Yes
SOC5551HRx	ESCC Flight	5201/019	LCC-3	-	Yes
2N5551RHRx	ESCC Flight	5201/019	TO-18	100 krad: ESCC LDR	-
2N5551HRx	ESCC Flight	5201/019	TO-18	-	-

April 2014 DocID16935 Rev 7 1/17

Contents 2N5551HR

Contents

1	Elect	rical ratings	3
2	Elect	rical characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Radia	ation hardness assurance	6
4	Pack	age mechanical data	9
	4.1	LCC-3	9
	4.2	TO-18	0
	4.3	UB1	1
5	Orde	r codes	3
6	Ship	oing details	5
	6.1	Date code	5
	6.2	Documentation	5
7	Revis	sion history1	6

2N5551HR Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base voltage (I _E = 0)	180	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	160	V
V _{EBO}	Emitter-base voltage (I _C = 0)	6	V
I _C	Collector current for TO-18 for LCC-3 and UB	0.6 0.5	A A
P _{TOT}	Total dissipation at $T_{amb} \le 25$ °C for TO-18 for LCC-3 and UB for LCC-3 and UB $^{(1)}$ Total dissipation at $T_c \le 25$ °C for TO-18	0.36 0.36 0.58	W W W
TSTG	Storage temperature	-65 to 200	°C
TJ	Max. operating junction temperature	200	°C

^{1.} When mounted on a 8 x 10 x 0.6 mm ceramic substrate.

Table 3. Thermal data for through-hole package

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case max	146	°C/W
R _{thJA}	Thermal resistance junction-ambient max	486	°C/W

Table 4. Thermal data for SMD package

Symbol	Parameter	Value	Unit
D	Thermal resistance junction-ambient max	486	°C/W
R _{thJA}	Thermal resistance junction-ambient (1) max	302	°C/W

^{1.} When mounted on a 8 x 10 x 0.6 mm ceramic substrate.

Electrical characteristics 2N5551HR

2 Electrical characteristics

 T_{case} = 25 °C unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test co	nditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector-base cut-off current (I _E = 0)	V _{CB} = 120 V V _{CB} = 120 V	T _C = 150 °C		-	50 50	nΑ μΑ
I _{EBO}	Emitter-base cut-off current (I _C = 0)	V _{EB} = 4 V			-	50	nA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA		180	1		V
V _{(BR)CEO} (1)	Collector-emitter breakdown voltage (I _B = 0)	I _C = 1 mA		160	ı		V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 10 μA		6	ı		V
V _{CE(sat)} (1)	Collector-emitter saturation voltage	$I_C = 10 \text{ mA}$ $I_C = 50 \text{ mA}$	$I_B = 1 \text{ mA}$ $I_B = 5 \text{ mA}$		-	0.15 0.2	V V
V _{BE(sat)} (1)	Base-emitter saturation voltage	$I_C = 10 \text{ mA}$ $I_C = 50 \text{ mA}$	$I_B = 1 \text{ mA}$ $I_B = 5 \text{ mA}$		-	1 1	V V
h _{FE} ⁽¹⁾	DC current gain	$I_{C} = 1 \text{ mA}$ $I_{C} = 10 \text{ mA}$ $I_{C} = 50 \text{ mA}$ $I_{C} = 10 \text{ mA}$ $T_{amb} = -55 \text{ °C}$	$V_{CE} = 5 V$ $V_{CE} = 5 V$ $V_{CE} = 5 V$ $V_{CE} = 5 V$	80 80 30 20	-	250	
h	Small signal current	For ESCC V _{CE} = 10 V f > 1 kHz	I _C = 10 mA	50	-		
h _{fe}	gain	For JANS V _{CE} = 10 V f > 20 kHz	I _C = 10 mA	2.5			
h _{fe}	Small signal current gain	V _{CE} = 10 V f > 100 MHz	I _C = 10 mA	1	-		
C _{obo}	Output capacitance (I _E = 0)	V _{CB} = 10 V	f = 1 MHz		-	6	pF
<u> </u>	Emitter-base	For ESCC V _{EB} = 5 V	f = 1 MHz		-	20	pF
C _{ebo}	capacitance (I _C = 0)	For JANS V _{EB} = 500 mV	f = 1 MHz			45	pF

^{1.} Pulsed duration = 300 μ s, duty cycle £ 1.5%

4/17

2.1 Electrical characteristics (curves)

Figure 2. $h_{FE} @ V_{CE} = 5 V$

Figure 3. V_{CE(sat)} @ h_{FE} =10

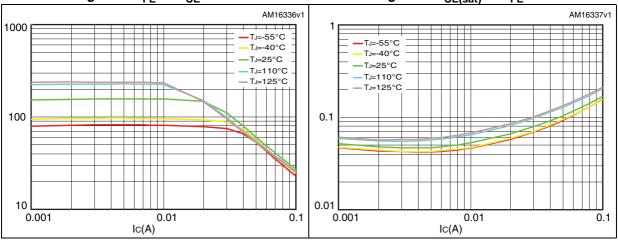
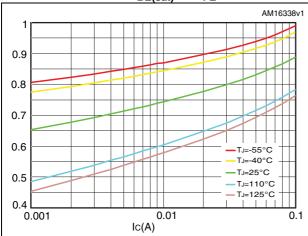



Figure 4. V_{BE(sat)} @ h_{FE} =10

3 Radiation hardness assurance

The products guaranteed in radiation within the JANS system fully comply with the MIL-PRF-19500/761 specification.

The products guaranteed in radiation within the ESCC system fully comply with the ESCC 5201/019 and ESCC 22900 specifications.

JANS radiation assurance

ST JANS parts guaranteed at 100 krad (Si), tested, in full compliancy with the MIL-PRF-19500 specification, specifically the Group D, subgroup 2 inspection, between 50 and 300 rad/s. On top of the standard JANSR high dose rate by wafer lot guarantee, ST 2N5551HR series include an additional wafer by wafer 100 krad Low dose rate guarantee at 0.1 rad/s, identical to the ESCC 100 krad guarantee. It is supported with the same radiation verification test report provided with each shipment. A brief summary of the standard High Dose Rate by wafer lot JANSR guarantee is provided below:

 All test are performed in accordance to MIL-PRF-19500 and test method 1019 of MIL-STD-750 for total lonizing dose.

The table below provides for each monitored parameters of the test conditions and the acceptance criteria.

Table 6. MIL-PRF-19500 (test method 1019) post radiation electrical characteristics

Symbol	Parameter	Valu Test conditions		lue	Unit
Symbol	Farameter	rest conditions	Min.	Max.	Onit
I _{CBO}	Collector to base cutoff current	V _{CB} = 120 V		100	nA
I _{EBO}	Emitter to base cutoff current	V _{EB} = 4 V		100	nA
V _{(BR)CEO}	Breakdown voltage, collector to emitter	I _C = 1 mA	184		V
V _{(BR)BCO}	Breakdown voltage, base to collector	I _C = 100 μA	207		V
V _{(BR)EBO}	Breakdown voltage, emitter to base	I _{EB} = 10 μA	6.9		V
		V _{CE} = 5 V; I _C = 1 mA	[40] ⁽¹⁾		
h _{FE}	Forward-current transfer ratio	V _{CE} = 5 V; I _C = 10 mA	[40] ⁽¹⁾	250	
		$V_{CE} = 5 \text{ V}; I_{C} = 50 \text{ mA}$	[15] ⁽¹⁾		
V	Collector-emitter	I _C = 10 mA; I _B = 1 mA		0.1725	V
V _{CE(sat)}	saturation voltage	$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$		0.23	V
V	Base-emitter	$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$		1.15	V
V _{BE(sat)}	saturation voltage	$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$		1.15	V

See method 1019 of MIL-STD-750 for how to determine [h_{FE}] by first calculating the delta (1/h_{FE}) from the pre- and Post-radiation h_{FE}. Notice the [h_{FE}] is not the same as h_{FE} and cannot be measured directly. The [h_{FE}] value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

6/17 DocID16935 Rev 7

ESCC radiation assurance

Each product lot is tested according to the ESCC basic specification 22900, with a minimum of 11 samples per diffusion lot and 5 samples per wafer, one sample being kept as unirradiated sample, all of them being fully compliant with the applicable ESCC generic and/or detailed specification.

ST goes beyond the ESCC specification by performing the following procedure:

- Test of 11 pieces by wafer, 5 biased at least 80% of V_{(BR)CEO}, 5 unbiased and 1 kept for reference
- Irradiation at 0.1 rad (Si)/s
- Acceptance criteria of each individual wafer if as 100 krad guaranteed if all 10 samples comply with the post radiation electrical characteristics provided in Table 7
- Delivery together with the parts of the radiation verification test (RVT) report of the particular wafer used to manufacture the products. This RVT includes the value of each parameter at 30, 50, 70 and 100 krad (Si) and after 24 hour annealing at room temperature and after an additional 168 hour annealing at 100°C.

Table 7. ESCC 5201/019 post radiation electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current (I _E = 0)	V _{CB} = 120 V		-	50	nA
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} =4 V		-	50	nA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA	180	1		V
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage (I _B = 0)	I _C = 1 mA	160	-		V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	Ι _Ε = 10 μΑ	6	-		V
V _{CE(sat)} (1)	Collector-emitter saturation voltage	$I_C = 10 \text{ mA}$ $I_B = 1 \text{ mA}$ $I_C = 50 \text{ mA}$ $I_B = 5 \text{ mA}$		-	0.2 0.2	V V
V _{BE(sat)} (1)	Base-emitter saturation voltage	$I_C = 10 \text{ mA}$ $I_B = 1 \text{ mA}$ $I_C = 50 \text{ mA}$ $I_B = 5 \text{ mA}$			1 1	V V
[h _{FE}] ⁽¹⁾	Post irradiation gain calculation (2)	$I_{C} = 1 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $I_{C} = 10 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $I_{C} = 50 \text{ mA}$ $V_{CE} = 5 \text{ V}$	[40] [40] [15]	-	250	

^{1.} Pulsed duration = 300 μs , duty cycle \leq 2 %

The post-irradiation gain calculation of [h_{FE}], made using h_{FE} measurements from prior to and on completion of irradiation testing and after each annealing step if any, shall be as specified in MILSTD-750 method 1019.

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 LCC-3

Table 8. LCC-3 mechanical data

Dim.		mm.	
Dim.	Min.	Тур.	Max.
А	1.16		1.42
С	0.45	0.50	0.56
D	0.60	0.76	0.91
E	0.91	1.01	1.12
F	1.95	2.03	2.11
G	2.92	3.05	3.17
I	2.41	2.54	2.66
J	0.42	0.57	0.72
К	1.37	1.52	1.67
L	0.40	0.50	0.60
М	2.46	2.54	2.62
N	1.80	1.90	2.00
R		0.30	

4.2 TO-18

Figure 6. TO-18 drawings D 0016043

Table 9. TO-18 mechanical data

Dim.	mm.				
	Min.	Тур.	Max.		
А		12.7			
В			0.49		
D			5.3		
E			4.9		
F			5.8		
G	2.54				
Н			1.2		
I			1.16		
L	45°				

4.3 UB

Figure 7. UB drawing

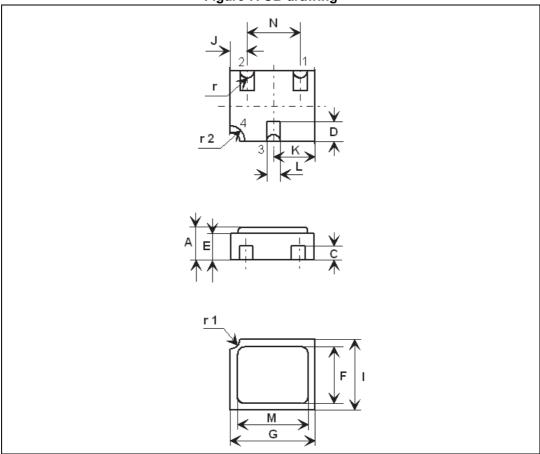


Table 10. UB mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А		12.70	14.20
В		0.40	0.49
С		0.58	0.74
D		6.00	6.40
E		8.15	8.25
F	-	9.10	9.20
G		4.93	5.23
Н		0.85	0.95
I		0.75	0.85
L		42°	48°

5 **Order codes**

Table 11. Order codes

Table 11. Order codes								
CPN	Agency specification	EPPL	Quality level	Radiation level	Package	Lead finish	Marking ⁽¹⁾	Packing
J2N5551UB1	-	-	Engineering model JANS	-	UB	Gold	J5551UB1	WafflePack
2N5551UB1	-	-	Engineering model ESCC	-	UB	Gold	2N55511UB1	WafflePack
SOC55511	-	-	Engineering model ESCC	-	LCC-3	Gold	SOC55511	WafflePack
JANSR2N5551UBG	MIL-PRF- 19500/761	-	JANSR	100 krad: JANSR HDR	UB	Gold	JSR5551	WafflePack
JANSR2N5551UBT	MIL-PRF- 19500/761	-	JANSR	100 krad: JANSR HDR	UB	Solder Dip	JSR5551	WafflePack
JANS2N5551UBG	MIL-PRF- 19500/761	-	JANS	-	UB	Gold	JS5551	WafflePack
JANS2N5551UBT	MIL-PRF- 19500/761	-	JANS	-	UB	Solder Dip	JS5551	WafflePack
2N5551RUBG	5201/019/08R	Target	ESCC Flight	100 krad: ESCC LDR	UB	Gold	520101908R	WafflePack
2N5551RUBT	5201/019/09R	Target	ESCC Flight	100 krad: ESCC LDR	UB	Solder Dip	520101909R	WafflePack
2N5551UBG	5201/019/08	Target	ESCC Flight	-	UB	Gold	520101908	WafflePack
2N5551UBT	5201/019/09	Target	ESCC Flight	-	UB	Solder Dip	520101909	WafflePack
SOC5551RHRG	5201/019/04R	Yes	ESCC Flight	100 krad: ESCC LDR	LCC-3	Gold	520101904R	WafflePack
SOC5551RHRT	5201/019/05R	Yes	ESCC Flight	100 krad: ESCC LDR	LCC-3	Solder Dip	520101905R	WafflePack
SOC5551HRG	5201/019/04	Yes	ESCC Flight	-	LCC-3	Gold	520101904	WafflePack
SOC5551HRT	5201/019/05	Yes	ESCC Flight	-	LCC-3	Solder Dip	520101905	WafflePack
2N5551RHRG	5201/019/01R	-	ESCC Flight	100 krad: ESCC LDR	TO-18	Gold	520101901R	Strip Pack
2N5551RHRT	5201/019/02R	-	ESCC Flight	100 krad: ESCC LDR	TO-18	Solder Dip	520101902R	Strip Pack

Table	11.	Order	codes	(continued)
-------	-----	-------	-------	-------------

CPN	Agency specification	EPPL	Quality level	Radiation level	Package	Lead finish	Marking ⁽¹⁾	Packing
2N5551HRG	5201/019/01	-	ESCC Flight	-	TO-18	Gold	520101901	Strip Pack
2N5551HRT	5201/019/02	-	ESCC Flight	-	TO-18	Solder Dip	520101902	Strip Pack

^{1.} Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: ST logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot. For JANS flight parts: ST logo, date code, country of origin (FR), manufacturer code (CSTM), serial number of the part within the assembly lot.

Contact ST sales office for information about the specific conditions for:

- Products in die form
- Other JANS quality levels
- Tape and reel packing

2N5551HR Shipping details

6 Shipping details

6.1 Date code

Date code xyywwz is structured as below table:

Table 12. Date code

	X	уу	ww	z
EM (ESCC & JANS)	3			
ESCC FLIGHT	-	last two digits of	week digits	lot index in the
JANS FLIGHT (diffused in Singapore)	W	the year	,	week

6.2 Documentation

Table 13. Documentation provided for each type of product

Quality level	Radiation level	Documentation		
Engineering model -		-		
JANS Flight -		Certificate of conformance		
JANSR Flight	MIL-STD 100 krad	Certificate of conformance 50 rad/s radiation verification test report		
JANSK Flight	ST 100 krad	Certificate of conformance 0.1 rad/s radiation verification test report on each wafer		
	-	Certificate of conformance		
ESCC Flight	100 krad	Certificate of conformance		
	100 Klad	0.1 rad/s radiation verification test report		

Revision history 2N5551HR

7 Revision history

Table 14. Document revision history

Date	Revision	Changes
04-Jan-2010	1	Initial release
17-May-2010	2	Modified: Table 1: Device summary and Table 9 on page 11
12-Jul-2010	3	Modified: Table 1: Device summary and Table 9 on page 11
13-Nov-2012	4	Added: Section 2.1: Electrical characteristics (curves)
12-Dec-2013	5	Updated Table 1: Device summary, Table 2: Absolute maximum ratings and Section 4: Package mechanical data. Added Section 5: Order codes and Section 6: Shipping details
27-Mar-2014	6	Updated Table 1: Device summary, Section 3: Radiation hardness assurance, Figure 7: UB drawing, Section 5: Order codes and Table 13: Documentation provided for each type of product. Minor text changes.
01-Apr-2014	7	Inserted note in package silhouette on cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID16935 Rev 7